def testaddAFNI(self):

            post_dict = {
                'name': "test map",
                'cognitive_paradigm_cogatlas': 'trm_4f24126c22011',
                'modality':'fMRI-BOLD',
                'map_type': 'T',
                'collection':self.coll.pk,
            }
            testpath = os.path.abspath(os.path.dirname(__file__))
            fname = os.path.join(testpath,'test_data/statmaps/saccade.I_C.MNI.nii.gz')

            nii = nb.load(fname)

            self.assertTrue(detect_4D(nii))
            self.assertTrue(len(split_4D_to_3D(nii)) > 0)

            file_dict = {'file': SimpleUploadedFile(fname, open(fname).read())}
            form = StatisticMapForm(post_dict, file_dict)

            self.assertTrue(form.is_valid())

            form.save()

            self.assertEqual(StatisticMap.objects.filter(collection=self.coll.pk).count(), 2)
    def testaddAFNI(self):

        post_dict = {
            'name': "test map",
            'cognitive_paradigm_cogatlas': 'trm_4f24126c22011',
            'modality': 'fMRI-BOLD',
            'map_type': 'T',
            'number_of_subjects': 10,
            'analysis_level': 'G',
            'collection': self.coll.pk,
            'target_template_image': 'GenericMNI',
        }
        testpath = os.path.abspath(os.path.dirname(__file__))
        fname = os.path.join(testpath,
                             'test_data/statmaps/saccade.I_C.MNI.nii.gz')

        nii = nb.load(fname)

        self.assertTrue(detect_4D(nii))
        self.assertTrue(len(split_4D_to_3D(nii)) > 0)

        file_dict = {'file': SimpleUploadedFile(fname, open(fname).read())}
        form = StatisticMapForm(post_dict, file_dict)

        self.assertTrue(form.is_valid())

        form.save()

        self.assertEqual(
            StatisticMap.objects.filter(collection=self.coll.pk).count(), 2)
    def testAfni4DSlicing(self):
        test_afni = detect_4D(nibabel.load(self.afni_file))
        test_non_afni = detect_4D(nibabel.load(self.nii_file))

        bricks = split_4D_to_3D(nibabel.load(self.afni_file), tmp_dir=self.tmpdir)

        # check detection of 4D is correct
        self.assertTrue(test_afni)
        self.assertFalse(test_non_afni)

        # check for 2 sub bricks
        self.assertEquals(len(bricks), 2)

        # check that brick labels match afni 3dinfo binary output
        self.assertEquals(bricks[0][0], "uu3[0]")
        self.assertEquals(bricks[1][0], "uu5[0]")

        # check that sliced niftis exist at output location
        self.assertTrue(os.path.exists(bricks[0][1]))
        self.assertTrue(os.path.exists(bricks[1][1]))
Beispiel #4
0
    def testAfni4DSlicing(self):
        test_afni = detect_4D(nibabel.load(self.afni_file))
        test_non_afni = detect_4D(nibabel.load(self.nii_file))

        bricks = split_4D_to_3D(nibabel.load(self.afni_file),tmp_dir=self.tmpdir)

        # check detection of 4D is correct
        self.assertTrue(test_afni)
        self.assertFalse(test_non_afni)

        # check for 2 sub bricks
        self.assertEquals(len(bricks),2)

        # check that brick labels match afni 3dinfo binary output
        self.assertEquals(bricks[0][0],'uu3[0]')
        self.assertEquals(bricks[1][0],'uu5[0]')

        # check that sliced niftis exist at output location
        self.assertTrue(os.path.exists(bricks[0][1]))
        self.assertTrue(os.path.exists(bricks[1][1]))
        print 'converted afni4d %s to %s sub-brick images.' % (orig_name,
                                                               len(bricks))
        shutil.rmtree(tmpdir)
        os.remove(image.file.path)
        image.delete()


if __name__ == '__main__':
    afni = []
    bad_link = []
    error = []

    for n, image in enumerate(Image.objects.all()):
        if os.path.exists(image.file.path):
            try:
                if detect_4D(image.file.path):
                    print 'found afni4d: %s' % image.file.path
                    populate_afni(image)
            except:
                error.append(image.file.path)
        else:
            bad_link.append(image.file.path)

    print '\n other issues:'
    for bd in bad_link:
        print 'found bad path: %s' % bd

    print '\n\n\n'
    for er in error:
        print 'unable to parse file %s' % er
Beispiel #6
0
                        )
                        del cleaned_data["hdr_file"]
                        return cleaned_data

