def test_good_model(self):

        Dynamics(name='A',
                 aliases=['A1:=P1 * SV2', 'A2 := ARP1 + SV2', 'A3 := SV1'],
                 state_variables=[
                     StateVariable('SV1', dimension=un.voltage),
                     StateVariable('SV2', dimension=un.current)
                 ],
                 regimes=[
                     Regime('dSV1/dt = -SV1 / P2',
                            'dSV2/dt = A3 / ARP2 + SV2 / P2',
                            transitions=[
                                On('SV1 > P3', do=[OutputEvent('emit')]),
                                On('spikein', do=[OutputEvent('emit')])
                            ],
                            name='R1'),
                     Regime(name='R2',
                            transitions=On('(SV1 > C1) & (SV2 < P4)', to='R1'))
                 ],
                 analog_ports=[
                     AnalogReceivePort('ARP1', dimension=un.current),
                     AnalogReceivePort('ARP2',
                                       dimension=(un.resistance * un.time)),
                     AnalogSendPort('A1', dimension=un.voltage * un.current),
                     AnalogSendPort('A2', dimension=un.current)
                 ],
                 parameters=[
                     Parameter('P1', dimension=un.voltage),
                     Parameter('P2', dimension=un.time),
                     Parameter('P3', dimension=un.voltage),
                     Parameter('P4', dimension=un.current)
                 ],
                 constants=[Constant('C1', value=1.0, units=un.mV)])
Beispiel #2
0
 def test_regime_aliases(self):
     a = Dynamics(
         name='a',
         aliases=[Alias('A', '4/t')],
         regimes=[
             Regime('dX/dt=1/t + A',
                    name='r1',
                    transitions=On('X>X1', do=['X=X0'], to='r2')),
             Regime('dX/dt=1/t + A',
                    name='r2',
                    transitions=On('X>X1', do=['X=X0'],
                                   to='r1'),
                    aliases=[Alias('A', '8 / t')])])
     self.assertEqual(a.regime('r2').alias('A'), Alias('A', '8 / t'))
     self.assertRaises(
         NineMLUsageError,
         Dynamics,
         name='a',
         regimes=[
             Regime('dX/dt=1/t + A',
                    name='r1',
                    transitions=On('X>X1', do=['X=X0'], to='r2')),
             Regime('dX/dt=1/t + A',
                    name='r2',
                    transitions=On('X>X1', do=['X=X0'],
                                   to='r1'),
                    aliases=[Alias('A', '8 / t')])])
     document = Document()
     a_xml = a.serialize(format='xml', version=1, document=document)
     b = Dynamics.unserialize(a_xml, format='xml', version=1,
                              document=Document(un.dimensionless.clone()))
     self.assertEqual(a, b,
                      "Dynamics with regime-specific alias failed xml "
                      "roundtrip:\n{}".format(a.find_mismatch(b)))
Beispiel #3
0
    def test_name(self):

        self.assertRaises(NineMLUsageError, Regime, name='&Hello')
        self.assertRaises(NineMLUsageError, Regime, name='2Hello')

        self.assertEqual(Regime(name='Hello').name, 'Hello')
        self.assertEqual(Regime(name='Hello2').name, 'Hello2')
Beispiel #4
0
    def test_ports(self):
        # Signature: name
                # Return an iterator over all the port (Event & Analog) in the
                # component
        # from nineml.abstraction.component.componentqueryer import
        # ComponentClassQueryer

        c = Dynamics(
            name='Comp1',
            regimes=[
                Regime(name='r1',
                       transitions=[
                           On('spikeinput1', do=[]),
                           On('spikeinput2', do=OutputEvent('ev_port2'),
                              to='r2')]),

                Regime(name='r2',
                       transitions=[
                           On('V > a', do=OutputEvent('ev_port2')),
                           On('spikeinput3', do=OutputEvent('ev_port3'),
                              to='r1')])
            ],
            aliases=['A1:=0', 'C:=0'],
            analog_ports=[AnalogSendPort('A1'), AnalogReceivePort('B'),
                          AnalogSendPort('C')]
        )

        ports = list(list(c.ports))
        port_names = [p.name for p in ports]

        self.assertEquals(len(port_names), 8)
        self.assertEquals(set(port_names),
                          set(['A1', 'B', 'C', 'spikeinput1', 'spikeinput2',
                               'spikeinput3', 'ev_port2', 'ev_port3'])
                          )
Beispiel #5
0
    def test_regime(self):
        # Signature: name(self, name=None)
        # Find a regime in the component by name
        # from nineml.abstraction.component.componentqueryer import
        # ComponentClassQueryer

