Beispiel #1
0
def hmc_afni(name='fMRI_HMC_afni', st_correct=False):
    """A head motion correction (HMC) workflow for functional scans"""

    workflow = pe.Workflow(name=name)
    inputnode = pe.Node(niu.IdentityInterface(
        fields=['in_file', 'fd_radius', 'start_idx', 'stop_idx']),
                        name='inputnode')
    outputnode = pe.Node(
        niu.IdentityInterface(fields=['out_file', 'out_movpar']),
        name='outputnode')

    drop_trs = pe.Node(afp.Calc(expr='a', outputtype='NIFTI_GZ'),
                       name='drop_trs')
    deoblique = pe.Node(afp.Refit(deoblique=True), name='deoblique')
    reorient = pe.Node(afp.Resample(orientation='RPI', outputtype='NIFTI_GZ'),
                       name='reorient')
    get_mean_RPI = pe.Node(afp.TStat(options='-mean', outputtype='NIFTI_GZ'),
                           name='get_mean_RPI')

    # calculate hmc parameters
    hmc = pe.Node(afp.Volreg(args='-Fourier -twopass',
                             zpad=4,
                             outputtype='NIFTI_GZ'),
                  name='motion_correct')

    get_mean_motion = get_mean_RPI.clone('get_mean_motion')
    hmc_A = hmc.clone('motion_correct_A')
    hmc_A.inputs.md1d_file = 'max_displacement.1D'

    movpar = pe.Node(niu.Function(function=fd_jenkinson,
                                  input_names=['in_file', 'rmax'],
                                  output_names=['out_file']),
                     name='Mat2Movpar')

    workflow.connect([(inputnode, drop_trs, [('in_file', 'in_file_a'),
                                             ('start_idx', 'start_idx'),
                                             ('stop_idx', 'stop_idx')]),
                      (inputnode, movpar, [('fd_radius', 'rmax')]),
                      (deoblique, reorient, [('out_file', 'in_file')]),
                      (reorient, get_mean_RPI, [('out_file', 'in_file')]),
                      (reorient, hmc, [('out_file', 'in_file')]),
                      (get_mean_RPI, hmc, [('out_file', 'basefile')]),
                      (hmc, get_mean_motion, [('out_file', 'in_file')]),
                      (reorient, hmc_A, [('out_file', 'in_file')]),
                      (get_mean_motion, hmc_A, [('out_file', 'basefile')]),
                      (hmc_A, outputnode, [('out_file', 'out_file')]),
                      (hmc_A, movpar, [('oned_matrix_save', 'in_file')]),
                      (movpar, outputnode, [('out_file', 'out_movpar')])])

    if st_correct:
        st_corr = pe.Node(afp.TShift(outputtype='NIFTI_GZ'), name='TimeShifts')
        workflow.connect([(drop_trs, st_corr, [('out_file', 'in_file')]),
                          (st_corr, deoblique, [('out_file', 'in_file')])])
    else:
        workflow.connect([(drop_trs, deoblique, [('out_file', 'in_file')])])

    return workflow
Beispiel #2
0
def slice_timing_wf(name='slice_timing'):

    # allocate a workflow object
    wf = pe.Workflow(name=name)

    # configure the workflow's input spec
    inputNode = pe.Node(
        util.IdentityInterface(fields=['func_ts', 'tr', 'tpattern']),
        name='inputspec')

    # configure the workflow's output spec
    outputNode = pe.Node(
        util.IdentityInterface(fields=['slice_time_corrected']),
        name='outputspec')

    # create TShift AFNI node
    func_slice_timing_correction = pe.Node(interface=preprocess.TShift(),
                                           name='slice_timing')
    func_slice_timing_correction.inputs.outputtype = 'NIFTI_GZ'

    wf.connect([
        (
            inputNode,
            func_slice_timing_correction,
            [
                ('func_ts', 'in_file'),
                (
                    # add the @ prefix to the tpattern file going into
                    # AFNI 3dTshift - needed this so the tpattern file
                    # output from get_scan_params would be tied downstream
                    # via a connection (to avoid poofing)
                    ('tpattern', nullify, add_afni_prefix),
                    'tpattern'),
                (('tr', nullify), 'tr'),
            ]),
    ])

    wf.connect(func_slice_timing_correction, 'out_file', outputNode,
               'slice_time_corrected')

    return wf
Beispiel #3
0
def create_bo_func_preproc(slice_timing_correction = False, wf_name = 'bo_func_preproc'):
    """
    
