Beispiel #1
0
    def _fugue_pipeline(self, **name_maps):

        pipeline = self.new_pipeline(
            name='preprocess_pipeline',
            desc=("Fugue distortion correction pipeline"),
            citations=[fsl_cite],
            name_maps=name_maps)

        reorient_epi_in = pipeline.add(
            'reorient_epi_in',
            fsl.utils.Reorient2Std(output_type='NIFTI_GZ'),
            inputs={'in_file': ('series', nifti_gz_format)},
            requirements=[fsl_req.v('5.0.9')])

        fm_mag_reorient = pipeline.add(
            'reorient_fm_mag',
            fsl.utils.Reorient2Std(output_type='NIFTI_GZ'),
            inputs={'in_file': ('field_map_mag', nifti_gz_format)},
            requirements=[fsl_req.v('5.0.9')])

        fm_phase_reorient = pipeline.add(
            'reorient_fm_phase',
            fsl.utils.Reorient2Std(output_type='NIFTI_GZ'),
            inputs={'in_file': ('field_map_phase', nifti_gz_format)},
            requirements=[fsl_req.v('5.0.9')])

        bet = pipeline.add("bet",
                           BET(robust=True, output_type='NIFTI_GZ'),
                           inputs={'in_file': (fm_mag_reorient, 'out_file')},
                           wall_time=5,
                           requirements=[fsl_req.v('5.0.9')])

        create_fmap = pipeline.add(
            "prepfmap",
            PrepareFieldmap(
                # delta_TE=2.46
            ),
            inputs={
                'delta_TE': ('field_map_delta_te', float),
                "in_magnitude": (bet, "out_file"),
                'in_phase': (fm_phase_reorient, 'out_file')
            },
            wall_time=5,
            requirements=[fsl_req.v('5.0.9')])

        pipeline.add(
            'fugue',
            FUGUE(unwarp_direction='x',
                  dwell_time=self.parameter('fugue_echo_spacing'),
                  unwarped_file='example_func.nii.gz',
                  output_type='NIFTI_GZ'),
            inputs={
                'fmap_in_file': (create_fmap, 'out_fieldmap'),
                'in_file': (reorient_epi_in, 'out_file')
            },
            outputs={'series_preproc': ('unwarped_file', nifti_gz_format)},
            wall_time=5,
            requirements=[fsl_req.v('5.0.9')])

        return pipeline
Beispiel #2
0
    def _fugue_pipeline(self, **kwargs):

        pipeline = self.create_pipeline(
            name='preproc_pipeline',
            inputs=[
                DatasetSpec('primary', nifti_gz_format),
                DatasetSpec('field_map_mag', nifti_gz_format),
                DatasetSpec('field_map_phase', nifti_gz_format),
                FieldSpec('field_map_delta_te', float)
            ],
            outputs=[DatasetSpec('preproc', nifti_gz_format)],
            desc=("Fugue distortion correction pipeline"),
            version=1,
            citations=[fsl_cite],
            **kwargs)

        reorient_epi_in = pipeline.create_node(fsl.utils.Reorient2Std(),
                                               name='reorient_epi_in',
                                               requirements=[fsl509_req])
        pipeline.connect_input('primary', reorient_epi_in, 'in_file')
        fm_mag_reorient = pipeline.create_node(fsl.utils.Reorient2Std(),
                                               name='reorient_fm_mag',
                                               requirements=[fsl509_req])
        pipeline.connect_input('field_map_mag', fm_mag_reorient, 'in_file')
        fm_phase_reorient = pipeline.create_node(fsl.utils.Reorient2Std(),
                                                 name='reorient_fm_phase',
                                                 requirements=[fsl509_req])
        pipeline.connect_input('field_map_phase', fm_phase_reorient, 'in_file')
        bet = pipeline.create_node(BET(),
                                   name="bet",
                                   wall_time=5,
                                   requirements=[fsl509_req])
        bet.inputs.robust = True
        pipeline.connect(fm_mag_reorient, 'out_file', bet, 'in_file')
        create_fmap = pipeline.create_node(PrepareFieldmap(),
                                           name="prepfmap",
                                           wall_time=5,
                                           requirements=[fsl509_req])
        #         create_fmap.inputs.delta_TE = 2.46
        pipeline.connect_input('field_map_delta_te', create_fmap, 'delta_TE')
        pipeline.connect(bet, "out_file", create_fmap, "in_magnitude")
        pipeline.connect(fm_phase_reorient, 'out_file', create_fmap,
                         'in_phase')

        fugue = pipeline.create_node(FUGUE(),
                                     name='fugue',
                                     wall_time=5,
                                     requirements=[fsl509_req])
        fugue.inputs.unwarp_direction = 'x'
        fugue.inputs.dwell_time = self.parameter('fugue_echo_spacing')
        fugue.inputs.unwarped_file = 'example_func.nii.gz'
        pipeline.connect(create_fmap, 'out_fieldmap', fugue, 'fmap_in_file')
        pipeline.connect(reorient_epi_in, 'out_file', fugue, 'in_file')
        pipeline.connect_output('preproc', fugue, 'unwarped_file')
        return pipeline
Beispiel #3
0
def test_BET_outputs():
    output_map = dict(inskull_mask_file=dict(),
    inskull_mesh_file=dict(),
    mask_file=dict(),
    meshfile=dict(),
    out_file=dict(),
    outline_file=dict(),
    outskin_mask_file=dict(),
    outskin_mesh_file=dict(),
    outskull_mask_file=dict(),
    outskull_mesh_file=dict(),
    skull_mask_file=dict(),
    )
    outputs = BET.output_spec()

    for key, metadata in output_map.items():
        for metakey, value in metadata.items():
            yield assert_equal, getattr(outputs.traits()[key], metakey), value
def quality_check_image_similarity(caps_directory,
                                   tsv,
                                   ref_template,
                                   working_directory=None):
    """
    This is a function to do a raw quality check for the preprocessed image. To mention, the preprocessing pipeline of DL includes:
        1) N4 bias correction (Ants)
        2) linear registration to MNI (MNI icbm152 nlinear sym template) (ANTS)
        3) cropping the background to save the computational power

    To note, we use mutual information to quantify the similarity between the target and template MRI.

    Args:

    Returns: A tsv with an order based on the intensity differences between each individual and the template.