        c = Dynamics(name='cl',
                     regimes=[
                          Regime('dX/dt=1/t',
                                 name='r1',
                                 transitions=On('X>X1', do=['X=X0'],
                                                to='r2')),
                          Regime('dX/dt=1/t',
                                 name='r2',
                                 transitions=On('X>X1', do=['X=X0'],
                                                to='r3')),
                          Regime('dX/dt=1/t',
                                 name='r3',
                                 transitions=On('X>X1', do=['X=X0'],
                                                to='r4')),
                          Regime('dX/dt=1/t',
                                 name='r4',
                                 transitions=On('X>X1', do=['X=X0'],
                                                to='r1'))])
        self.assertEqual(c.regime(name='r1').name, 'r1')
        self.assertEqual(c.regime(name='r2').name, 'r2')
        self.assertEqual(c.regime(name='r3').name, 'r3')
        self.assertEqual(c.regime(name='r4').name, 'r4')
    def test_internally_inconsistent(self):

        self.assertRaises(
            NineMLDimensionError,
            Dynamics,
            name='A',
            state_variables=[StateVariable('SV1', dimension=un.voltage)],
            regimes=[
                Regime('dSV1/dt = SV1 + P1', name='R1'),
            ],
            parameters=[Parameter('P1', dimension=un.time)],
        )
        self.assertRaises(
            NineMLDimensionError,
            Dynamics,
            name='A',
            state_variables=[StateVariable('SV1', dimension=un.voltage)],
            regimes=[
                Regime('dSV1/dt = SV1/t',
                       transitions=[On('SV1 > P1', do=[OutputEvent('emit')])],
                       name='R1'),
            ],
            parameters=[Parameter('P1', dimension=un.time)],
        )
        self.assertRaises(
            NineMLDimensionError,
            Dynamics,
            name='A',
            state_variables=[StateVariable('SV1', dimension=un.voltage)],
            regimes=[
                Regime('dSV1/dt = SV1/t',
                       transitions=[
                           On('SV1 > P1',
                              do=[StateAssignment('SV1', 'SV1 + RP1')])
                       ],
                       name='R1'),
            ],
            parameters=[Parameter('P1', dimension=un.voltage)],
            analog_ports=[AnalogReceivePort('RP1', dimension=un.time)],
        )
        self.assertRaises(
            NineMLDimensionError,
            Dynamics,
            name='A',
            state_variables=[StateVariable('SV1', dimension=un.voltage)],
            regimes=[
                Regime('dSV1/dt = SV1/t',
                       transitions=[
                           On('(SV1 > P1) & (P2 > 0)',
                              do=[OutputEvent('emit')])
                       ],
                       name='R1'),
            ],
            parameters=[
                Parameter('P1', dimension=un.time),
                Parameter('P2', dimension=un.dimensionless)
            ],
        )
Beispiel #7
0
    def test_get_next_name(self):
        # Signature: name(cls)
        # Return the next distinct autogenerated name

        n1 = Regime.get_next_name()
        n2 = Regime.get_next_name()
        n3 = Regime.get_next_name()
        self.assertNotEqual(n1, n2)
        self.assertNotEqual(n2, n3)
Beispiel #8
0
    def test_event_ports(self):
        # Signature: name
                # No Docstring

        # Check inference of output event ports:
        c = Dynamics(
            name='Comp1',
            regimes=Regime(
                transitions=[
                    On('V > a', do=OutputEvent('ev_port1')),
                    On('V > b', do=OutputEvent('ev_port1')),
                    On('V < c', do=OutputEvent('ev_port2')),
                ]
            ),
        )
        self.assertEquals(len(list(c.event_ports)), 2)

        # Check inference of output event ports:
        c = Dynamics(
            name='Comp1',
            regimes=[
                Regime(name='r1',
                       transitions=[
                           On('V > a', do=OutputEvent('ev_port1'), to='r2'),
                           On('V < b', do=OutputEvent('ev_port2'))]),

                Regime(name='r2',
                       transitions=[
                           On('V > a', do=OutputEvent('ev_port2'), to='r1'),
                           On('V < b', do=OutputEvent('ev_port3'))])
            ]
        )
        self.assertEquals(len(list(c.event_ports)), 3)

        # Check inference of output event ports:
        c = Dynamics(
            name='Comp1',
            regimes=[
                Regime(name='r1',
                       transitions=[
                           On('spikeinput1', do=[]),
                           On('spikeinput2', do=OutputEvent('ev_port2'),
                              to='r2')]),