    The main purpose of this workflow is to process functional data. Raw rest file is deobliqued and reoriented 
    into RPI. Then take the mean intensity values over all time points for each voxel and use this image 
    to calculate motion parameters. The image is then skullstripped, normalized and a processed mask is 
    obtained to use it further in Image analysis.
    
    Parameters
    ----------
    
    slice_timing_correction : boolean
        Slice timing Correction option
    wf_name : string
        Workflow name
    
    Returns 
    -------
    func_preproc : workflow object
        Functional Preprocessing workflow object
    
    Notes
    -----
    
    `Source <https://github.com/FCP-INDI/C-PAC/blob/master/CPAC/func_preproc/func_preproc.py>`_
    
    Workflow Inputs::
    
        inputspec.rest : func/rest file or a list of func/rest nifti file 
            User input functional(T2) Image, in any of the 8 orientations
            
        inputspec.start_idx : string 
            Starting volume/slice of the functional image (optional)
            
        inputspec.stop_idx : string
            Last volume/slice of the functional image (optional)
            
        scan_params.tr : string
            Subject TR
        
        scan_params.acquistion : string
            Acquisition pattern (interleaved/sequential, ascending/descending)
    
        scan_params.ref_slice : integer
            Reference slice for slice timing correction
            
    Workflow Outputs::
    
        outputspec.drop_tr : string (nifti file)
            Path to Output image with the initial few slices dropped
          
        outputspec.slice_time_corrected : string (nifti file)
            Path to Slice time corrected image
          
        outputspec.refit : string (nifti file)
            Path to deobliqued anatomical data 
        
        outputspec.reorient : string (nifti file)
            Path to RPI oriented anatomical data 
        
        outputspec.motion_correct_ref : string (nifti file)
             Path to Mean intensity Motion corrected image 
             (base reference image for the second motion correction run)
        
        outputspec.motion_correct : string (nifti file)
            Path to motion corrected output file
        
        outputspec.max_displacement : string (Mat file)
            Path to maximum displacement (in mm) for brain voxels in each volume
        
        outputspec.movement_parameters : string (Mat file)
            Path to 1D file containing six movement/motion parameters(3 Translation, 3 Rotations) 
            in different columns (roll pitch yaw dS  dL  dP)
        
        outputspec.skullstrip : string (nifti file)
            Path to skull stripped Motion Corrected Image 
        
        outputspec.mask : string (nifti file)
            Path to brain-only mask
            
        outputspec.example_func : string (nifti file)
            Mean, Skull Stripped, Motion Corrected output T2 Image path
            (Image with mean intensity values across voxels) 
        
        outputpsec.preprocessed : string (nifti file)
            output skull stripped, motion corrected T2 image 
            with normalized intensity values 

        outputspec.preprocessed_mask : string (nifti file)
           Mask obtained from normalized preprocessed image
           
    
    Order of commands:
    
    - Get the start and the end volume index of the functional run. If not defined by the user, return the first and last volume.
    
        get_idx(in_files, stop_idx, start_idx)
        
    - Dropping the initial TRs. For details see `3dcalc <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dcalc.html>`_::
        
        3dcalc -a rest.nii.gz[4..299] 
               -expr 'a' 
               -prefix rest_3dc.nii.gz
               
    - Slice timing correction. For details see `3dshift <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dTshift.html>`_::
    
        3dTshift -TR 2.1s 
                 -slice 18 
                 -tpattern alt+z 
                 -prefix rest_3dc_shift.nii.gz rest_3dc.nii.gz

    - Deobliqing the scans.  For details see `3drefit <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3drefit.html>`_::
    