    """

    import nipype.interfaces.utility as nutil
    import nipype.pipeline.engine as npe
    import tempfile
    from nipype.algorithms.metrics import Similarity
    from nipype.interfaces.fsl.preprocess import BET
    from T1_preprocessing_utils import get_caps_list, rank_mean

    if working_directory is None:
        working_directory = tempfile.mkdtemp()

    inputnode = npe.Node(nutil.IdentityInterface(
        fields=['caps_directory', 'tsv', 'ref_template']),
                         name='inputnode')
    inputnode.inputs.caps_directory = caps_directory
    inputnode.inputs.tsv = tsv
    inputnode.inputs.ref_template = ref_template

    get_caps_list = npe.Node(name='get_caps_list',
                             interface=nutil.Function(
                                 function=get_caps_list,
                                 input_names=['caps_directory', 'tsv'],
                                 output_names=['caps_intensity_nor_list']))

    # get the mask of the template
    bet_ref_img = npe.Node(name='bet_ref_img', interface=BET())
    bet_ref_img.inputs.frac = 0.5
    bet_ref_img.inputs.mask = True
    bet_ref_img.inputs.robust = True

    img_similarity = npe.MapNode(name='img_similarity',
                                 iterfield=['volume1'],
                                 interface=Similarity())
    img_similarity.inputs.metric = 'cc'

    # rand the mean intensity
    rank_mean = npe.Node(name='rank_mean',
                         interface=nutil.Function(function=rank_mean,
                                                  input_names=[
                                                      'similarity', 'tsv',
                                                      'caps_directory'
                                                  ],
                                                  output_names=['result_tsv']))

    wf = npe.Workflow(name='quality_check_dl')
    wf.base_dir = working_directory

    wf.connect([(inputnode, get_caps_list, [('caps_directory',
                                             'caps_directory')]),
                (inputnode, get_caps_list, [('tsv', 'tsv')]),
                (inputnode, bet_ref_img, [('ref_template', 'in_file')]),
                (get_caps_list, img_similarity, [('caps_intensity_nor_list',
                                                  'volume1')]),
                (inputnode, img_similarity, [('ref_template', 'volume2')]),
                (bet_ref_img, img_similarity, [('mask_file', 'mask1')]),
                (bet_ref_img, img_similarity, [('mask_file', 'mask2')]),
                (inputnode, rank_mean, [('tsv', 'tsv')]),
                (inputnode, rank_mean, [('caps_directory', 'caps_directory')]),
                (img_similarity, rank_mean, [('similarity', 'similarity')])])

    return wf
Beispiel #5
0
def Lesion_extractor(
    name='Lesion_Extractor',
    wf_name='Test',
    base_dir='/homes_unix/alaurent/',
    input_dir=None,
    subjects=None,
    main=None,
    acc=None,
    atlas='/homes_unix/alaurent/cbstools-public-master/atlases/brain-segmentation-prior3.0/brain-atlas-quant-3.0.8.txt'
):

    wf = Workflow(wf_name)
    wf.base_dir = base_dir

    #file = open(subjects,"r")
    #subjects = file.read().split("\n")
    #file.close()

    # Subject List
    subjectList = Node(IdentityInterface(fields=['subject_id'],
                                         mandatory_inputs=True),
                       name="subList")
    subjectList.iterables = ('subject_id', [
        sub for sub in subjects if sub != '' and sub != '\n'
    ])

    # T1w and FLAIR
    scanList = Node(DataGrabber(infields=['subject_id'],
                                outfields=['T1', 'FLAIR']),
                    name="scanList")
    scanList.inputs.base_directory = input_dir
    scanList.inputs.ignore_exception = False
    scanList.inputs.raise_on_empty = True
    scanList.inputs.sort_filelist = True
    #scanList.inputs.template = '%s/%s.nii'
    #scanList.inputs.template_args = {'T1': [['subject_id','T1*']],
    #                                 'FLAIR': [['subject_id','FLAIR*']]}
    scanList.inputs.template = '%s/anat/%s'
    scanList.inputs.template_args = {
        'T1': [['subject_id', '*_T1w.nii.gz']],
        'FLAIR': [['subject_id', '*_FLAIR.nii.gz']]
    }
    wf.connect(subjectList, "subject_id", scanList, "subject_id")

    #     # T1w and FLAIR
    #     dg = Node(DataGrabber(outfields=['T1', 'FLAIR']), name="T1wFLAIR")
    #     dg.inputs.base_directory = "/homes_unix/alaurent/LesionPipeline"
    #     dg.inputs.template = "%s/NIFTI/*.nii.gz"
    #     dg.inputs.template_args['T1']=[['7']]
    #     dg.inputs.template_args['FLAIR']=[['9']]
    #     dg.inputs.sort_filelist=True

    # Reorient Volume
    T1Conv = Node(Reorient2Std(), name="ReorientVolume")
    T1Conv.inputs.ignore_exception = False
    T1Conv.inputs.terminal_output = 'none'
    T1Conv.inputs.out_file = "T1_reoriented.nii.gz"
    wf.connect(scanList, "T1", T1Conv, "in_file")

    # Reorient Volume (2)
    T2flairConv = Node(Reorient2Std(), name="ReorientVolume2")
    T2flairConv.inputs.ignore_exception = False
    T2flairConv.inputs.terminal_output = 'none'
    T2flairConv.inputs.out_file = "FLAIR_reoriented.nii.gz"
    wf.connect(scanList, "FLAIR", T2flairConv, "in_file")

    # N3 Correction
    T1NUC = Node(N4BiasFieldCorrection(), name="N3Correction")
    T1NUC.inputs.dimension = 3
    T1NUC.inputs.environ = {'NSLOTS': '1'}
    T1NUC.inputs.ignore_exception = False
    T1NUC.inputs.num_threads = 1
    T1NUC.inputs.save_bias = False
    T1NUC.inputs.terminal_output = 'none'
    wf.connect(T1Conv, "out_file", T1NUC, "input_image")

    # N3 Correction (2)
    T2flairNUC = Node(N4BiasFieldCorrection(), name="N3Correction2")
    T2flairNUC.inputs.dimension = 3
    T2flairNUC.inputs.environ = {'NSLOTS': '1'}
    T2flairNUC.inputs.ignore_exception = False
    T2flairNUC.inputs.num_threads = 1
    T2flairNUC.inputs.save_bias = False
    T2flairNUC.inputs.terminal_output = 'none'
    wf.connect(T2flairConv, "out_file", T2flairNUC, "input_image")
    '''
    #####################
    ### PRE-NORMALIZE ###
    #####################
    To make sure there's no outlier values (negative, or really high) to offset the initialization steps
    '''