                Regime(name='r2',
                       transitions=[
                           On('V > a', do=OutputEvent('ev_port2')),
                           On('spikeinput3', do=OutputEvent('ev_port3'),
                              to='r1')])
            ]
        )
        self.assertEquals(len(list(c.event_ports)), 5)
Beispiel #9
0
 def test_multi_regime_nonlinear(self):
     """Nonlinear due to multiple regimes"""
     b = Dynamics(
         name='B',
         regimes=[
             Regime('dSV1/dt = -SV1 / P1',
                    transitions=[OnEvent('ERP1', target_regime_name='R2')],
                    name='R1'),
             Regime('dSV1/dt = -SV1 / P1',
                    transitions=[OnEvent('ERP1', target_regime_name='R1')],
                    name='R2')
         ],
         event_ports=[EventReceivePort('ERP1')],
         parameters=[Parameter('P1', dimension=un.time)])
     self.assertFalse(b.is_linear())
Beispiel #10
0
    def test_parameters(self):
        # Signature: name
                # No Docstring

        # No parameters; nothing to infer
        c = Dynamics(name='cl')
        self.assertEqual(len(list(c.parameters)), 0)

        # Mismatch between inferred and actual parameters
        self.assertRaises(
            NineMLUsageError,
            Dynamics, name='cl', parameters=['a'])

        # Single parameter inference from an alias block
        c = Dynamics(name='cl', aliases=['A1:=a'])
        self.assertEqual(len(list(c.parameters)), 1)
        self.assertEqual(list(c.parameters)[0].name, 'a')

        # More complex inference:
        c = Dynamics(name='cl', aliases=['A1:=a+e', 'B1:=a+pi+b'],
                           constants=[Constant('pi', 3.141592653589793)])
        self.assertEqual(len(list(c.parameters)), 3)
        self.assertEqual(sorted([p.name for p in c.parameters]),
                         ['a', 'b', 'e'])

        # From State Assignments and Differential Equations, and Conditionals
        c = Dynamics(name='cl',
                     aliases=['A1:=a+e', 'B1:=a+pi+b'],
                     regimes=Regime('dX/dt = (6 + c + sin(d))/t',
                                    'dV/dt = 1.0/t',
                                    transitions=On('V>Vt',
                                                   do=['X = X + f', 'V=0'])),
                     constants=[Constant('pi', 3.1415926535)])
        self.assertEqual(len(list(c.parameters)), 7)
        self.assertEqual(
            sorted([p.name for p in c.parameters]),
            ['Vt', 'a', 'b', 'c', 'd', 'e', 'f'])

        self.assertRaises(
            NineMLUsageError,
            Dynamics,
            name='cl',
            aliases=['A1:=a+e', 'B1:=a+pi+b'],
            regimes=Regime('dX/dt = 6 + c + sin(d)',
                           'dV/dt = 1.0',
                           transitions=On('V>Vt', do=['X = X + f', 'V=0'])
                           ),
            parameters=['a', 'b', 'c'])
Beispiel #11
0
 def test_add_on_event(self):
     # Signature: name(self, on_event)
     # Add an OnEvent transition which leaves this regime
     #
     # If the on_event object has not had its target regime name set in the
     # constructor, or by calling its ``set_target_regime_name()``, then the
     # target is assumed to be this regime, and will be set appropriately.
     #
     # The source regime for this transition will be set as this regime.
     # from nineml.abstraction.component.dynamics import Regime
     r = Regime(name='R1')
     self.assertEquals(unique_by_id(r.on_events), [])
     r.add(OnEvent('sp'))
     self.assertEquals(len(unique_by_id(r.on_events)), 1)
     self.assertEquals(len(unique_by_id(r.on_conditions)), 0)
     self.assertEquals(len(unique_by_id(r.transitions)), 1)
Beispiel #12
0
 def test_output_filtering(self):
     """
     Tests whether the 'outputs' argument is able to filter (presumably)
     unconnected nonlinear mappings from inputs and states to analog send
     ports
     """
     e = Dynamics(name='E',
                  regimes=[
                      Regime('dSV1/dt = -SV1 / P1',
                             'dSV2/dt = -SV2 / P1 + ARP1 * P2',
                             name='R1')
                  ],
                  aliases=['A1:=SV1 * C1', 'A2:=SV1 * SV2'],
                  analog_ports=[
                      AnalogReceivePort('ARP1', dimension=un.per_time),
                      AnalogSendPort('A1', dimension=un.current),
                      AnalogSendPort('A2', dimension=un.dimensionless)
                  ],
                  parameters=[
                      Parameter('P1', dimension=un.time),
                      Parameter('P2', dimension=un.dimensionless)
                  ],
                  constants=[Constant('C1', 10, units=un.mA)])
     self.assertFalse(e.is_linear())
     self.assertTrue(e.is_linear(outputs=['A1']))
Beispiel #13
0
    def test_time_derivatives(self):
        # Signature: name
        # Returns the state-variable time-derivatives in this regime.
        #
        # .. note::
        #
        #     This is not guarenteed to contain the time derivatives for all
        #     the state-variables specified in the component. If they are not
        #     defined, they are assumed to be zero in this regime.