        3drefit -deoblique rest_3dc.nii.gz
        
    - Re-orienting the Image into Right-to-Left Posterior-to-Anterior Inferior-to-Superior (RPI) orientation. For details see `3dresample <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dresample.html>`_::
    
        3dresample -orient RPI 
                   -prefix rest_3dc_RPI.nii.gz 
                   -inset rest_3dc.nii.gz
        
    - Calculate voxel wise statistics. Get the RPI Image with mean intensity values over all timepoints for each voxel. For details see `3dTstat <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dTstat.html>`_::
    
        3dTstat -mean 
                -prefix rest_3dc_RPI_3dT.nii.gz 
                rest_3dc_RPI.nii.gz
    
    - Motion Correction. For details see `3dvolreg <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dvolreg.html>`_::  
       
        3dvolreg -Fourier 
                 -twopass 
                 -base rest_3dc_RPI_3dT.nii.gz/
                 -zpad 4 
                 -maxdisp1D rest_3dc_RPI_3dvmd1D.1D 
                 -1Dfile rest_3dc_RPI_3dv1D.1D 
                 -prefix rest_3dc_RPI_3dv.nii.gz 
                 rest_3dc_RPI.nii.gz
                 
      The base image or the reference image is the mean intensity RPI image obtained in the above the step.For each volume 
      in RPI-oriented T2 image, the command, aligns the image with the base mean image and calculates the motion, displacement 
      and movement parameters. It also outputs the aligned 4D volume and movement and displacement parameters for each volume.
                 
    - Calculate voxel wise statistics. Get the motion corrected output Image from the above step, with mean intensity values over all timepoints for each voxel. 
      For details see `3dTstat <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dTstat.html>`_::
    
        3dTstat -mean 
                -prefix rest_3dc_RPI_3dv_3dT.nii.gz 
                rest_3dc_RPI_3dv.nii.gz
    
    - Motion Correction and get motion, movement and displacement parameters. For details see `3dvolreg <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dvolreg.html>`_::   

        3dvolreg -Fourier 
                 -twopass 
                 -base rest_3dc_RPI_3dv_3dT.nii.gz 
                 -zpad 4 
                 -maxdisp1D rest_3dc_RPI_3dvmd1D.1D 
                 -1Dfile rest_3dc_RPI_3dv1D.1D 
                 -prefix rest_3dc_RPI_3dv.nii.gz 
                 rest_3dc_RPI.nii.gz
        
      The base image or the reference image is the mean intensity motion corrected image obtained from the above the step (first 3dvolreg run). 
      For each volume in RPI-oriented T2 image, the command, aligns the image with the base mean image and calculates the motion, displacement 
      and movement parameters. It also outputs the aligned 4D volume and movement and displacement parameters for each volume.
    
    - Unwarp the motion corrected using a regularized B0 field map that is in RPI space, one of the outputs from the calib_preproc using FSL FUGUE
    
    	fugue --nocheck=on 
		-i rest_3dc_RPI_3dv.nii.gz 
		--loadfmap=cal_reg_bo_RPI 
		--unwarpdir=x 
		--dwell=1 
		-u rest_3dc_RPI_3dv_unwarped.nii.gz
    
    
    - Create a  brain-only mask. For details see `3dautomask <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dAutomask.html>`_::
    
        3dAutomask  
                   -prefix rest_3dc_RPI_3dv_unwarped_automask.nii.gz 
                   rest_3dc_RPI_3dv_unwarped.nii.gz

    - Edge Detect(remove skull) and get the brain only. For details see `3dcalc <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dcalc.html>`_::
    
        3dcalc -a rest_3dc_RPI_3dv_unwarped.nii.gz 
               -b rest_3dc_RPI_3dv_unwarped_automask.nii.gz 
               -expr 'a*b' 
               -prefix rest_3dc_RPI_3dv_unwarped_3dc.nii.gz
    