                # check if it is really nifti
                try:
                    # print file_map
                    if "header" in file_map:
                        nii = nb.Nifti1Pair.from_file_map(file_map)
                    else:
                        nii = nb.Nifti1Image.from_file_map(file_map)
                except Exception as e:
                    raise

                # detect AFNI 4D files and prepare 3D slices
                if nii is not None and detect_4D(nii):
                    self.afni_subbricks = split_4D_to_3D(nii, tmp_dir=tmp_dir)
                else:
                    squeezable_dimensions = len([a for a in nii.shape if a not in [0, 1]])

                    if squeezable_dimensions != 3:
                        self._errors["file"] = self.error_class(
                            ["4D files are not supported.\n "
                             "If it's multiple maps in one "
                             "file please split them and "
                             "upload separately"])
                        del cleaned_data["file"]
                        return cleaned_data

                    # convert to nii.gz if needed
                    if (ext.lower() != ".nii.gz"
Beispiel #7
0
    def clean_and_validate(self, cleaned_data):
        file = cleaned_data.get('file')

        if file:
            # check extension of the data file
            _, fname, ext = split_filename(file.name)
            if not ext.lower() in [".nii.gz", ".nii", ".img"]:
                self._errors["file"] = self.error_class(
                    ["Doesn't have proper extension"])
                del cleaned_data["file"]
                return cleaned_data

            # prepare file to loading into memory
            file.open()
            fileobj = file.file
            if file.name.lower().endswith(".gz"):
                fileobj = GzipFile(filename=file.name,
                                   mode='rb',
                                   fileobj=fileobj)

            file_map = {'image': nb.FileHolder(file.name, fileobj)}
            try:
                tmp_dir = tempfile.mkdtemp()
                if ext.lower() == ".img":
                    hdr_file = cleaned_data.get('hdr_file')
                    if hdr_file:
                        # check extension of the hdr file
                        _, _, hdr_ext = split_filename(hdr_file.name)
                        if not hdr_ext.lower() in [".hdr"]:
                            self._errors["hdr_file"] = self.error_class(
                                ["Doesn't have proper extension"])
                            del cleaned_data["hdr_file"]
                            return cleaned_data
                        else:
                            hdr_file.open()
                            file_map["header"] = nb.FileHolder(
                                hdr_file.name, hdr_file.file)
                    else:
                        self._errors["hdr_file"] = self.error_class(
                            [".img file requires .hdr file"])
                        del cleaned_data["hdr_file"]
                        return cleaned_data

                # check if it is really nifti
                try:
                    print file_map
                    if "header" in file_map:
                        nii = nb.Nifti1Pair.from_file_map(file_map)
                    else:
                        nii = nb.Nifti1Image.from_file_map(file_map)
                except Exception as e:
                    raise

                # detect AFNI 4D files and prepare 3D slices
                if nii is not None and detect_4D(nii):
                    self.afni_subbricks = split_4D_to_3D(nii, tmp_dir=tmp_dir)
                else:
                    squeezable_dimensions = len(
                        filter(lambda a: a not in [0, 1], nii.shape))

                    if squeezable_dimensions != 3:
                        self._errors["file"] = self.error_class([
                            "4D files are not supported.\n "
                            "If it's multiple maps in one "
                            "file please split them and "
                            "upload separately"
                        ])
                        del cleaned_data["file"]
                        return cleaned_data

                    # convert to nii.gz if needed
                    if (ext.lower() != ".nii.gz"
                            or squeezable_dimensions < len(nii.shape)):
                        # convert pseudo 4D to 3D
                        if squeezable_dimensions < len(nii.shape):
                            new_data = np.squeeze(nii.get_data())
                            nii = nb.Nifti1Image(new_data, nii.get_affine(),
                                                 nii.get_header())