        r = Regime('dX1/dt=0',
                   'dX2/dt=0',
                   name='r1')

        self.assertEquals(
            set([td.variable for td in r.time_derivatives]),
            set(['X1', 'X2']))

        # Defining a time derivative twice:
        self.assertRaises(
            NineMLUsageError,
            Regime, 'dX/dt=1', 'dX/dt=2')

        # Assigning to a value:
        self.assertRaises(
            NineMLUsageError,
            Regime, 'X=1')
Beispiel #14
0
 def test_nonlinear_state_assignment_in_onevent(self):
     """Test that nonlinear state assignements in on events"""
     g = Dynamics(name='G',
                  regimes=[
                      Regime('dSV1/dt = -SV1 / P1',
                             'dSV2/dt = -SV2 / P1 + ARP1 * P2',
                             name='R1',
                             transitions=[
                                 OnEvent('ERP1',
                                         state_assignments=[
                                             StateAssignment(
                                                 'SV2', 'SV2 + A2')
                                         ])
                             ])
                  ],
                  aliases=['A1:=SV1 * C1', 'A2:=P3 * P4 / ADP1'],
                  analog_ports=[
                      AnalogReceivePort('ARP1', dimension=un.per_time),
                      AnalogReducePort('ADP1',
                                       operator='+',
                                       dimension=un.dimensionless),
                      AnalogSendPort('A1', dimension=un.current),
                      AnalogSendPort('A2', dimension=un.dimensionless)
                  ],
                  event_ports=[EventReceivePort('ERP1')],
                  parameters=[
                      Parameter('P1', dimension=un.time),
                      Parameter('P2', dimension=un.dimensionless),
                      Parameter('P3', dimension=un.resistance),
                      Parameter('P4', dimension=un.conductance)
                  ],
                  constants=[Constant('C1', 10, units=un.nA)])
     self.assertFalse(g.is_linear())
Beispiel #15
0
    def setUp(self):
        self.parameters = ['P4', 'P1', 'P3', 'P5', 'P2']
        self.state_variables = ['SV3', 'SV5', 'SV4', 'SV2', 'SV1']
        self.regimes = ['R2', 'R3', 'R1']
        self.time_derivatives = {
            'R1': ['SV5', 'SV1', 'SV4', 'SV3', 'SV2'],
            'R2': ['SV2', 'SV4'],
            'R3': ['SV4', 'SV2', 'SV1']
        }
        self.aliases = ['A4', 'A3', 'A1', 'A2']

        # Create a dynamics object with elements in a particular order
        self.d = Dynamics(
            name='d',
            parameters=[Parameter(p) for p in self.parameters],
            state_variables=[StateVariable(sv) for sv in self.state_variables],
            regimes=[
                Regime(name=r,
                       time_derivatives=[
                           TimeDerivative(td, '{}/t'.format(td))
                           for td in self.time_derivatives[r]
                       ],
                       transitions=[
                           OnCondition('SV1 > P5',
                                       target_regime_name=self.regimes[
                                           self.regimes.index(r) - 1])
                       ]) for r in self.regimes
            ],
            aliases=[
                Alias(a, 'P{}'.format(i + 1))
                for i, a in enumerate(self.aliases)
            ])
Beispiel #16
0
    def test_add_on_condition(self):
        # Signature: name(self, on_condition)
        # Add an OnCondition transition which leaves this regime
        #
        # If the on_condition object has not had its target regime name set in
        # the constructor, or by calling its ``set_target_regime_name()``, then
        # the target is assumed to be this regime, and will be set
        # appropriately.
        #
        # The source regime for this transition will be set as this regime.

