Beispiel #1
0
    def run(self):
        """ Evaluation on a existing model.

        Step 1: Build model.
        Step 2: Builds evaluation dataset.
        Step 3: Restore checkpoints.
        Step 4: Evaluate and reduce metric.
        """
        assert not isinstance(self.custom_dataset, MultipleDataset), (
            "SequenceEvaluator only supports single dataset.")
        with training_utils.get_strategy_scope(self.strategy):
            tfds = training_utils.build_datasets(compat.ModeKeys.EVAL, self.strategy,
                                                 self.custom_dataset, self.task)
            keras_model = self.build_evaluation_model(self.task, self.model, self._criterion)
            keras_model.summary()
            summary_model_variables(keras_model)
            # Step 4: Restore checkpoints.
            stat = restore_checkpoint_if_possible(self.model, self.model_dir)
            if not stat:
                logging.info(f"WARNING: Fail to restore checkpoint from {self.model_dir}. "
                             "We assume this was done on purpose. ")
            # Step 5: Evaluate and reduce metric.
            predict_fn = keras_model.make_predict_function()
            iterator = iter(training_utils.maybe_distribution_dataset(
                self.strategy, tfds.prefetch(tf.data.experimental.AUTOTUNE)))
            with tf.io.gfile.GFile(self._output_file, "w") as fw:
                while True:
                    try:
                        preds = predict_fn(iterator)
                        for pred in self._criterion.reduce_sample_metrics(preds):
                            fw.write(str(pred) + "\n")
                    except (StopIteration, tf.errors.OutOfRangeError):
                        break
Beispiel #2
0
    def run(self):
        """ Training a neural model.

        Step 1: Create training model
        Step 2: Restore checkpoint/pretrain model/global_step if exists.
        Step 3: Fetch training data.
        Step 5: Fetch training training.
        Step 6: TRAIN!!!
        """
        if self._hvd_backend == "horovod":
            import horovod.tensorflow.keras as hvd
        elif self._hvd_backend == "byteps":
            import byteps.tensorflow.keras as hvd

        tfds = training_utils.build_datasets(compat.ModeKeys.TRAIN,
                                             self.strategy,
                                             self.custom_dataset, self.task)
        if isinstance(self.custom_dataset, MultipleDataset):
            _tfds = None
            for _, ds in tfds.items():
                if _tfds is None:
                    _tfds = ds
                else:
                    _tfds = _tfds.concatenate(ds)
            tfds = _tfds
        tfds = tfds.prefetch(tf.data.experimental.AUTOTUNE)
        # Step 1: create a model
        with training_utils.get_strategy_scope(self.strategy):
            inps = self.task.create_inputs(compat.ModeKeys.TRAIN)
            formatted_inps = self.task.example_to_input(
                inps, compat.ModeKeys.TRAIN)
            model_out = self.model(formatted_inps, is_training=True)
            for metric_layer in self.task.build_metric_layer():
                model_out = metric_layer([formatted_inps, model_out])
            if (LooseVersion(tf.__version__) < LooseVersion("2.3")
                    or LooseVersion(tf.__version__) >= LooseVersion("2.5")):
                logging.info(
                    f"Warning: Need further check on AccumgradKerasModel when TF version={tf.__version__}. "
                    f"Here we ignore update_cycle={self._update_cycle}, "
                    f"clip_value={self._clip_value}, clip_norm={self._clip_norm}."
                )
                keras_model = tf.keras.Model(inps, model_out)
            elif compat.IS_PREV_TF_2_4_0:
                from neurst.training.gradaccum_keras_model import TF23GradAccumKerasModel
                keras_model = TF23GradAccumKerasModel(
                    inps,
                    model_out,
                    update_cycle=self._update_cycle,
                    clip_value=self._clip_value,
                    clip_norm=self._clip_norm,
                    freeze_variables=self._freeze_variables)
            else:
                keras_model = GradAccumKerasModel(
                    inps,
                    model_out,
                    update_cycle=self._update_cycle,
                    clip_value=self._clip_value,
                    clip_norm=self._clip_norm,
                    freeze_variables=self._freeze_variables)