    # Intensity Range Normalization
    getMaxT1NUC = Node(ImageStats(op_string='-r'), name="getMaxT1NUC")
    wf.connect(T1NUC, 'output_image', getMaxT1NUC, 'in_file')

    T1NUCirn = Node(AbcImageMaths(), name="IntensityNormalization")
    T1NUCirn.inputs.op_string = "-div"
    T1NUCirn.inputs.out_file = "normT1.nii.gz"
    wf.connect(T1NUC, 'output_image', T1NUCirn, 'in_file')
    wf.connect(getMaxT1NUC, ('out_stat', getElementFromList, 1), T1NUCirn,
               "op_value")

    # Intensity Range Normalization (2)
    getMaxT2NUC = Node(ImageStats(op_string='-r'), name="getMaxT2")
    wf.connect(T2flairNUC, 'output_image', getMaxT2NUC, 'in_file')

    T2NUCirn = Node(AbcImageMaths(), name="IntensityNormalization2")
    T2NUCirn.inputs.op_string = "-div"
    T2NUCirn.inputs.out_file = "normT2.nii.gz"
    wf.connect(T2flairNUC, 'output_image', T2NUCirn, 'in_file')
    wf.connect(getMaxT2NUC, ('out_stat', getElementFromList, 1), T2NUCirn,
               "op_value")
    '''
    ########################
    #### COREGISTRATION ####
    ########################
    '''

    # Optimized Automated Registration
    T2flairCoreg = Node(FLIRT(), name="OptimizedAutomatedRegistration")
    T2flairCoreg.inputs.output_type = 'NIFTI_GZ'
    wf.connect(T2NUCirn, "out_file", T2flairCoreg, "in_file")
    wf.connect(T1NUCirn, "out_file", T2flairCoreg, "reference")
    '''    
    #########################
    #### SKULL-STRIPPING ####
    #########################
    '''

    # SPECTRE
    T1ss = Node(BET(), name="SPECTRE")
    T1ss.inputs.frac = 0.45  #0.4
    T1ss.inputs.mask = True
    T1ss.inputs.outline = True
    T1ss.inputs.robust = True
    wf.connect(T1NUCirn, "out_file", T1ss, "in_file")

    # Image Calculator
    T2ss = Node(ApplyMask(), name="ImageCalculator")
    wf.connect(T1ss, "mask_file", T2ss, "mask_file")
    wf.connect(T2flairCoreg, "out_file", T2ss, "in_file")
    '''
    ####################################
    #### 2nd LAYER OF N3 CORRECTION ####
    ####################################
    This time without the skull: there were some significant amounts of inhomogeneities leftover.
    '''

    # N3 Correction (3)
    T1ssNUC = Node(N4BiasFieldCorrection(), name="N3Correction3")
    T1ssNUC.inputs.dimension = 3
    T1ssNUC.inputs.environ = {'NSLOTS': '1'}
    T1ssNUC.inputs.ignore_exception = False
    T1ssNUC.inputs.num_threads = 1
    T1ssNUC.inputs.save_bias = False
    T1ssNUC.inputs.terminal_output = 'none'
    wf.connect(T1ss, "out_file", T1ssNUC, "input_image")

    # N3 Correction (4)
    T2ssNUC = Node(N4BiasFieldCorrection(), name="N3Correction4")
    T2ssNUC.inputs.dimension = 3
    T2ssNUC.inputs.environ = {'NSLOTS': '1'}
    T2ssNUC.inputs.ignore_exception = False
    T2ssNUC.inputs.num_threads = 1
    T2ssNUC.inputs.save_bias = False
    T2ssNUC.inputs.terminal_output = 'none'
    wf.connect(T2ss, "out_file", T2ssNUC, "input_image")
    '''
    ####################################
    ####    NORMALIZE FOR MGDM      ####
    ####################################
    This normalization is a bit aggressive: only useful to have a 
    cropped dynamic range into MGDM, but possibly harmful to further 
    processing, so the unprocessed images are passed to the subsequent steps.
    '''

    # Intensity Range Normalization
    getMaxT1ssNUC = Node(ImageStats(op_string='-r'), name="getMaxT1ssNUC")
    wf.connect(T1ssNUC, 'output_image', getMaxT1ssNUC, 'in_file')

    T1ssNUCirn = Node(AbcImageMaths(), name="IntensityNormalization3")
    T1ssNUCirn.inputs.op_string = "-div"
    T1ssNUCirn.inputs.out_file = "normT1ss.nii.gz"
    wf.connect(T1ssNUC, 'output_image', T1ssNUCirn, 'in_file')
    wf.connect(getMaxT1ssNUC, ('out_stat', getElementFromList, 1), T1ssNUCirn,
               "op_value")

    # Intensity Range Normalization (2)
    getMaxT2ssNUC = Node(ImageStats(op_string='-r'), name="getMaxT2ssNUC")
    wf.connect(T2ssNUC, 'output_image', getMaxT2ssNUC, 'in_file')

    T2ssNUCirn = Node(AbcImageMaths(), name="IntensityNormalization4")
    T2ssNUCirn.inputs.op_string = "-div"
    T2ssNUCirn.inputs.out_file = "normT2ss.nii.gz"
    wf.connect(T2ssNUC, 'output_image', T2ssNUCirn, 'in_file')
    wf.connect(getMaxT2ssNUC, ('out_stat', getElementFromList, 1), T2ssNUCirn,
               "op_value")
    '''
    ####################################
    ####      ESTIMATE CSF PV       ####
    ####################################
    Here we try to get a better handle on CSF voxels to help the segmentation step
    '''