                        # Papaya does not handle float64, but by converting
                        # files we loose precision
                        # if nii.get_data_dtype() == np.float64:
                        # ii.set_data_dtype(np.float32)
                        new_name = fname + ".nii.gz"
                        nii_tmp = os.path.join(tmp_dir, new_name)
                        nb.save(nii, nii_tmp)

                        print "updating file in cleaned_data"

                        cleaned_data['file'] = memory_uploadfile(
                            nii_tmp, new_name, cleaned_data['file'])
            finally:
                try:
                    if self.afni_subbricks:
                        # keep temp dir for AFNI slicing
                        self.afni_tmp = tmp_dir
                    else:
                        print "removing %s" % tmp_dir
                        shutil.rmtree(tmp_dir)
                except OSError as exc:
                    if exc.errno != 2:  # code 2 - no such file or directory
                        raise  # re-raise exception
        elif not getattr(self, 'partial', False):
            # Skip validation error if this is a partial update from the API
            raise ValidationError("Couldn't read uploaded file")

        return cleaned_data
Beispiel #8
0
    def clean_and_validate(self, cleaned_data):
        file = cleaned_data.get('file')

        if file:
            # check extension of the data file
            _, fname, ext = split_filename(file.name)
            if not ext.lower() in [".nii.gz", ".nii", ".img"]:
                self._errors["file"] = self.error_class(
                    ["Doesn't have proper extension"]
                )
                del cleaned_data["file"]
                return cleaned_data

            # prepare file to loading into memory
            file.open()
            fileobj = file.file
            if file.name.lower().endswith(".gz"):
                fileobj = GzipFile(filename=file.name, mode='rb',
                                   fileobj=fileobj)

            file_map = {'image': nb.FileHolder(file.name, fileobj)}
            try:
                tmp_dir = tempfile.mkdtemp()
                if ext.lower() == ".img":
                    hdr_file = cleaned_data.get('hdr_file')
                    if hdr_file:
                        # check extension of the hdr file
                        _, _, hdr_ext = split_filename(hdr_file.name)
                        if not hdr_ext.lower() in [".hdr"]:
                            self._errors["hdr_file"] = self.error_class(
                                ["Doesn't have proper extension"])
                            del cleaned_data["hdr_file"]
                            return cleaned_data
                        else:
                            hdr_file.open()
                            file_map["header"] = nb.FileHolder(hdr_file.name,
                                                               hdr_file.file)
                    else:
                        self._errors["hdr_file"] = self.error_class(
                            [".img file requires .hdr file"]
                        )
                        del cleaned_data["hdr_file"]
                        return cleaned_data

                # check if it is really nifti
                try:
                    print file_map
                    if "header" in file_map:
                        nii = nb.Nifti1Pair.from_file_map(file_map)
                    else:
                        nii = nb.Nifti1Image.from_file_map(file_map)
                except Exception as e:
                    raise

                # detect AFNI 4D files and prepare 3D slices
                if nii is not None and detect_4D(nii):
                    self.afni_subbricks = split_4D_to_3D(nii, tmp_dir=tmp_dir)
                else:
                    squeezable_dimensions = len(
                        filter(lambda a: a not in [0, 1], nii.shape)
                    )

                    if squeezable_dimensions != 3:
                        self._errors["file"] = self.error_class(
                            ["4D files are not supported.\n "
                             "If it's multiple maps in one "
                             "file please split them and "
                             "upload separately"])
                        del cleaned_data["file"]
                        return cleaned_data

                    # convert to nii.gz if needed
                    if (ext.lower() != ".nii.gz"
                            or squeezable_dimensions < len(nii.shape)):
                        # convert pseudo 4D to 3D
                        if squeezable_dimensions < len(nii.shape):
                            new_data = np.squeeze(nii.get_data())
                            nii = nb.Nifti1Image(new_data, nii.get_affine(),
                                                 nii.get_header())

                        # Papaya does not handle float64, but by converting
                        # files we loose precision
                        # if nii.get_data_dtype() == np.float64:
                        # ii.set_data_dtype(np.float32)
                        new_name = fname + ".nii.gz"
                        nii_tmp = os.path.join(tmp_dir, new_name)
                        nb.save(nii, nii_tmp)

                        print "updating file in cleaned_data"