            loss = self._criterion.reduce_loss(formatted_inps, model_out)
            if compat.is_tf_tensor(loss) or isinstance(loss, (list, tuple)):
                keras_model.add_loss(loss)
            elif isinstance(loss, dict):
                for _name, _loss in loss.items():
                    keras_model.add_loss(_loss)
                    keras_model.add_metric(_loss,
                                           name=_name + "_mean",
                                           aggregation="mean")
            else:
                raise ValueError("criterion.reduce_loss returns "
                                 "unsupported value of type: {}".format(
                                     type(loss)))
            self._restore_ckpt_or_pretrain()
            self._lr_schedule = build_lr_schedule(self._lr_schedule_args)
            if self._pruning_schedule is not None:
                self._optimizer = create_pruning_optimizer(
                    self._optimizer,
                    self.model,
                    self._pruning_schedule,
                    pruning_variable_pattern=self._pruning_variable_pattern,
                    nopruning_variable_pattern=self.
                    _nopruning_variable_pattern,
                    keep_prune_property=True)
            self._optimizer = training_utils.handle_fp16_and_distributed_optimizer(
                self._optimizer, self._lr_schedule, self._hvd_backend)
            if self._hvd_backend is None:
                keras_model.compile(self._optimizer)
            else:
                # NOTE: we already add Horovod DistributedOptimizer in `_handle_fp16_and_distributed_optimizer`.
                # Horovod: Specify `experimental_run_tf_function=False` to ensure TensorFlow
                # uses hvd.DistributedOptimizer() to compute gradients.
                keras_model.compile(self._optimizer,
                                    experimental_run_tf_function=False)
            keras_model.summary()
            summary_model_variables(self.model, self._freeze_variables)
        # initialize the checkpoint manager
        _ = compat.get_saver_or_default(
            self.model,
            self.model_dir,
            max_to_keep=self._checkpoints_max_to_keep)
        # build training training
        if not self._tb_log_dir:
            self._tb_log_dir = os.path.join(self.model_dir, "train")

        training_callbacks = [
            MetricReductionCallback(self.strategy,
                                    self._summary_steps,
                                    self._tb_log_dir,
                                    device="GPU:0",
                                    lr_schedule=self._lr_schedule)
        ]
        if self._hvd_backend is None or hvd.rank() == 0:
            training_callbacks.append(
                CustomCheckpointCallback(
                    self.task.model_configs(self.model),
                    save_checkpoint_steps=self._save_checkpoint_steps))
            if self._validator is not None:
                training_callbacks.append(
                    self._validator.build(self.strategy, self.task,
                                          self.model))
        if self._hvd_backend is not None:
            # Horovod: average metrics among workers at the end of every epoch.
            #
            # Note: This callback must be in the list before the ReduceLROnPlateau,
            # TensorBoard or other metrics-based training.
            # NOTE!!! HERE we already integrate the metric averaging behaviour into the MetricReductionCallback.
            # training_callbacks.insert(0, hvd.callbacks.MetricAverageCallback(device="GPU:0"))

            # Horovod: broadcast initial variable states from rank 0 to all other processes.
            # This is necessary to ensure consistent initialization of all workers when
            # training is started with random weights or restored from a checkpoint.
            training_callbacks.insert(
                0,
                hvd.callbacks.BroadcastGlobalVariablesCallback(0,
                                                               device="GPU:0"))
            if self._lr_schedule is not None:
                training_callbacks.append(
                    LearningRateScheduler(self._lr_schedule))

        if self._experimental_count_batch_num:
            logging.info("Scanning the dataset......")
            iterator = iter(
                training_utils.maybe_distribution_dataset(self.strategy, tfds))
            cnt = 0
            for _ in iterator:
                cnt += 1
            logging.info(f"Total {cnt} batches per EPOCH.")

        history = keras_model.fit(
            map_data_for_keras(tfds.repeat()),
            initial_epoch=0,
            epochs=1,
            steps_per_epoch=self._train_steps,  # * args["update_cycle"],
            verbose=2,
            callbacks=training_callbacks)
        logging.info(history.history)