    # Recursive Ridge Diffusion
    CSF_pv = Node(RecursiveRidgeDiffusion(), name='estimate_CSF_pv')
    CSF_pv.plugin_args = {'sbatch_args': '--mem 6000'}
    CSF_pv.inputs.ridge_intensities = "dark"
    CSF_pv.inputs.ridge_filter = "2D"
    CSF_pv.inputs.orientation = "undefined"
    CSF_pv.inputs.ang_factor = 1.0
    CSF_pv.inputs.min_scale = 0
    CSF_pv.inputs.max_scale = 3
    CSF_pv.inputs.propagation_model = "diffusion"
    CSF_pv.inputs.diffusion_factor = 0.5
    CSF_pv.inputs.similarity_scale = 0.1
    CSF_pv.inputs.neighborhood_size = 4
    CSF_pv.inputs.max_iter = 100
    CSF_pv.inputs.max_diff = 0.001
    CSF_pv.inputs.save_data = True
    wf.connect(
        subjectList,
        ('subject_id', createOutputDir, wf.base_dir, wf.name, CSF_pv.name),
        CSF_pv, 'output_dir')
    wf.connect(T1ssNUCirn, 'out_file', CSF_pv, 'input_image')
    '''
    ####################################
    ####            MGDM            ####
    ####################################
    '''

    # Multi-contrast Brain Segmentation
    MGDM = Node(MGDMSegmentation(), name='MGDM')
    MGDM.plugin_args = {'sbatch_args': '--mem 7000'}
    MGDM.inputs.contrast_type1 = "Mprage3T"
    MGDM.inputs.contrast_type2 = "FLAIR3T"
    MGDM.inputs.contrast_type3 = "PVDURA"
    MGDM.inputs.save_data = True
    MGDM.inputs.atlas_file = atlas
    wf.connect(
        subjectList,
        ('subject_id', createOutputDir, wf.base_dir, wf.name, MGDM.name), MGDM,
        'output_dir')
    wf.connect(T1ssNUCirn, 'out_file', MGDM, 'contrast_image1')
    wf.connect(T2ssNUCirn, 'out_file', MGDM, 'contrast_image2')
    wf.connect(CSF_pv, 'ridge_pv', MGDM, 'contrast_image3')

    # Enhance Region Contrast
    ERC = Node(EnhanceRegionContrast(), name='ERC')
    ERC.plugin_args = {'sbatch_args': '--mem 7000'}
    ERC.inputs.enhanced_region = "crwm"
    ERC.inputs.contrast_background = "crgm"
    ERC.inputs.partial_voluming_distance = 2.0
    ERC.inputs.save_data = True
    ERC.inputs.atlas_file = atlas
    wf.connect(subjectList,
               ('subject_id', createOutputDir, wf.base_dir, wf.name, ERC.name),
               ERC, 'output_dir')
    wf.connect(T1ssNUC, 'output_image', ERC, 'intensity_image')
    wf.connect(MGDM, 'segmentation', ERC, 'segmentation_image')
    wf.connect(MGDM, 'distance', ERC, 'levelset_boundary_image')

    # Enhance Region Contrast (2)
    ERC2 = Node(EnhanceRegionContrast(), name='ERC2')
    ERC2.plugin_args = {'sbatch_args': '--mem 7000'}
    ERC2.inputs.enhanced_region = "crwm"
    ERC2.inputs.contrast_background = "crgm"
    ERC2.inputs.partial_voluming_distance = 2.0
    ERC2.inputs.save_data = True
    ERC2.inputs.atlas_file = atlas
    wf.connect(
        subjectList,
        ('subject_id', createOutputDir, wf.base_dir, wf.name, ERC2.name), ERC2,
        'output_dir')
    wf.connect(T2ssNUC, 'output_image', ERC2, 'intensity_image')
    wf.connect(MGDM, 'segmentation', ERC2, 'segmentation_image')
    wf.connect(MGDM, 'distance', ERC2, 'levelset_boundary_image')

    # Define Multi-Region Priors
    DMRP = Node(DefineMultiRegionPriors(), name='DefineMultRegPriors')
    DMRP.plugin_args = {'sbatch_args': '--mem 6000'}
    #DMRP.inputs.defined_region = "ventricle-horns"
    #DMRP.inputs.definition_method = "closest-distance"
    DMRP.inputs.distance_offset = 3.0
    DMRP.inputs.save_data = True
    DMRP.inputs.atlas_file = atlas
    wf.connect(
        subjectList,
        ('subject_id', createOutputDir, wf.base_dir, wf.name, DMRP.name), DMRP,
        'output_dir')
    wf.connect(MGDM, 'segmentation', DMRP, 'segmentation_image')
    wf.connect(MGDM, 'distance', DMRP, 'levelset_boundary_image')
    '''
    ###############################################
    ####      REMOVE VENTRICLE POSTERIOR       ####
    ###############################################
    Due to topology constraints, the ventricles are often not fully segmented:
    here add back all ventricle voxels from the posterior probability (without the topology constraints)
    '''

    # Posterior label
    PostLabel = Node(Split(), name='PosteriorLabel')
    PostLabel.inputs.dimension = "t"
    wf.connect(MGDM, 'labels', PostLabel, 'in_file')

    # Posterior proba
    PostProba = Node(Split(), name='PosteriorProba')
    PostProba.inputs.dimension = "t"
    wf.connect(MGDM, 'memberships', PostProba, 'in_file')

    # Threshold binary mask : ventricle label part 1
    VentLabel1 = Node(Threshold(), name="VentricleLabel1")
    VentLabel1.inputs.thresh = 10.5
    VentLabel1.inputs.direction = "below"
    wf.connect(PostLabel, ("out_files", getFirstElement), VentLabel1,
               "in_file")

    # Threshold binary mask : ventricle label part 2
    VentLabel2 = Node(Threshold(), name="VentricleLabel2")
    VentLabel2.inputs.thresh = 13.5
    VentLabel2.inputs.direction = "above"
    wf.connect(VentLabel1, "out_file", VentLabel2, "in_file")

    # Image calculator : ventricle proba
    VentProba = Node(ImageMaths(), name="VentricleProba")
    VentProba.inputs.op_string = "-mul"
    VentProba.inputs.out_file = "ventproba.nii.gz"
    wf.connect(PostProba, ("out_files", getFirstElement), VentProba, "in_file")
    wf.connect(VentLabel2, "out_file", VentProba, "in_file2")

    # Image calculator : remove inter ventricles
    RmInterVent = Node(ImageMaths(), name="RemoveInterVent")
    RmInterVent.inputs.op_string = "-sub"
    RmInterVent.inputs.out_file = "rmintervent.nii.gz"
    wf.connect(ERC, "region_pv", RmInterVent, "in_file")
    wf.connect(DMRP, "inter_ventricular_pv", RmInterVent, "in_file2")