        r = Regime(name='R1')
        self.assertEquals(unique_by_id(r.on_conditions), [])
        r.add(OnCondition('sp1>0'))
        self.assertEquals(len(unique_by_id(r.on_conditions)), 1)
        self.assertEquals(len(unique_by_id(r.on_events)), 0)
        self.assertEquals(len(unique_by_id(r.transitions)), 1)
Beispiel #17
0
    def test_transitions(self):

        c = Dynamics(name='cl',
                           regimes=[
                               Regime('dX1/dt=1/t',
                                      name='r1',
                                      transitions=[On('X>X1', do=['X=X0'],
                                                      to='r2'),
                                                   On('X>X2', do=['X=X0'],
                                                      to='r3'), ]
                                      ),
                               Regime('dX1/dt=1/t',
                                      name='r2',
                                      transitions=On('X>X1', do=['X=X0'],
                                                     to='r3'),),
                               Regime('dX2/dt=1/t',
                                      name='r3',
                                      transitions=[On('X>X1', do=['X=X0'],
                                                      to='r4'),
                                                   On('X>X2', do=['X=X0'],
                                                      to=None)]),
                               Regime('dX2/dt=1/t',
                                      name='r4',
                                      transitions=On('X>X1', do=['X=X0'],
                                                     to=None))])

        self.assertEquals(len(list(c.all_transitions())), 6)

        r1 = c.regime('r1')
        r2 = c.regime('r2')
        r3 = c.regime('r3')
        r4 = c.regime('r4')

        self.assertEquals(len(list(r1.transitions)), 2)
        self.assertEquals(len(list(r2.transitions)), 1)
        self.assertEquals(len(list(r3.transitions)), 2)
        self.assertEquals(len(list(r4.transitions)), 1)

        def target_regimes(regime):
            return unique_by_id(t.target_regime for t in regime.transitions)
        self.assertEquals(target_regimes(r1), [r2, r3])
        self.assertEquals(target_regimes(r2), [r3])
        self.assertEquals(target_regimes(r3), [r3, r4])
        self.assertEquals(target_regimes(r4), [r4])
Beispiel #18
0
    def test_state_variables(self):
        # No parameters; nothing to infer
        c = Dynamics(name='cl')
        self.assertEqual(len(list(c.state_variables)), 0)

        # From State Assignments and Differential Equations, and Conditionals
        c = Dynamics(
            name='cl',
            aliases=['A1:=a+e', 'B1:=a+pi+b'],
            regimes=Regime('dX/dt = (6 + c + sin(d))/t',
                           'dV/dt = 1.0/t',
                           transitions=On('V>Vt', do=['X = X + f', 'V=0'])))
        self.assertEqual(
            set(c.state_variable_names),
            set(['X', 'V']))

        self.assertRaises(
            NineMLUsageError,
            Dynamics,
            name='cl',
            aliases=['A1:=a+e', 'B1:=a+pi+b'],
            regimes=Regime('dX/dt = 6 + c + sin(d)',
                           'dV/dt = 1.0',
                           transitions=On('V>Vt', do=['X = X + f', 'V=0'])
                           ),
            state_variables=['X'])

        # Shouldn't pick up 'e' as a parameter:
        self.assertRaises(
            NineMLUsageError,
            Dynamics,
            name='cl',
            aliases=['A1:=a+e', 'B1:=a+pi+b'],
            regimes=Regime('dX/dt = 6 + c + sin(d)',
                           'dV/dt = 1.0',
                           transitions=On('V>Vt', do=['X = X + f', 'V=0'])
                           ),
            state_variables=['X', 'V', 'Vt'])

        c = Dynamics(name='cl',
                           regimes=[
                               Regime('dX1/dt=1/t',
                                      name='r1',
                                      transitions=On('X>X1', do=['X=X0'],
                                                     to='r2')),
                               Regime('dX1/dt=1/t',
                                      name='r2',
                                      transitions=On('X>X1', do=['X=X0'],
                                                     to='r3')),
                               Regime('dX2/dt=1/t',
                                      name='r3',
                                      transitions=On('X>X1', do=['X=X0'],
                                                     to='r4')),
                               Regime('dX2/dt=1/t',
                                      name='r4',
                                      transitions=On('X>X1', do=['X=X0'],
                                                     to='r1'))])
        self.assertEqual(set(c.state_variable_names),
                         set(['X1', 'X2', 'X']))
Beispiel #19
0
 def test_standardize_units_ninemlruntimeerror2(self):
     """
     line #: 268
     message: Name of dimension '{}' conflicts with existing object of
     differring value or type '{}' and '{}'
     """
     a = Dynamics(
         name='A',
         parameters=[
             Parameter('P1', dimension=un.Dimension(name='D', t=1))],
         regime=Regime(name='default'),
         aliases=['A1 := P1 * 2'])
     b = Dynamics(
         name='B',
         parameters=[
             Parameter('P1', dimension=un.Dimension(name='D', l=1))],
         regime=Regime(name='default'),
         aliases=['A1 := P1 * 2'])
     self.assertRaises(
         NineMLUsageError,
         Document, a, b)
Beispiel #20
0
    def test_all_expressions(self):
        a = Dynamics(
            name='A',
            aliases=['A1:=P1 * SV2', 'A2 := ARP1 + SV2', 'A3 := SV1'],
            state_variables=[
                StateVariable('SV1', dimension=un.voltage),
                StateVariable('SV2', dimension=un.current)],
            regimes=[
                Regime(
                    'dSV1/dt = -SV1 / P2',
                    'dSV2/dt = A3 / ARP2 + SV2 / P2',
                    transitions=[On('SV1 > P3', do=[OutputEvent('emit')]),
                                 On('spikein', do=[OutputEvent('emit')])],
                    name='R1'
                ),
                Regime(name='R2', transitions=On('(SV1 > C1) & (SV2 < P4)',
                                                 to='R1'))
            ],
            analog_ports=[AnalogReceivePort('ARP1', dimension=un.current),
                          AnalogReceivePort('ARP2',
                                            dimension=(un.resistance *
                                                       un.time)),
                          AnalogSendPort('A1',
                                         dimension=un.voltage * un.current),
                          AnalogSendPort('A2', dimension=un.current)],
            parameters=[Parameter('P1', dimension=un.voltage),
                        Parameter('P2', dimension=un.time),
                        Parameter('P3', dimension=un.voltage),
                        Parameter('P4', dimension=un.current)],
            constants=[Constant('C1', value=1.0, units=un.mV)]
        )