    - Normalizing the image intensity values. For details see `fslmaths <http://www.fmrib.ox.ac.uk/fsl/avwutils/index.html>`_::
      
        fslmaths rest_3dc_RPI_3dv_unwarped_3dc.nii.gz 
                 -ing 10000 rest_3dc_RPI_3dv_unwarped_3dc_maths.nii.gz 
                 -odt float
                 
      Normalized intensity = (TrueValue*10000)/global4Dmean
                 
    - Calculate mean of skull stripped image. For details see `3dTstat <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dTstat.html>`_::
        
        3dTstat -mean -prefix rest_3dc_RPI_3dv_unwarped_3dc_3dT.nii.gz rest_3dc_RPI_3dv_unwarped_3dc.nii.gz
        
    - Create Mask (Generate mask from Normalized data). For details see `fslmaths <http://www.fmrib.ox.ac.uk/fsl/avwutils/index.html>`_::
        
        fslmaths rest_3dc_RPI_3dv_unwarped_3dc_maths.nii.gz 
               -Tmin -bin rest_3dc_RPI_3dv_unwarped_3dc_maths_maths.nii.gz 
               -odt char

    High Level Workflow Graph:
    
    .. image:: ../images/func_preproc.dot.png
       :width: 1000
    
    
    Detailed Workflow Graph:
    
    .. image:: ../images/func_preproc_detailed.dot.png
       :width: 1000

    Examples
    --------
    
    >>> from func_preproc import *
    >>> preproc = create_func_preproc(slice_timing_correction=True)
    >>> preproc.inputs.inputspec.func='sub1/func/rest.nii.gz'
    >>> preproc.inputs.scan_params.TR = '2.0'
    >>> preproc.inputs.scan_params.ref_slice = 19
    >>> preproc.inputs.scan_params.acquisition = 'alt+z2'
    >>> preproc.run() #doctest: +SKIP


    >>> from func_preproc import *
    >>> preproc = create_func_preproc(slice_timing_correction=False)
    >>> preproc.inputs.inputspec.func='sub1/func/rest.nii.gz'
    >>> preproc.inputs.inputspec.start_idx = 4
    >>> preproc.inputs.inputspec.stop_idx = 250
    >>> preproc.run() #doctest: +SKIP
    
    """

    preproc = pe.Workflow(name=wf_name)
    inputNode = pe.Node(util.IdentityInterface(fields=['rest',
						       'calib_reg_bo_RPI',
                                                       'start_idx',
                                                       'stop_idx']),
                        name='inputspec')
    
    scan_params = pe.Node(util.IdentityInterface(fields=['tr',
                                                         'acquisition',
                                                         'ref_slice']),
                          name = 'scan_params')

    outputNode = pe.Node(util.IdentityInterface(fields=['drop_tr',
                                                        'refit',
                                                        'reorient',
                                                        'reorient_mean',
                                                        'motion_correct',
                                                        'motion_correct_ref',
                                                        'movement_parameters',
                                                        'max_displacement',
                                                        'bo_unwarped',
                                                        'mask',
							'mask_preunwarp',
                                                        'skullstrip',
                                                        'example_func',
                                                        'preprocessed',
                                                        'preprocessed_mask',
                                                        'slice_time_corrected']),

                          name='outputspec')

    func_get_idx = pe.Node(util.Function(input_names=['in_files', 
                                                      'stop_idx', 
                                                      'start_idx'],
                               output_names=['stopidx', 
                                             'startidx'],
                 function=get_idx), name='func_get_idx')
    
    preproc.connect(inputNode, 'rest',
                    func_get_idx, 'in_files')
		    		    
    preproc.connect(inputNode, 'start_idx',
                    func_get_idx, 'start_idx')
    preproc.connect(inputNode, 'stop_idx',
                    func_get_idx, 'stop_idx')
    
    
    func_drop_trs = pe.Node(interface=preprocess.Calc(),
                           name='func_drop_trs')
    func_drop_trs.inputs.expr = 'a'
    func_drop_trs.inputs.outputtype = 'NIFTI_GZ'
    