    # Image calculator : add horns
    AddHorns = Node(ImageMaths(), name="AddHorns")
    AddHorns.inputs.op_string = "-add"
    AddHorns.inputs.out_file = "rmvent.nii.gz"
    wf.connect(RmInterVent, "out_file", AddHorns, "in_file")
    wf.connect(DMRP, "ventricular_horns_pv", AddHorns, "in_file2")

    # Image calculator : remove ventricles
    RmVent = Node(ImageMaths(), name="RemoveVentricles")
    RmVent.inputs.op_string = "-sub"
    RmVent.inputs.out_file = "rmvent.nii.gz"
    wf.connect(AddHorns, "out_file", RmVent, "in_file")
    wf.connect(VentProba, "out_file", RmVent, "in_file2")

    # Image calculator : remove internal capsule
    RmIC = Node(ImageMaths(), name="RemoveInternalCap")
    RmIC.inputs.op_string = "-sub"
    RmIC.inputs.out_file = "rmic.nii.gz"
    wf.connect(RmVent, "out_file", RmIC, "in_file")
    wf.connect(DMRP, "internal_capsule_pv", RmIC, "in_file2")

    # Intensity Range Normalization (3)
    getMaxRmIC = Node(ImageStats(op_string='-r'), name="getMaxRmIC")
    wf.connect(RmIC, 'out_file', getMaxRmIC, 'in_file')

    RmICirn = Node(AbcImageMaths(), name="IntensityNormalization5")
    RmICirn.inputs.op_string = "-div"
    RmICirn.inputs.out_file = "normRmIC.nii.gz"
    wf.connect(RmIC, 'out_file', RmICirn, 'in_file')
    wf.connect(getMaxRmIC, ('out_stat', getElementFromList, 1), RmICirn,
               "op_value")

    # Probability To Levelset : WM orientation
    WM_Orient = Node(ProbabilityToLevelset(), name='WM_Orientation')
    WM_Orient.plugin_args = {'sbatch_args': '--mem 6000'}
    WM_Orient.inputs.save_data = True
    wf.connect(
        subjectList,
        ('subject_id', createOutputDir, wf.base_dir, wf.name, WM_Orient.name),
        WM_Orient, 'output_dir')
    wf.connect(RmICirn, 'out_file', WM_Orient, 'probability_image')

    # Recursive Ridge Diffusion : PVS in WM only
    WM_pvs = Node(RecursiveRidgeDiffusion(), name='PVS_in_WM')
    WM_pvs.plugin_args = {'sbatch_args': '--mem 6000'}
    WM_pvs.inputs.ridge_intensities = "bright"
    WM_pvs.inputs.ridge_filter = "1D"
    WM_pvs.inputs.orientation = "orthogonal"
    WM_pvs.inputs.ang_factor = 1.0
    WM_pvs.inputs.min_scale = 0
    WM_pvs.inputs.max_scale = 3
    WM_pvs.inputs.propagation_model = "diffusion"
    WM_pvs.inputs.diffusion_factor = 1.0
    WM_pvs.inputs.similarity_scale = 1.0
    WM_pvs.inputs.neighborhood_size = 2
    WM_pvs.inputs.max_iter = 100
    WM_pvs.inputs.max_diff = 0.001
    WM_pvs.inputs.save_data = True
    wf.connect(
        subjectList,
        ('subject_id', createOutputDir, wf.base_dir, wf.name, WM_pvs.name),
        WM_pvs, 'output_dir')
    wf.connect(ERC, 'background_proba', WM_pvs, 'input_image')
    wf.connect(WM_Orient, 'levelset', WM_pvs, 'surface_levelset')
    wf.connect(RmICirn, 'out_file', WM_pvs, 'loc_prior')

    # Extract Lesions : extract WM PVS
    extract_WM_pvs = Node(LesionExtraction(), name='ExtractPVSfromWM')
    extract_WM_pvs.plugin_args = {'sbatch_args': '--mem 6000'}
    extract_WM_pvs.inputs.gm_boundary_partial_vol_dist = 1.0
    extract_WM_pvs.inputs.csf_boundary_partial_vol_dist = 3.0
    extract_WM_pvs.inputs.lesion_clust_dist = 1.0
    extract_WM_pvs.inputs.prob_min_thresh = 0.1
    extract_WM_pvs.inputs.prob_max_thresh = 0.33
    extract_WM_pvs.inputs.small_lesion_size = 4.0
    extract_WM_pvs.inputs.save_data = True
    extract_WM_pvs.inputs.atlas_file = atlas
    wf.connect(subjectList, ('subject_id', createOutputDir, wf.base_dir,
                             wf.name, extract_WM_pvs.name), extract_WM_pvs,
               'output_dir')
    wf.connect(WM_pvs, 'propagation', extract_WM_pvs, 'probability_image')
    wf.connect(MGDM, 'segmentation', extract_WM_pvs, 'segmentation_image')
    wf.connect(MGDM, 'distance', extract_WM_pvs, 'levelset_boundary_image')
    wf.connect(RmICirn, 'out_file', extract_WM_pvs, 'location_prior_image')
    '''
    2nd branch
    '''

    # Image calculator : internal capsule witout ventricules
    ICwoVent = Node(ImageMaths(), name="ICWithoutVentricules")
    ICwoVent.inputs.op_string = "-sub"
    ICwoVent.inputs.out_file = "icwovent.nii.gz"
    wf.connect(DMRP, "internal_capsule_pv", ICwoVent, "in_file")
    wf.connect(DMRP, "inter_ventricular_pv", ICwoVent, "in_file2")

    # Image calculator : remove ventricles IC
    RmVentIC = Node(ImageMaths(), name="RmVentIC")
    RmVentIC.inputs.op_string = "-sub"
    RmVentIC.inputs.out_file = "RmVentIC.nii.gz"
    wf.connect(ICwoVent, "out_file", RmVentIC, "in_file")
    wf.connect(VentProba, "out_file", RmVentIC, "in_file2")

    # Intensity Range Normalization (4)
    getMaxRmVentIC = Node(ImageStats(op_string='-r'), name="getMaxRmVentIC")
    wf.connect(RmVentIC, 'out_file', getMaxRmVentIC, 'in_file')

