Beispiel #1
0
def test_lotka_volterra():
    alpha, beta, delta, gamma = 1, 1, 1, 1
    lotka_volterra = lambda x, y, t : [diff(x, t) - (alpha*x  - beta*x*y),
                                       diff(y, t) - (delta*x*y - gamma*y)]
    init_vals_lv = [
        IVP(t_0=0.0, x_0=1.5),
        IVP(t_0=0.0, x_0=1.0)
    ]
    nets_lv = [
        FCNN(hidden_units=(32, 32), actv=SinActv),
        FCNN(hidden_units=(32, 32), actv=SinActv),
    ]
    solution_lv, _ = solve_system(ode_system=lotka_volterra, conditions=init_vals_lv,
                                  t_min=0.0, t_max=12, nets=nets_lv, max_epochs=12000,
                                  monitor=Monitor(t_min=0.0, t_max=12, check_every=100))
    ts = np.linspace(0, 12, 100)
    prey_net, pred_net = solution_lv(ts, as_type='np')

    def dPdt(P, t):
        return [P[0]*alpha - beta*P[0]*P[1], delta*P[0]*P[1] - gamma*P[1]]
    P0 = [1.5, 1.0]
    Ps = odeint(dPdt, P0, ts)
    prey_num = Ps[:,0]
    pred_num = Ps[:,1]
    assert isclose(prey_net, prey_num, atol=0.1).all()
    assert isclose(pred_net, pred_num, atol=0.1).all()
    print('Lotka Volterra test passed.')
Beispiel #2
0
def test_monitor():
    exponential = lambda x, t: diff(x, t) - x
    init_val_ex = IVP(t_0=0.0, x_0=1.0)
    solution_ex, _ = solve(ode=exponential, condition=init_val_ex,
                           t_min=0.0, t_max=2.0,
                           max_epochs=3,
                           monitor=Monitor(t_min=0.0, t_max=2.0, check_every=1))
    print('Monitor test passed.')
Beispiel #3
0
def test_monitor():
    exponential = lambda u, t: diff(u, t) - u
    init_val_ex = IVP(t_0=0.0, u_0=1.0)
    solution_ex, _ = solve(ode=exponential,
                           condition=init_val_ex,
                           t_min=0.0,
                           t_max=2.0,
                           max_epochs=3,
                           monitor=Monitor(t_min=0.0, t_max=2.0,
                                           check_every=1))