    preproc.connect(inputNode, 'rest',
                    func_drop_trs, 'in_file_a')
    preproc.connect(func_get_idx, 'startidx',
                    func_drop_trs, 'start_idx')
    preproc.connect(func_get_idx, 'stopidx',
                    func_drop_trs, 'stop_idx')
    
    preproc.connect(func_drop_trs, 'out_file',
                    outputNode, 'drop_tr')
    
    
    func_slice_timing_correction = pe.Node(interface=preprocess.TShift(),
                                           name = 'func_slice_timing_correction')
    func_slice_timing_correction.inputs.outputtype = 'NIFTI_GZ'
    
    func_deoblique = pe.Node(interface=preprocess.Refit(),
                            name='func_deoblique')
    func_deoblique.inputs.deoblique = True
    
    
    if slice_timing_correction:
        preproc.connect(func_drop_trs, 'out_file',
                        func_slice_timing_correction,'in_file')
        preproc.connect(scan_params, 'tr',
                        func_slice_timing_correction, 'tr')
        preproc.connect(scan_params, 'acquisition',
                        func_slice_timing_correction, 'tpattern')
        preproc.connect(scan_params, 'ref_slice',
                        func_slice_timing_correction, 'tslice')
        
        preproc.connect(func_slice_timing_correction, 'out_file',
                        func_deoblique, 'in_file')
        
        preproc.connect(func_slice_timing_correction, 'out_file',
                        outputNode, 'slice_time_corrected')
    else:
        preproc.connect(func_drop_trs, 'out_file',
                        func_deoblique, 'in_file')
    
    preproc.connect(func_deoblique, 'out_file',
                    outputNode, 'refit')

    func_reorient = pe.Node(interface=preprocess.Resample(),
                               name='func_reorient')
    func_reorient.inputs.orientation = 'RPI'
    func_reorient.inputs.outputtype = 'NIFTI_GZ'

    preproc.connect(func_deoblique, 'out_file',
                    func_reorient, 'in_file')
    
    preproc.connect(func_reorient, 'out_file',
                    outputNode, 'reorient')
    
    func_get_mean_RPI = pe.Node(interface=preprocess.TStat(),
                            name='func_get_mean_RPI')
    func_get_mean_RPI.inputs.options = '-mean'
    func_get_mean_RPI.inputs.outputtype = 'NIFTI_GZ'
    
    preproc.connect(func_reorient, 'out_file',
                    func_get_mean_RPI, 'in_file')
        
    #calculate motion parameters
    func_motion_correct = pe.Node(interface=preprocess.Volreg(),
                             name='func_motion_correct')
    func_motion_correct.inputs.args = '-Fourier -twopass'
    func_motion_correct.inputs.zpad = 4
    func_motion_correct.inputs.outputtype = 'NIFTI_GZ'
    
    preproc.connect(func_reorient, 'out_file',
                    func_motion_correct, 'in_file')
    preproc.connect(func_get_mean_RPI, 'out_file',
                    func_motion_correct, 'basefile')

    
    func_get_mean_motion = func_get_mean_RPI.clone('func_get_mean_motion')
    preproc.connect(func_motion_correct, 'out_file',
                    func_get_mean_motion, 'in_file')
    
    preproc.connect(func_get_mean_motion, 'out_file',
                    outputNode, 'motion_correct_ref')
    
    
    func_motion_correct_A = func_motion_correct.clone('func_motion_correct_A')
    func_motion_correct_A.inputs.md1d_file = 'max_displacement.1D'
    
    preproc.connect(func_reorient, 'out_file',
                    func_motion_correct_A, 'in_file')
    preproc.connect(func_get_mean_motion, 'out_file',
                    func_motion_correct_A, 'basefile')
    
    
    
    
    
    preproc.connect(func_motion_correct_A, 'out_file',
                    outputNode, 'motion_correct')
    preproc.connect(func_motion_correct_A, 'md1d_file',
                    outputNode, 'max_displacement')
    preproc.connect(func_motion_correct_A, 'oned_file',
                    outputNode, 'movement_parameters')


    
    func_get_brain_mask = pe.Node(interface=preprocess.Automask(),
                               name='func_get_brain_mask')
#    func_get_brain_mask.inputs.dilate = 1
    func_get_brain_mask.inputs.outputtype = 'NIFTI_GZ'