                        cleaned_data['file'] = memory_uploadfile(
                            nii_tmp, new_name, cleaned_data['file']
                        )
            finally:
                try:
                    if self.afni_subbricks:
                        # keep temp dir for AFNI slicing
                        self.afni_tmp = tmp_dir
                    else:
                        print "removing %s"%tmp_dir
                        shutil.rmtree(tmp_dir)
                except OSError as exc:
                    if exc.errno != 2:  # code 2 - no such file or directory
                        raise  # re-raise exception
        elif not getattr(self, 'partial', False):
            # Skip validation error if this is a partial update from the API
            raise ValidationError("Couldn't read uploaded file")

        return cleaned_data
Beispiel #9
0
                        )
                        del cleaned_data["hdr_file"]
                        return cleaned_data

                # check if it is really nifti
                try:
                    # print file_map
                    if "header" in file_map:
                        nii = nb.Nifti1Pair.from_file_map(file_map)
                    else:
                        nii = nb.Nifti1Image.from_file_map(file_map)
                except Exception as e:
                    raise

                # detect AFNI 4D files and prepare 3D slices
                if nii is not None and detect_4D(nii):
                    self.afni_subbricks = split_4D_to_3D(nii, tmp_dir=tmp_dir)
                else:
                    squeezable_dimensions = len([a for a in nii.shape if a not in [0, 1]])

                    if squeezable_dimensions != 3:
                        self._errors["file"] = self.error_class(
                            ["4D files are not supported.\n "
                             "If it's multiple maps in one "
                             "file please split them and "
                             "upload separately"])
                        del cleaned_data["file"]
                        return cleaned_data

                    # convert to nii.gz if needed
                    if (ext.lower() != ".nii.gz"
Beispiel #10
0
def upload_folder(request, collection_cid):
    collection = get_collection(collection_cid,request)
    allowed_extensions = ['.nii', '.img', '.nii.gz']
    niftiFiles = []
    if request.method == 'POST':
        print request.POST
        print request.FILES
        form = UploadFileForm(request.POST, request.FILES)
        if form.is_valid():
            tmp_directory = tempfile.mkdtemp()
            print tmp_directory
            try:
                # Save archive (.zip or .tar.gz) to disk
                if "file" in request.FILES:
                    archive_name = request.FILES['file'].name
                    if fnmatch(archive_name,'*.nidm.zip'):
                        form = populate_nidm_results(request,collection)
                        if not form:
                            messages.warning(request, "Invalid NIDM-Results file.")  
                        return HttpResponseRedirect(collection.get_absolute_url())

                    _, archive_ext = os.path.splitext(archive_name)
                    if archive_ext == '.zip':
                        compressed = zipfile.ZipFile(request.FILES['file'])
                    elif archive_ext == '.gz':
                        django_file = request.FILES['file']
                        django_file.open()
                        compressed = tarfile.TarFile(fileobj=gzip.GzipFile(fileobj=django_file.file, mode='r'), mode='r')
                    else:
                        raise Exception("Unsupported archive type %s."%archive_name)
                    compressed.extractall(path=tmp_directory)

                elif "file_input[]" in request.FILES:

                    for f, path in zip(request.FILES.getlist(
                                       "file_input[]"), request.POST.getlist("paths[]")):
                        if fnmatch(f.name,'*.nidm.zip'):
                            request.FILES['file'] = f
                            populate_nidm_results(request,collection)
                            continue

                        new_path, _ = os.path.split(os.path.join(tmp_directory, path))
                        mkdir_p(new_path)
                        filename = os.path.join(new_path,f.name)
                        tmp_file = open(filename, 'w')
                        tmp_file.write(f.read())
                        tmp_file.close()
                else:
                    raise Exception("Unable to find uploaded files.")

                atlases = {}
                for root, subdirs, filenames in os.walk(tmp_directory):
                    if detect_feat_directory(root):
                        populate_feat_directory(request,collection,root)
                        del(subdirs)
                        filenames = []

                    # .gfeat parent dir under cope*.feat should not be added as statmaps
                    # this may be affected by future nidm-results_fsl parsing changes
                    if root.endswith('.gfeat'):
                        filenames = []

                    filenames = [f for f in filenames if not f[0] == '.']
                    for fname in sorted(filenames):
                        name, ext = splitext_nii_gz(fname)
                        nii_path = os.path.join(root, fname)

