Beispiel #1
0
def _convolve_regressors(events,
                         hrf_model,
                         frame_times,
                         fir_delays=[0],
                         min_onset=-24,
                         oversampling=50):
    """ Creation of  a matrix that comprises
    the convolution of the conditions onset with a certain hrf model

    Parameters
    ----------
    events : DataFrame instance,
        Events data describing the experimental paradigm
        see nistats.experimental_paradigm to check the specification
        for these to be valid paradigm descriptors

    hrf_model : {'spm', 'spm + derivative', 'spm + derivative + dispersion',
        'glover', 'glover + derivative', 'glover + derivative + dispersion',
        'fir', None}
        String that specifies the hemodynamic response function

    frame_times : array of shape (n_scans,)
        The targeted timing for the design matrix.

    fir_delays : array-like of shape (n_onsets,), optional,
        In case of FIR design, yields the array of delays
        used in the FIR model (in scans).

    min_onset : float, optional (default: -24),
        Minimal onset relative to frame_times[0] (in seconds) events
        that start before frame_times[0] + min_onset are not considered.

    oversampling: int optional, default:50,
        Oversampling factor used in temporal convolutions.

    Returns
    -------
    regressor_matrix : array of shape (n_scans, n_regressors),
        Contains the convolved regressors associated with the
        experimental conditions.

    regressor_names : list of strings,
        The regressor names, that depend on the hrf model used
        if 'glover' or 'spm' then this is identical to the input names
        if 'glover + derivative' or 'spm + derivative', a second name is output
            i.e. '#name_derivative'
        if 'spm + derivative + dispersion' or
            'glover + derivative + dispersion',
            a third name is used, i.e. '#name_dispersion'
        if 'fir', the regressos are numbered accoding to '#name_#delay'
    """
    regressor_names = []
    regressor_matrix = None
    trial_type, onset, duration, modulation = check_events(events)
    for condition in np.unique(trial_type):
        condition_mask = (trial_type == condition)
        exp_condition = (onset[condition_mask], duration[condition_mask],
                         modulation[condition_mask])
        reg, names = compute_regressor(exp_condition,
                                       hrf_model,
                                       frame_times,
                                       con_id=condition,
                                       fir_delays=fir_delays,
                                       oversampling=oversampling,
                                       min_onset=min_onset)

        regressor_names += names
        if regressor_matrix is None:
            regressor_matrix = reg
        else:
            regressor_matrix = np.hstack((regressor_matrix, reg))
    return regressor_matrix, regressor_names
Beispiel #2
0
def create_design_matrix(tr,
                         frame_times,
                         events,
                         hrf_model='kay',
                         hrf_idx=None):
    """ Creates a design matrix based on a HRF from Kendrick Kay's set
    or a default one from Nilearn. """

    # This is to keep oversampling consistent across hrf_models
    hrf_oversampling = 10
    design_oversampling = tr / (0.1 / hrf_oversampling)

    if hrf_model != 'kay':  # just use Nilearn!
        return make_first_level_design_matrix(frame_times,
                                              events,
                                              drift_model=None,
                                              min_onset=0,
                                              oversampling=design_oversampling,
                                              hrf_model=hrf_model)

    if hrf_model == 'kay':
        if hrf_idx is None:  # 20 different DMs (based on different HRFs)
            to_iter = range(HRFS_HR.shape[1])
        else:  # use the supplied HRF idx (e.g., 5)
            to_iter = [hrf_idx]

        dms = []  # will store all design matrices
        for hrf_idx in to_iter:  # iterate across all HRFs
            hrf = HRFS_HR[:, hrf_idx]
            # scale HRF to have the same max as the glover HRF
            # makes comparison easier
            hrf /= (hrf.max() / 0.249007)

            # Get info
            trial_type, onset, duration, modulation = check_events(events)

            # Pre-allocate design matrix; note: columns are alphabetically sorted
            X = np.zeros((frame_times.size, np.unique(trial_type).size))
            uniq_trial_types = np.unique(trial_type)  # this is sorted

            # Create separate regressor for each unique trial type
            # Code copied from Nilearn glm module
            for i, condition in enumerate(uniq_trial_types):
                condition_mask = (trial_type == condition)
                exp_condition = (onset[condition_mask],
                                 duration[condition_mask],
                                 modulation[condition_mask])
                # Create high resolution regressor/frame times
                hr_regressor, hr_frame_times = _sample_condition(
                    exp_condition, frame_times, design_oversampling, 0)

                # Convolve with HRF and downsample
                conv_reg = np.convolve(hr_regressor, hrf)[:hr_regressor.size]
                # linear interpolation for now ...
                f = interp1d(hr_frame_times, conv_reg)
                X[:, i] = f(frame_times).T

            # Note to self: do not scale such that max(X, axis=0) is 1, because you'll lose info
            # about predictor variance!
            dm = pd.DataFrame(X, columns=uniq_trial_types, index=frame_times)
            dm['constant'] = 1  # and intercept/constant
            dms.append(dm)

        if len(dms) == 1:
            # Just return single design matrix
            dms = dms[0]

        return dms