#-------------------------

    func_bo_unwarp = pe.Node(interface=fsl.FUGUE(),name='bo_unwarp')
    #func_bo_unwarp.inputs.in_file='lfo_mc'
    func_bo_unwarp.inputs.args='--nocheck=on'
    #func_bo_unwarp.inputs.fmap_in_file='calib'
    func_bo_unwarp.inputs.dwell_time=1.0
    func_bo_unwarp.inputs.unwarp_direction='x'
    
    preproc.connect(inputNode, 'calib_reg_bo_RPI',
                    func_bo_unwarp, 'fmap_in_file')
    
        
    preproc.connect(func_motion_correct_A, 'out_file',
                    func_bo_unwarp, 'in_file')
    
    preproc.connect(func_bo_unwarp, 'unwarped_file',
                    outputNode, 'bo_unwarped')
    
    
    preproc.connect(func_bo_unwarp, 'unwarped_file',
                    func_get_brain_mask, 'in_file')
    

#--------------------------

    preproc.connect(func_get_brain_mask, 'out_file',
                    outputNode, 'mask')
        
#------------ ALSO give the example_func_preunwarp

    func_get_brain_mask_A = func_get_brain_mask.clone('func_get_brain_mask_A')
    
    preproc.connect(func_motion_correct_A, 'out_file',
                    func_get_brain_mask_A, 'in_file')
    	    
    preproc.connect(func_get_brain_mask_A, 'out_file',
                    outputNode, 'mask_preunwarp')
    
    
    
    
    
    
    
    func_edge_detect = pe.Node(interface=preprocess.Calc(),
                            name='func_edge_detect')
    func_edge_detect.inputs.expr = 'a*b'
    func_edge_detect.inputs.outputtype = 'NIFTI_GZ'

    preproc.connect(func_bo_unwarp, 'unwarped_file',
                    func_edge_detect, 'in_file_a')
    preproc.connect(func_get_brain_mask, 'out_file',
                    func_edge_detect, 'in_file_b')

    preproc.connect(func_edge_detect, 'out_file',
                    outputNode, 'skullstrip')

    
    func_mean_skullstrip = pe.Node(interface=preprocess.TStat(),
                           name='func_mean_skullstrip')
    func_mean_skullstrip.inputs.options = '-mean'
    func_mean_skullstrip.inputs.outputtype = 'NIFTI_GZ'

    preproc.connect(func_edge_detect, 'out_file',
                    func_mean_skullstrip, 'in_file')
    
    preproc.connect(func_mean_skullstrip, 'out_file',
                    outputNode, 'example_func')
    
    
    func_normalize = pe.Node(interface=fsl.ImageMaths(),
                            name='func_normalize')
    func_normalize.inputs.op_string = '-ing 10000'
    func_normalize.inputs.out_data_type = 'float'

    preproc.connect(func_edge_detect, 'out_file',
                    func_normalize, 'in_file')
    
    preproc.connect(func_normalize, 'out_file',
                    outputNode, 'preprocessed')
    
    
    func_mask_normalize = pe.Node(interface=fsl.ImageMaths(),
                           name='func_mask_normalize')
    func_mask_normalize.inputs.op_string = '-Tmin -bin'
    func_mask_normalize.inputs.out_data_type = 'char'

    preproc.connect(func_normalize, 'out_file',
                    func_mask_normalize, 'in_file')
    
    preproc.connect(func_mask_normalize, 'out_file',
                    outputNode, 'preprocessed_mask')

    return preproc
def func_motion_correct_workflow(workflow, resource_pool, config):