    RmVentICirn = Node(AbcImageMaths(), name="IntensityNormalization6")
    RmVentICirn.inputs.op_string = "-div"
    RmVentICirn.inputs.out_file = "normRmVentIC.nii.gz"
    wf.connect(RmVentIC, 'out_file', RmVentICirn, 'in_file')
    wf.connect(getMaxRmVentIC, ('out_stat', getElementFromList, 1),
               RmVentICirn, "op_value")

    # Probability To Levelset : IC orientation
    IC_Orient = Node(ProbabilityToLevelset(), name='IC_Orientation')
    IC_Orient.plugin_args = {'sbatch_args': '--mem 6000'}
    IC_Orient.inputs.save_data = True
    wf.connect(
        subjectList,
        ('subject_id', createOutputDir, wf.base_dir, wf.name, IC_Orient.name),
        IC_Orient, 'output_dir')
    wf.connect(RmVentICirn, 'out_file', IC_Orient, 'probability_image')

    # Recursive Ridge Diffusion : PVS in IC only
    IC_pvs = Node(RecursiveRidgeDiffusion(), name='RecursiveRidgeDiffusion2')
    IC_pvs.plugin_args = {'sbatch_args': '--mem 6000'}
    IC_pvs.inputs.ridge_intensities = "bright"
    IC_pvs.inputs.ridge_filter = "1D"
    IC_pvs.inputs.orientation = "undefined"
    IC_pvs.inputs.ang_factor = 1.0
    IC_pvs.inputs.min_scale = 0
    IC_pvs.inputs.max_scale = 3
    IC_pvs.inputs.propagation_model = "diffusion"
    IC_pvs.inputs.diffusion_factor = 1.0
    IC_pvs.inputs.similarity_scale = 1.0
    IC_pvs.inputs.neighborhood_size = 2
    IC_pvs.inputs.max_iter = 100
    IC_pvs.inputs.max_diff = 0.001
    IC_pvs.inputs.save_data = True
    wf.connect(
        subjectList,
        ('subject_id', createOutputDir, wf.base_dir, wf.name, IC_pvs.name),
        IC_pvs, 'output_dir')
    wf.connect(ERC, 'background_proba', IC_pvs, 'input_image')
    wf.connect(IC_Orient, 'levelset', IC_pvs, 'surface_levelset')
    wf.connect(RmVentICirn, 'out_file', IC_pvs, 'loc_prior')

    # Extract Lesions : extract IC PVS
    extract_IC_pvs = Node(LesionExtraction(), name='ExtractPVSfromIC')
    extract_IC_pvs.plugin_args = {'sbatch_args': '--mem 6000'}
    extract_IC_pvs.inputs.gm_boundary_partial_vol_dist = 1.0
    extract_IC_pvs.inputs.csf_boundary_partial_vol_dist = 4.0
    extract_IC_pvs.inputs.lesion_clust_dist = 1.0
    extract_IC_pvs.inputs.prob_min_thresh = 0.25
    extract_IC_pvs.inputs.prob_max_thresh = 0.5
    extract_IC_pvs.inputs.small_lesion_size = 4.0
    extract_IC_pvs.inputs.save_data = True
    extract_IC_pvs.inputs.atlas_file = atlas
    wf.connect(subjectList, ('subject_id', createOutputDir, wf.base_dir,
                             wf.name, extract_IC_pvs.name), extract_IC_pvs,
               'output_dir')
    wf.connect(IC_pvs, 'propagation', extract_IC_pvs, 'probability_image')
    wf.connect(MGDM, 'segmentation', extract_IC_pvs, 'segmentation_image')
    wf.connect(MGDM, 'distance', extract_IC_pvs, 'levelset_boundary_image')
    wf.connect(RmVentICirn, 'out_file', extract_IC_pvs, 'location_prior_image')
    '''
    3rd branch
    '''

    # Image calculator :
    RmInter = Node(ImageMaths(), name="RemoveInterVentricules")
    RmInter.inputs.op_string = "-sub"
    RmInter.inputs.out_file = "rminter.nii.gz"
    wf.connect(ERC2, 'region_pv', RmInter, "in_file")
    wf.connect(DMRP, "inter_ventricular_pv", RmInter, "in_file2")

    # Image calculator :
    AddVentHorns = Node(ImageMaths(), name="AddVentHorns")
    AddVentHorns.inputs.op_string = "-add"
    AddVentHorns.inputs.out_file = "rminter.nii.gz"
    wf.connect(RmInter, 'out_file', AddVentHorns, "in_file")
    wf.connect(DMRP, "ventricular_horns_pv", AddVentHorns, "in_file2")

    # Intensity Range Normalization (5)
    getMaxAddVentHorns = Node(ImageStats(op_string='-r'),
                              name="getMaxAddVentHorns")
    wf.connect(AddVentHorns, 'out_file', getMaxAddVentHorns, 'in_file')

    AddVentHornsirn = Node(AbcImageMaths(), name="IntensityNormalization7")
    AddVentHornsirn.inputs.op_string = "-div"
    AddVentHornsirn.inputs.out_file = "normAddVentHorns.nii.gz"
    wf.connect(AddVentHorns, 'out_file', AddVentHornsirn, 'in_file')
    wf.connect(getMaxAddVentHorns, ('out_stat', getElementFromList, 1),
               AddVentHornsirn, "op_value")

    # Extract Lesions : extract White Matter Hyperintensities
    extract_WMH = Node(LesionExtraction(), name='Extract_WMH')
    extract_WMH.plugin_args = {'sbatch_args': '--mem 6000'}
    extract_WMH.inputs.gm_boundary_partial_vol_dist = 1.0
    extract_WMH.inputs.csf_boundary_partial_vol_dist = 2.0
    extract_WMH.inputs.lesion_clust_dist = 1.0
    extract_WMH.inputs.prob_min_thresh = 0.84
    extract_WMH.inputs.prob_max_thresh = 0.84
    extract_WMH.inputs.small_lesion_size = 4.0
    extract_WMH.inputs.save_data = True
    extract_WMH.inputs.atlas_file = atlas
    wf.connect(subjectList, ('subject_id', createOutputDir, wf.base_dir,
                             wf.name, extract_WMH.name), extract_WMH,
               'output_dir')
    wf.connect(ERC2, 'background_proba', extract_WMH, 'probability_image')
    wf.connect(MGDM, 'segmentation', extract_WMH, 'segmentation_image')
    wf.connect(MGDM, 'distance', extract_WMH, 'levelset_boundary_image')
    wf.connect(AddVentHornsirn, 'out_file', extract_WMH,
               'location_prior_image')

