Beispiel #1
0
def test_overlaid_report(data_img_3d):
    pytest.importorskip('matplotlib')

    masker = NiftiMasker(target_affine=np.eye(3) * 8)
    html = masker.generate_report()
    assert "Please `fit` the object" in str(html)
    masker.fit(data_img_3d)
    html = masker.generate_report()
    assert '<div class="overlay">' in str(html)
Beispiel #2
0
def test_4d_reports(mask):
    # Dummy 4D data
    data = np.zeros((10, 10, 10, 3), dtype=int)
    data[..., 0] = 1
    data[..., 1] = 2
    data[..., 2] = 3
    data_img_4d = Nifti1Image(data, np.eye(4))

    # test .fit method
    masker = NiftiMasker(mask_strategy='epi')
    masker.fit(data_img_4d)
    assert masker._report_content['warning_message'] is None
    html = masker.generate_report()
    _check_html(html)

    # test .fit_transform method
    masker = NiftiMasker(mask_img=mask, standardize=True)
    masker.fit_transform(data_img_4d)
    assert masker._report_content['warning_message'] is None
    html = masker.generate_report()
    _check_html(html)
###########################################################################
# Visualize the mask using the plot_roi method
from nilearn.plotting import plot_roi
from nilearn.image.image import mean_img

# calculate mean image for the background
mean_func_img = mean_img(func_filename)

plot_roi(mask_img, mean_func_img, display_mode='y', cut_coords=4, title="Mask")

###########################################################################
# Visualize the mask using the 'generate_report' method
# This report can be displayed in a Jupyter Notebook,
# opened in-browser using the .open_in_browser() method,
# or saved to a file using the .save_as_html(output_filepath) method.
report = nifti_masker.generate_report()
report

###########################################################################
# Preprocess data with the NiftiMasker
nifti_masker.fit(func_filename)
fmri_masked = nifti_masker.transform(func_filename)
# fmri_masked is now a 2D matrix, (n_voxels x n_time_points)

###########################################################################
# Run an algorithm
from sklearn.decomposition import FastICA
n_components = 10
ica = FastICA(n_components=n_components, random_state=42)
components_masked = ica.fit_transform(fmri_masked.T).T
miyawaki_filename = miyawaki_dataset.func[0]
miyawaki_mean_img = image.mean_img(miyawaki_filename)
plot_epi(miyawaki_mean_img, title='Mean EPI image')
###############################################################################
# A NiftiMasker with the default strategy
masker = NiftiMasker()
masker.fit(miyawaki_filename)

# Plot the generated mask using the mask_img_ attribute
plot_roi(masker.mask_img_,
         miyawaki_mean_img,
         title="Mask from already masked data")

###############################################################################
# Plot the generated mask using the .generate_report method
report = masker.generate_report()
report

###############################################################################
# Computing a mask from raw EPI data
###############################################################################
#
# From raw EPI data, there is no uniform background, and a different
# strategy is necessary

# Load movie watching based brain development fmri dataset
dataset = datasets.fetch_development_fmri(n_subjects=1)
epi_filename = dataset.func[0]

# Restrict to 100 frames to speed up computation
from nilearn.image import index_img