    # resource pool should have:
    #     functional_scan

    import os
    import sys

    import nipype.interfaces.io as nio
    import nipype.pipeline.engine as pe

    import nipype.interfaces.utility as util
    import nipype.interfaces.fsl.maths as fsl

    from nipype.interfaces.afni import preprocess

    from workflow_utils import check_input_resources, \
                               check_config_settings

    check_input_resources(resource_pool, "functional_scan")
    check_config_settings(config, "start_idx")
    check_config_settings(config, "stop_idx")
    check_config_settings(config, "slice_timing_correction")

    func_get_idx = pe.Node(util.Function(
        input_names=['in_files', 'stop_idx', 'start_idx'],
        output_names=['stopidx', 'startidx'],
        function=get_idx),
                           name='func_get_idx')

    func_get_idx.inputs.in_files = resource_pool["functional_scan"]
    func_get_idx.inputs.start_idx = config["start_idx"]
    func_get_idx.inputs.stop_idx = config["stop_idx"]

    func_drop_trs = pe.Node(interface=preprocess.Calc(), name='func_drop_trs')

    func_drop_trs.inputs.in_file_a = resource_pool["functional_scan"]
    func_drop_trs.inputs.expr = 'a'
    func_drop_trs.inputs.outputtype = 'NIFTI_GZ'

    workflow.connect(func_get_idx, 'startidx', func_drop_trs, 'start_idx')

    workflow.connect(func_get_idx, 'stopidx', func_drop_trs, 'stop_idx')

    #workflow.connect(func_drop_trs, 'out_file',
    #                outputNode, 'drop_tr')

    func_slice_timing_correction = pe.Node(interface=preprocess.TShift(),
                                           name='func_slice_time_correction')

    func_slice_timing_correction.inputs.outputtype = 'NIFTI_GZ'

    func_deoblique = pe.Node(interface=preprocess.Refit(),
                             name='func_deoblique')

    func_deoblique.inputs.deoblique = True

    if config["slice_timing_correction"] == True:

        workflow.connect(func_drop_trs, 'out_file',
                         func_slice_timing_correction, 'in_file')

        workflow.connect(func_slice_timing_correction, 'out_file',
                         func_deoblique, 'in_file')

    else:

        workflow.connect(func_drop_trs, 'out_file', func_deoblique, 'in_file')

    func_reorient = pe.Node(interface=preprocess.Resample(),
                            name='func_reorient')
    func_reorient.inputs.orientation = 'RPI'
    func_reorient.inputs.outputtype = 'NIFTI_GZ'

    workflow.connect(func_deoblique, 'out_file', func_reorient, 'in_file')

    func_get_mean_RPI = pe.Node(interface=preprocess.TStat(),
                                name='func_get_mean_RPI')
    func_get_mean_RPI.inputs.options = '-mean'
    func_get_mean_RPI.inputs.outputtype = 'NIFTI_GZ'

    workflow.connect(func_reorient, 'out_file', func_get_mean_RPI, 'in_file')

    # calculate motion parameters
    func_motion_correct = pe.Node(interface=preprocess.Volreg(),
                                  name='func_motion_correct')

    func_motion_correct.inputs.args = '-Fourier -twopass'
    func_motion_correct.inputs.zpad = 4
    func_motion_correct.inputs.outputtype = 'NIFTI_GZ'

    workflow.connect(func_reorient, 'out_file', func_motion_correct, 'in_file')

    workflow.connect(func_get_mean_RPI, 'out_file', func_motion_correct,
                     'basefile')

    func_get_mean_motion = func_get_mean_RPI.clone('func_get_mean_motion')

    workflow.connect(func_motion_correct, 'out_file', func_get_mean_motion,
                     'in_file')

    func_motion_correct_A = func_motion_correct.clone('func_motion_correct_A')
    func_motion_correct_A.inputs.md1d_file = 'max_displacement.1D'

    workflow.connect(func_reorient, 'out_file', func_motion_correct_A,
                     'in_file')

    workflow.connect(func_get_mean_motion, 'out_file', func_motion_correct_A,
                     'basefile')

    resource_pool["func_motion_correct"] = (func_motion_correct_A, 'out_file')
    resource_pool["coordinate_transformation"] = \
        (func_motion_correct_A, 'oned_matrix_save')

    return workflow, resource_pool