        self.assertEqual(
            set(a.all_expressions), set((
                sympify('P1 * SV2'), sympify('ARP1 + SV2'), sympify('SV1'),
                sympify('-SV1 / P2'), sympify('-SV1 / P2'),
                sympify('A3 / ARP2 + SV2 / P2'), sympify('SV1 > P3'),
                sympify('(SV1 > C1) & (SV2 < P4)'))),
            "All expressions were not extracted from component class")
Beispiel #21
0
    def test_mismatch_with_declared(self):

        self.assertRaises(
            NineMLDimensionError,
            Dynamics,
            name='A',
            state_variables=[StateVariable('SV1', dimension=un.voltage)],
            regimes=[
                Regime('dSV1/dt = SV1/t', name='R1'),
            ],
            analog_ports=[AnalogSendPort('SV1', dimension=un.current)],
        )
        self.assertRaises(
            NineMLDimensionError,
            Dynamics,
            name='A',
            state_variables=[StateVariable('SV1', dimension=un.voltage)],
            regimes=[
                Regime('dSV1/dt = SV1 * P1', name='R1'),
            ],
            parameters=[Parameter('P1', dimension=un.time)],
        )
        self.assertRaises(
            NineMLDimensionError,
            Dynamics,
            name='A',
            state_variables=[StateVariable('SV1', dimension=un.voltage)],
            regimes=[
                Regime('dSV1/dt = SV1/t',
                       transitions=[
                           On('SV1 > P1', do=[StateAssignment('SV1', 'P2')])
                       ],
                       name='R1'),
            ],
            parameters=[
                Parameter('P1', dimension=un.voltage),
                Parameter('P2', dimension=un.time)
            ],
        )
Beispiel #22
0
 def setUp(self):
     self.a = Dynamics(
         name='A',
         aliases=[
             'A1 := P1 / P2', 'A2 := ARP2 + P3', 'A3 := P4 * P5',
             'A4 := 1 / (P2 * P6) + ARP3', 'A5 := P7 * P8', 'A6 := P9/P10'
         ],
         regimes=[
             Regime('dSV1/dt = -A1 / A2',
                    ('dSV2/dt = C1 * SV2 ** 2 + C2 * SV2 + C3 + SV3 + '
                     'ARP4 / P11'),
                    'dSV3/dt = P12*(SV2*P13 - SV3)',
                    name='R1')
         ],
         state_variables=[
             StateVariable('SV1', dimension=un.dimensionless),
             StateVariable('SV2', dimension=un.voltage),
             StateVariable('SV3', dimension=old_div(un.voltage, un.time))
         ],
         analog_ports=[
             AnalogReceivePort('ARP1', dimension=un.resistance),
             AnalogReceivePort('ARP2', dimension=un.charge),
             AnalogReceivePort('ARP3', dimension=un.conductanceDensity),
             AnalogReceivePort('ARP4', dimension=un.current)
         ],
         parameters=[
             Parameter('P1', dimension=un.voltage),
             Parameter('P2', dimension=un.resistance),
             Parameter('P3', dimension=un.charge),
             Parameter('P4', dimension=old_div(un.length, un.current**2)),
             Parameter('P5', dimension=old_div(un.current**2, un.length)),
             Parameter('P6', dimension=un.length**2),
             Parameter('P7', dimension=old_div(un.current, un.capacitance)),
             Parameter('P8', dimension=un.time),
             Parameter('P9',
                       dimension=old_div(un.capacitance, un.length**2)),
             Parameter('P10',
                       dimension=old_div(un.conductance, un.length**2)),
             Parameter('P11', dimension=un.capacitance),
             Parameter('P12', dimension=un.per_time),
             Parameter('P13', dimension=un.per_time)
         ],
         constants=[
             Constant('C1',
                      0.04,
                      units=(old_div(un.unitless, (un.mV * un.ms)))),
             Constant('C2', 5.0, units=old_div(un.unitless, un.ms)),
             Constant('C3', 140.0, units=old_div(un.mV, un.ms))
         ])
Beispiel #23
0
 def test_nonlinear_function(self):
     """Nonlinear due function in SV1 T.D."""
