def test_CorrelationDistributionDecoder_smoke(testdata_laird, tmp_path_factory): """Smoke test for continuous.CorrelationDistributionDecoder.""" tmpdir = tmp_path_factory.mktemp("test_CorrelationDistributionDecoder") testdata_laird = testdata_laird.copy() features = testdata_laird.get_labels(ids=testdata_laird.ids[0])[:5] decoder = continuous.CorrelationDistributionDecoder(features=features) # No images of the requested type with pytest.raises(ValueError): decoder.fit(testdata_laird) # Let's add the path testdata_laird.update_path(tmpdir) # Then let's make some images to decode kern = kernel.MKDAKernel(r=10, value=1) dset = kern.transform(testdata_laird, return_type="dataset") # And now we have images we can use for decoding! decoder = continuous.CorrelationDistributionDecoder( features=features, target_image=kern.image_type, ) decoder.fit(dset) # Make an image to decode meta = mkda.KDA(null_method="approximate") res = meta.fit(testdata_laird) img = res.get_map("stat") decoded_df = decoder.transform(img) assert isinstance(decoded_df, pd.DataFrame)
def test_kda_density_fwe_1core(testdata_cbma): """ Smoke test for KDA """ meta = mkda.KDA() res = meta.fit(testdata_cbma) corr = FWECorrector(method="montecarlo", n_iters=5, n_cores=1) cres = corr.transform(res) assert isinstance(res, nimare.results.MetaResult) assert isinstance(cres, nimare.results.MetaResult)
def test_CorrelationDecoder_smoke(testdata_laird): """Smoke test for continuous.CorrelationDecoder.""" testdata_laird = testdata_laird.copy() features = testdata_laird.get_labels(ids=testdata_laird.ids[0])[:5] decoder = continuous.CorrelationDecoder(features=features) decoder.fit(testdata_laird) # Make an image to decode meta = mkda.KDA(null_method="approximate") res = meta.fit(testdata_laird) img = res.get_map("stat") decoded_df = decoder.transform(img) assert isinstance(decoded_df, pd.DataFrame)
def test_CorrelationDecoder_smoke(testdata_laird, tmp_path_factory): """Smoke test for continuous.CorrelationDecoder.""" tmpdir = tmp_path_factory.mktemp("test_CorrelationDecoder") testdata_laird = testdata_laird.copy() features = testdata_laird.get_labels(ids=testdata_laird.ids[0])[:5] decoder = continuous.CorrelationDecoder(features=features) # No basepath with pytest.raises(ValueError): decoder.fit(testdata_laird) # Let's add the path testdata_laird.update_path(tmpdir) decoder.fit(testdata_laird) # Make an image to decode meta = mkda.KDA(null_method="approximate") res = meta.fit(testdata_laird) img = res.get_map("stat") decoded_df = decoder.transform(img) assert isinstance(decoded_df, pd.DataFrame)