def peak2halo(files,exten=None,image=None): if (image is not None): im = image xcen = 0.0 ycen = 0.0 ratio = 0.0 nfiles = 1 else: if isinstance(files,(tuple,list)): nfiles = size(files) else: nfiles = 1 files = [files] xcen = np.empty(nfiles,dtype=float) ycen = np.empty(nfiles,dtype=float) ratio = np.empty(nfiles,dtype=float) if exten is None: exten = 1 if exten != 1 and exten != 2 : print 'the EXTEN keyword must be equal to 1 OR 2.' return k = 0 for nfic in range(nfiles): #print 'peak2halo ['+str(nfic+1)+'/'+str(nfiles)+']' if (image is None): hdr = pf.getheader(files[nfic]) if hdr['instrume']!='NICI': print files[nfic],' is not NICI file. Skip it' return #continue elif hdr['obsclass']!= 'science': print files[nfic],' is not NICI science file. Skip it' return #continue im = pf.getdata(files[nfic],exten) # reads the fits image. We will measure the peak/halo # ratio only in the extension=exten bin = medbin(im,32,32) # # calculates de std inside #dev = bin[5:27,5:27].std() #bin = bin[5:27,5:27] - np.median(bin[5:27,5:27]) ## see if we have a mask in the frame #nelem_mask = np.size(np.where(abs(bin)>dev*5))/2 #if nelem_mask == 0: # return -99,-1,-1 im = congrid( (bin > 3*robust_sigma(bin))*1 ,(1024,1024))*im px = np.zeros(1024,dtype=float) py = np.zeros(1024,dtype=float) for i in range(64): py = np.clip(py,\ np.nan_to_num(np.median(im[:,i*16:i*16+16],axis=1)),np.amax(py)) for i in range(64): px = np.clip(px, \ np.nan_to_num(np.median(im[i*16:i*16+16,:],axis=0)),np.amax(px)) # extract the maximum value seen in the image for a # 16 pixel-wide stripe- in the x and y direction px = np.clip(px,min(px),max(px)*.25) py = np.clip(py,min(py),max(py)*.25) offset = 1023 - np.arange(2047.) # cross-correlate this profile with a 'flipped' version # of itself. A peak at pixel 512 will have a '0' offset xrr = size(px) - np.arange(size(px))-1 cx = c_correlate(px,px[xrr],offset) # a peak at pixel N will have a 2*(512-N) offset cy = c_correlate(py,py[size(py)-np.arange(size(py))-1],offset) ix = cx.argmax() xcen_tmp0 = 512-offset[ix]/2. iy = cy.argmax() ycen_tmp0 = 512-offset[iy]/2. # derive the position of the peakmax # get a fine centroid at this position medfilter = medfilt2d(im,7) tmp=(im-medfilter)[ycen_tmp0-20:ycen_tmp0+20,xcen_tmp0-20:xcen_tmp0+20] try: id = tmp.argmax() xcen_tmp0 += ((id%40)-20) ycen_tmp0 += (id/40-20) xcen_tmp,ycen_tmp = gcentroid(im,xcen_tmp0,ycen_tmp0,9) except: xcen_tmp = -1 if xcen_tmp < 0: peak=-1; halo=1 break if mt.sqrt((xcen_tmp0-xcen_tmp)**2+(ycen_tmp0-ycen_tmp)**2) > 9: peak=-1; halo=1 break xc = round(xcen_tmp) yc = round(ycen_tmp) #x = np.arange(xc-3,xc+4) #y = np.arange(yc-3,yc+4) #z = im[yc-3:yc+4,xc-3:xc+4] x = np.arange(xcen_tmp-2,xcen_tmp+5) y = np.arange(ycen_tmp-2,ycen_tmp+5) z = im[yc-2:yc+5,xc-2:xc+5] try: pxy = interp2d(x,y,z,kind='cubic') peak = float(pxy(xcen_tmp,ycen_tmp)) except: peak =-1; halo=1 break # get an accurate estimate of the peak value r = dist_circle([1024,1024],xcen=xcen_tmp,ycen=ycen_tmp) g = np.where((r > 20) & (r < 30)) # get the median value between 20 and 30 pixels of this peak halo = np.median(im[g]) if nfiles > 1: ratio[k] = peak/halo xcen[k] = xcen_tmp ycen[k] = ycen_tmp else: if xcen_tmp < 0: ratio = -1 else: ratio = peak/halo xcen = xcen_tmp ycen = ycen_tmp return ratio,np.float(xcen_tmp),np.float(ycen_tmp) k += 1 if (nfiles == 1): if xcen_tmp < 0: ratio = -1 xcen = -1; ycen = -1 else: ratio = peak/halo xcen = np.float(xcen_tmp) ycen = np.float(ycen_tmp) return ratio,xcen,ycen
def nici_cntrd(im,hdr,center_im=True): """ Read xcen,ycen and update header if necessary If the automatic finding of the center mask fails, then the interactive session will start. The SAOIMAGE/ds9 display must be up. If the default port is busy, then it will use port 5199, so make sure you start "ds9 -port 5199". """ xcen = hdr.get('xcen') ycen = hdr.get('ycen') updated = False if (xcen == None): ratio,xc,yc = peak2halo('',image=im) #xcen = xc[0] #ycen = yc[0] xcen = xc ycen = yc if (xcen < 0 or ycen < 0): try: ndis.display(im) except IOError,err: sys.stderr.write('\n ***** ERROR: %s Start DS9.\n' % str(err)) sys.exit(1) print " Mark center with left button, then use 'q' to continue, 's' to skip." cursor = ndis.readcursor(sample=0) cursor = cursor.split() if cursor[3] == 's': hdr.update("XCEN",-1, "Start mask x-center") hdr.update("YCEN",-1, "Start mask y-center") updated = True print '\nFrame skipped... ****Make sure not to use it in your science script. ***\n' #return updated,xcen,ycen,im return xcen,ycen,im x1 = float(cursor[0]) y1 = float(cursor[1]) box = im[y1-64:y1+64,x1-64:x1+64].copy() box -= scipy.signal.signaltools.medfilt2d(np.float32(box),11) box = box[32:32+64,32:32+64] bbx = box * ((box>(-robust_sigma(box)*5)) & \ (box <(15*robust_sigma(box)))) imbb = congrid(bbx,(1024,1024)) ndis.display(imbb, name='bbx') del imbb cursor = ndis.readcursor(sample=0) cursor = cursor.split() x2 = float(cursor[0]) y2 = float(cursor[1]) xcen,ycen = gcentroid(box, x2/16., y2/16., 4) xcen = (xcen+x1)[0] - 32 ycen = (ycen+y1)[0] - 32 hdr.update("XCEN",xcen, "Start mask x-center") hdr.update("YCEN",ycen, "Start mask y-center") updated = True