     h = Dynamics(
         name='H',
         regimes=[
             Regime('dSV1/dt = -sin(SV1) / P1',
                    'dSV2/dt = -SV2 / P1 + ARP1 * P2',
                    name='R1')
         ],
         analog_ports=[AnalogReceivePort('ARP1', dimension=un.per_time)],
         parameters=[
             Parameter('P1', dimension=un.time),
             Parameter('P2', dimension=un.dimensionless)
         ])
     self.assertFalse(h.is_linear())
Beispiel #24
0
 def test_input_multiplication_nonlinear(self):
     """Nonlinear due to multiplication of SV1 and SV2 in SV1 T.D."""
     d = Dynamics(
         name='D',
         regimes=[
             Regime('dSV1/dt = -SV1 * SV2 / P1',
                    'dSV2/dt = -SV2 / P1 + ARP1 * P2',
                    name='R1')
         ],
         analog_ports=[AnalogReceivePort('ARP1', dimension=un.per_time)],
         parameters=[
             Parameter('P1', dimension=un.time),
             Parameter('P2', dimension=un.dimensionless)
         ])
     self.assertFalse(d.is_linear())
Beispiel #25
0
 def test_basic_linear(self):
     """A basic linear dynamics example"""
     a = Dynamics(
         name='A',
         regimes=[
             Regime('dSV1/dt = -SV1 / P1',
                    'dSV2/dt = -SV2 / P1 + ARP1 * P2',
                    name='R1')
         ],
         analog_ports=[AnalogReceivePort('ARP1', dimension=un.per_time)],
         parameters=[
             Parameter('P1', dimension=un.time),
             Parameter('P2', dimension=un.dimensionless)
         ])
     self.assertTrue(a.is_linear())
Beispiel #26
0
 def test_on_condition_state_assignment_nonlinear(self):
     """
     Nonlinear due to a state assignment in on-condition (i.e. piece-wise
     dynamics
     """
     c = Dynamics(name='C',
                  regimes=[
                      Regime('dSV1/dt = -P1 * SV1',
                             transitions=[
                                 OnCondition('SV1 > 10',
                                             state_assignments=[
                                                 StateAssignment('SV1', 20)
                                             ])
                             ],
                             name='R1')
                  ],
                  parameters=[Parameter('P1', dimension=un.per_time)])
     self.assertFalse(c.is_linear())
Beispiel #27
0
    def test_unused_reduce_ports(self):
        """
        Tests whether empty reduce ports are "closed" by inserting a zero-
        valued constant in their stead
        """
        test_dyn = Dynamics(
            name='TestDyn',
            regimes=[Regime('dSV1/dt = -P1/t + ADP1', name='r1')],
            analog_ports=[AnalogReducePort('ADP1', un.per_time)],
            parameters=['P1'])

        test_multi = MultiDynamics(name="TestMultiDyn",
                                   sub_components={'cell': test_dyn})

        self.assert_(
            Constant('ADP1__cell', 0.0,
                     un.per_time.origin.units) in test_multi.constants,
            "Zero-valued constant wasn't inserted for unused reduce "
            "port")
    def setUp(self):

        self.a = Dynamics(
            name='A',
            aliases=['A1:=P1 / P2', 'A2 := ARP2 + P3', 'A3 := P4 * P5'],
            regimes=[
                Regime('dSV1/dt = -A1 / A2',
                       aliases=[Alias('A1', 'P1 / P2 * 2')],
                       name='R1')
            ],
            analog_ports=[
                AnalogReceivePort('ARP1', dimension=un.resistance),
                AnalogReceivePort('ARP2', dimension=un.charge)
            ],
            parameters=[
                Parameter('P1', dimension=un.voltage),
                Parameter('P2', dimension=un.resistance),
                Parameter('P3', dimension=un.charge),
                Parameter('P4', dimension=old_div(un.length, un.current**2)),
                Parameter('P5', dimension=old_div(un.current**2, un.length))
            ])
Beispiel #29
0
    properties={'P1': 81.0 * un.unitless})