                        if ext == '.xml':
                            print "found xml"
                            dom = minidom.parse(os.path.join(root, fname))
                            for atlas in dom.getElementsByTagName("summaryimagefile"):
                                print "found atlas"
                                path, base = os.path.split(atlas.lastChild.nodeValue)
                                nifti_name = os.path.join(path, base)
                                atlases[str(os.path.join(root,
                                            nifti_name[1:]))] = os.path.join(root, fname)
                        if ext in allowed_extensions:
                            nii = nib.load(nii_path)
                            if detect_4D(nii):
                                niftiFiles.extend(split_4D_to_3D(nii))
                            else:
                                niftiFiles.append((fname,nii_path))

                for label,fpath in niftiFiles:
                    # Read nifti file information
                    nii = nib.load(fpath)
                    if len(nii.get_shape()) > 3 and nii.get_shape()[3] > 1:
                        messages.warning(request, "Skipping %s - not a 3D file."%label)
                        continue
                    hdr = nii.get_header()
                    raw_hdr = hdr.structarr

                    # SPM only !!!
                    # Check if filename corresponds to a T-map
                    Tregexp = re.compile('spmT.*')
                    # Fregexp = re.compile('spmF.*')

                    if Tregexp.search(fpath) is not None:
                        map_type = StatisticMap.T
                    else:
                        # Check if filename corresponds to a F-map
                        if Tregexp.search(fpath) is not None:
                            map_type = StatisticMap.F
                        else:
                            map_type = StatisticMap.OTHER

                    path, name, ext = split_filename(fpath)
                    dname = name + ".nii.gz"
                    spaced_name = name.replace('_',' ').replace('-',' ')

                    if ext.lower() != ".nii.gz":
                        new_file_tmp_dir = tempfile.mkdtemp()
                        new_file_tmp = os.path.join(new_file_tmp_dir, name) + '.nii.gz'
                        nib.save(nii, new_file_tmp)
                        f = ContentFile(open(new_file_tmp).read(), name=dname)
                        shutil.rmtree(new_file_tmp_dir)
                        label += " (old ext: %s)" % ext
                    else:
                        f = ContentFile(open(fpath).read(), name=dname)

                    collection = get_collection(collection_cid,request)

                    if os.path.join(path, name) in atlases:

                        new_image = Atlas(name=spaced_name,
                                          description=raw_hdr['descrip'], collection=collection)

                        new_image.label_description_file = ContentFile(
                                    open(atlases[os.path.join(path,name)]).read(),
                                                                    name=name + ".xml")
                    else:
                        new_image = StatisticMap(name=spaced_name,
                                description=raw_hdr['descrip'] or label, collection=collection)
                        new_image.map_type = map_type

                    new_image.file = f
                    new_image.save()

            except:
                error = traceback.format_exc().splitlines()[-1]
                msg = "An error occurred with this upload: {}".format(error)
                messages.warning(request, msg)
                return HttpResponseRedirect(collection.get_absolute_url())
            finally:
                shutil.rmtree(tmp_directory)
            if not niftiFiles:
                messages.warning(request, "No NIFTI files (.nii, .nii.gz, .img/.hdr) found in the upload.")
            return HttpResponseRedirect(collection.get_absolute_url())
    else:
        form = UploadFileForm()
    return render_to_response("statmaps/upload_folder.html",
                              {'form': form},  RequestContext(request))
    finally:
        print 'converted afni4d %s to %s sub-brick images.' % (orig_name,len(bricks))
        shutil.rmtree(tmpdir)
        os.remove(image.file.path)
        image.delete()


if __name__ == '__main__':
    afni = []
    bad_link = []
    error = []

    for n,image in enumerate(Image.objects.all()):
        if os.path.exists(image.file.path):
            try:
                if detect_4D(image.file.path):
                    print 'found afni4d: %s' % image.file.path
                    populate_afni(image)
            except:
                error.append(image.file.path)
        else:
            bad_link.append(image.file.path)

    print '\n other issues:'
    for bd in bad_link:
        print 'found bad path: %s' % bd

    print '\n\n\n'
    for er in error:
        print 'unable to parse file %s' % er