    #===========================================================================
    # extract_WMH2 = extract_WMH.clone(name='Extract_WMH2')
    # extract_WMH2.inputs.gm_boundary_partial_vol_dist = 2.0
    # wf.connect(subjectList,('subject_id',createOutputDir,wf.base_dir,wf.name,extract_WMH2.name),extract_WMH2,'output_dir')
    # wf.connect(ERC2,'background_proba',extract_WMH2,'probability_image')
    # wf.connect(MGDM,'segmentation',extract_WMH2,'segmentation_image')
    # wf.connect(MGDM,'distance',extract_WMH2,'levelset_boundary_image')
    # wf.connect(AddVentHornsirn,'out_file',extract_WMH2,'location_prior_image')
    #
    # extract_WMH3 = extract_WMH.clone(name='Extract_WMH3')
    # extract_WMH3.inputs.gm_boundary_partial_vol_dist = 3.0
    # wf.connect(subjectList,('subject_id',createOutputDir,wf.base_dir,wf.name,extract_WMH3.name),extract_WMH3,'output_dir')
    # wf.connect(ERC2,'background_proba',extract_WMH3,'probability_image')
    # wf.connect(MGDM,'segmentation',extract_WMH3,'segmentation_image')
    # wf.connect(MGDM,'distance',extract_WMH3,'levelset_boundary_image')
    # wf.connect(AddVentHornsirn,'out_file',extract_WMH3,'location_prior_image')
    #===========================================================================
    '''
    ####################################
    ####     FINDING SMALL WMHs     ####
    ####################################
    Small round WMHs near the cortex are often missed by the main algorithm, 
    so we're adding this one that takes care of them.
    '''

    # Recursive Ridge Diffusion : round WMH detection
    round_WMH = Node(RecursiveRidgeDiffusion(), name='round_WMH')
    round_WMH.plugin_args = {'sbatch_args': '--mem 6000'}
    round_WMH.inputs.ridge_intensities = "bright"
    round_WMH.inputs.ridge_filter = "0D"
    round_WMH.inputs.orientation = "undefined"
    round_WMH.inputs.ang_factor = 1.0
    round_WMH.inputs.min_scale = 1
    round_WMH.inputs.max_scale = 4
    round_WMH.inputs.propagation_model = "none"
    round_WMH.inputs.diffusion_factor = 1.0
    round_WMH.inputs.similarity_scale = 0.1
    round_WMH.inputs.neighborhood_size = 4
    round_WMH.inputs.max_iter = 100
    round_WMH.inputs.max_diff = 0.001
    round_WMH.inputs.save_data = True
    wf.connect(
        subjectList,
        ('subject_id', createOutputDir, wf.base_dir, wf.name, round_WMH.name),
        round_WMH, 'output_dir')
    wf.connect(ERC2, 'background_proba', round_WMH, 'input_image')
    wf.connect(AddVentHornsirn, 'out_file', round_WMH, 'loc_prior')

    # Extract Lesions : extract round WMH
    extract_round_WMH = Node(LesionExtraction(), name='Extract_round_WMH')
    extract_round_WMH.plugin_args = {'sbatch_args': '--mem 6000'}
    extract_round_WMH.inputs.gm_boundary_partial_vol_dist = 1.0
    extract_round_WMH.inputs.csf_boundary_partial_vol_dist = 2.0
    extract_round_WMH.inputs.lesion_clust_dist = 1.0
    extract_round_WMH.inputs.prob_min_thresh = 0.33
    extract_round_WMH.inputs.prob_max_thresh = 0.33
    extract_round_WMH.inputs.small_lesion_size = 6.0
    extract_round_WMH.inputs.save_data = True
    extract_round_WMH.inputs.atlas_file = atlas
    wf.connect(subjectList, ('subject_id', createOutputDir, wf.base_dir,
                             wf.name, extract_round_WMH.name),
               extract_round_WMH, 'output_dir')
    wf.connect(round_WMH, 'ridge_pv', extract_round_WMH, 'probability_image')
    wf.connect(MGDM, 'segmentation', extract_round_WMH, 'segmentation_image')
    wf.connect(MGDM, 'distance', extract_round_WMH, 'levelset_boundary_image')
    wf.connect(AddVentHornsirn, 'out_file', extract_round_WMH,
               'location_prior_image')

    #===========================================================================
    # extract_round_WMH2 = extract_round_WMH.clone(name='Extract_round_WMH2')
    # extract_round_WMH2.inputs.gm_boundary_partial_vol_dist = 2.0
    # wf.connect(subjectList,('subject_id',createOutputDir,wf.base_dir,wf.name,extract_round_WMH2.name),extract_round_WMH2,'output_dir')
    # wf.connect(round_WMH,'ridge_pv',extract_round_WMH2,'probability_image')
    # wf.connect(MGDM,'segmentation',extract_round_WMH2,'segmentation_image')
    # wf.connect(MGDM,'distance',extract_round_WMH2,'levelset_boundary_image')
    # wf.connect(AddVentHornsirn,'out_file',extract_round_WMH2,'location_prior_image')
    #
    # extract_round_WMH3 = extract_round_WMH.clone(name='Extract_round_WMH3')
    # extract_round_WMH3.inputs.gm_boundary_partial_vol_dist = 2.0
    # wf.connect(subjectList,('subject_id',createOutputDir,wf.base_dir,wf.name,extract_round_WMH3.name),extract_round_WMH3,'output_dir')
    # wf.connect(round_WMH,'ridge_pv',extract_round_WMH3,'probability_image')
    # wf.connect(MGDM,'segmentation',extract_round_WMH3,'segmentation_image')
    # wf.connect(MGDM,'distance',extract_round_WMH3,'levelset_boundary_image')
    # wf.connect(AddVentHornsirn,'out_file',extract_round_WMH3,'location_prior_image')
    #===========================================================================
    '''
    ####################################
    ####     COMBINE BOTH TYPES     ####
    ####################################
    Small round WMHs and regular WMH together before thresholding
    +
    PVS from white matter and internal capsule
    '''

    # Image calculator : WM + IC DVRS
    DVRS = Node(ImageMaths(), name="DVRS")
    DVRS.inputs.op_string = "-max"
    DVRS.inputs.out_file = "DVRS_map.nii.gz"
    wf.connect(extract_WM_pvs, 'lesion_score', DVRS, "in_file")
    wf.connect(extract_IC_pvs, "lesion_score", DVRS, "in_file2")