dynA = Dynamics(name='dynA',
                aliases=[
                    'A1:=P1 * SV2', 'A2 := ARP1 + SV2', 'A3 := SV1',
                    'A4 := C2 * SV1'
                ],
                state_variables=[
                    StateVariable('SV1', dimension=un.voltage),
                    StateVariable('SV2', dimension=un.current)
                ],
                regimes=[
                    Regime('dSV1/dt = -SV1 / P2',
                           'dSV2/dt = A3 / ARP2 + SV2 / P2',
                           transitions=[
                               On(Trigger('SV1 > P3'),
                                  do=[OutputEvent('ESP1')]),
                               On('ERP1', do=[OutputEvent('ESP2')])
                           ],
                           name='R1'),
                    Regime(name='R2',
                           transitions=[
                               OnCondition('(SV1 > C1) & (SV2 < P4)',
                                           target_regime_name='R1')
                           ])
                ],
                analog_ports=[
                    AnalogReceivePort('ARP1', dimension=un.current),
                    AnalogReceivePort('ARP2',
                                      dimension=(un.resistance * un.time)),
                    AnalogSendPort('A1', dimension=un.voltage * un.current),
                    AnalogSendPort('A2', dimension=un.current)
Beispiel #30
0
def get_compound_component():
    """Cannot yet be implemented in PyDSTool
    """
    from nineml.abstraction.testing_utils import RecordValue
    from nineml.abstraction import Dynamics, Regime, On, OutputEvent, AnalogSendPort, AnalogReducePort

    emitter = Dynamics(
        name='EventEmitter',
        parameters=['cyclelength'],
        regimes=[
            Regime(transitions=On('t > tchange + cyclelength',
                                  do=[OutputEvent('emit'), 'tchange=t'])),
        ])

    ev_based_cc = Dynamics(
        name='EventBasedCurrentClass',
        parameters=['dur', 'i'],
        analog_ports=[AnalogSendPort('I')],
        regimes=[
            Regime(transitions=[
                On('inputevent', do=['I=i', 'tchange = t']),
                On('t>tchange + dur', do=['I=0', 'tchange=t'])
            ])
        ])

    pulsing_emitter = Dynamics(name='pulsing_cc',
                               subnodes={
                                   'evs': emitter,
                                   'cc': ev_based_cc
                               },
                               portconnections=[('evs.emit', 'cc.inputevent')])

    nrn = Dynamics(
        name='LeakyNeuron',
        parameters=['Cm', 'gL', 'E'],
        regimes=[
            Regime('dV/dt = (iInj + (E-V)*gL )/Cm'),
        ],
        aliases=['iIn := iInj'],
        analog_ports=[
            AnalogSendPort('V'),
            AnalogReducePort('iInj', operator='+')
        ],
    )

    combined_comp = Dynamics(name='Comp1',
                             subnodes={
                                 'nrn': nrn,
                                 'cc1': pulsing_emitter,
                                 'cc2': pulsing_emitter
                             },
                             portconnections=[('cc1.cc.I', 'nrn.iInj'),
                                              ('cc2.cc.I', 'nrn.iInj')])

    combined_comp = al.flattening.flatten(combined_comp)

    ##        records = [
    ##            RecordValue(what='cc1_cc_I', tag='Current', label='Current Clamp 1'),
    ##            RecordValue(what='cc2_cc_I', tag='Current', label='Current Clamp 2'),
    ##            RecordValue(what='nrn_iIn', tag='Current', label='Total Input Current'),
    ##            RecordValue(what='nrn_V', tag='Voltage', label='Neuron Voltage'),
    ##            RecordValue(what='cc1_cc_tchange', tag='Tchange', label='tChange CC1'),
    ##            RecordValue(what='cc2_cc_tchange', tag='Tchange', label='tChange CC2'),
    ##            RecordValue(what='regime',     tag='Regime',  label='Regime'),
    ##        ]

    parameters = al.flattening.ComponentFlattener.flatten_namespace_dict({
        'cc1.cc.i':
        13.8,
        'cc1.cc.dur':
        10,
        'cc1.evs.cyclelength':
        30,
        'cc2.cc.i':
        20.8,
        'cc2.cc.dur':
        5.0,
        'cc2.evs.cyclelength':
        20,
        'nrn.gL':
        4.3,
        'nrn.E':
        -70
    })

    return combined_comp, parameters