    # Image calculator : WMH + round
    WMH = Node(ImageMaths(), name="WMH")
    WMH.inputs.op_string = "-max"
    WMH.inputs.out_file = "WMH_map.nii.gz"
    wf.connect(extract_WMH, 'lesion_score', WMH, "in_file")
    wf.connect(extract_round_WMH, "lesion_score", WMH, "in_file2")

    #===========================================================================
    # WMH2 = Node(ImageMaths(), name="WMH2")
    # WMH2.inputs.op_string = "-max"
    # WMH2.inputs.out_file = "WMH2_map.nii.gz"
    # wf.connect(extract_WMH2,'lesion_score',WMH2,"in_file")
    # wf.connect(extract_round_WMH2,"lesion_score", WMH2, "in_file2")
    #
    # WMH3 = Node(ImageMaths(), name="WMH3")
    # WMH3.inputs.op_string = "-max"
    # WMH3.inputs.out_file = "WMH3_map.nii.gz"
    # wf.connect(extract_WMH3,'lesion_score',WMH3,"in_file")
    # wf.connect(extract_round_WMH3,"lesion_score", WMH3, "in_file2")
    #===========================================================================

    # Image calculator : multiply by boundnary partial volume
    WMH_mul = Node(ImageMaths(), name="WMH_mul")
    WMH_mul.inputs.op_string = "-mul"
    WMH_mul.inputs.out_file = "final_mask.nii.gz"
    wf.connect(WMH, "out_file", WMH_mul, "in_file")
    wf.connect(MGDM, "distance", WMH_mul, "in_file2")

    #===========================================================================
    # WMH2_mul = Node(ImageMaths(), name="WMH2_mul")
    # WMH2_mul.inputs.op_string = "-mul"
    # WMH2_mul.inputs.out_file = "final_mask.nii.gz"
    # wf.connect(WMH2,"out_file", WMH2_mul,"in_file")
    # wf.connect(MGDM,"distance", WMH2_mul, "in_file2")
    #
    # WMH3_mul = Node(ImageMaths(), name="WMH3_mul")
    # WMH3_mul.inputs.op_string = "-mul"
    # WMH3_mul.inputs.out_file = "final_mask.nii.gz"
    # wf.connect(WMH3,"out_file", WMH3_mul,"in_file")
    # wf.connect(MGDM,"distance", WMH3_mul, "in_file2")
    #===========================================================================
    '''
    ##########################################
    ####      SEGMENTATION THRESHOLD      ####
    ##########################################
    A threshold of 0.5 is very conservative, because the final lesion score is the product of two probabilities.
    This needs to be optimized to a value between 0.25 and 0.5 to balance false negatives 
    (dominant at 0.5) and false positives (dominant at low values).
    '''

    # Threshold binary mask :
    DVRS_mask = Node(Threshold(), name="DVRS_mask")
    DVRS_mask.inputs.thresh = 0.25
    DVRS_mask.inputs.direction = "below"
    wf.connect(DVRS, "out_file", DVRS_mask, "in_file")

    # Threshold binary mask : 025
    WMH1_025 = Node(Threshold(), name="WMH1_025")
    WMH1_025.inputs.thresh = 0.25
    WMH1_025.inputs.direction = "below"
    wf.connect(WMH_mul, "out_file", WMH1_025, "in_file")

    #===========================================================================
    # WMH2_025 = Node(Threshold(), name="WMH2_025")
    # WMH2_025.inputs.thresh = 0.25
    # WMH2_025.inputs.direction = "below"
    # wf.connect(WMH2_mul,"out_file", WMH2_025, "in_file")
    #
    # WMH3_025 = Node(Threshold(), name="WMH3_025")
    # WMH3_025.inputs.thresh = 0.25
    # WMH3_025.inputs.direction = "below"
    # wf.connect(WMH3_mul,"out_file", WMH3_025, "in_file")
    #===========================================================================

    # Threshold binary mask : 050
    WMH1_050 = Node(Threshold(), name="WMH1_050")
    WMH1_050.inputs.thresh = 0.50
    WMH1_050.inputs.direction = "below"
    wf.connect(WMH_mul, "out_file", WMH1_050, "in_file")

    #===========================================================================
    # WMH2_050 = Node(Threshold(), name="WMH2_050")
    # WMH2_050.inputs.thresh = 0.50
    # WMH2_050.inputs.direction = "below"
    # wf.connect(WMH2_mul,"out_file", WMH2_050, "in_file")
    #
    # WMH3_050 = Node(Threshold(), name="WMH3_050")
    # WMH3_050.inputs.thresh = 0.50
    # WMH3_050.inputs.direction = "below"
    # wf.connect(WMH3_mul,"out_file", WMH3_050, "in_file")
    #===========================================================================

    # Threshold binary mask : 075
    WMH1_075 = Node(Threshold(), name="WMH1_075")
    WMH1_075.inputs.thresh = 0.75
    WMH1_075.inputs.direction = "below"
    wf.connect(WMH_mul, "out_file", WMH1_075, "in_file")

    #===========================================================================
    # WMH2_075 = Node(Threshold(), name="WMH2_075")
    # WMH2_075.inputs.thresh = 0.75
    # WMH2_075.inputs.direction = "below"
    # wf.connect(WMH2_mul,"out_file", WMH2_075, "in_file")
    #
    # WMH3_075 = Node(Threshold(), name="WMH3_075")
    # WMH3_075.inputs.thresh = 0.75
    # WMH3_075.inputs.direction = "below"
    # wf.connect(WMH3_mul,"out_file", WMH3_075, "in_file")
    #===========================================================================

    ## Outputs

    DVRS_Output = Node(IdentityInterface(fields=[
        'mask', 'region', 'lesion_size', 'lesion_proba', 'boundary', 'label',
        'score'
    ]),
                       name='DVRS_Output')
    wf.connect(DVRS_mask, 'out_file', DVRS_Output, 'mask')

    WMH_output = Node(IdentityInterface(fields=[
        'mask1025', 'mask1050', 'mask1075', 'mask2025', 'mask2050', 'mask2075',
        'mask3025', 'mask3050', 'mask3075'
    ]),
                      name='WMH_output')
    wf.connect(WMH1_025, 'out_file', WMH_output, 'mask1025')
    #wf.connect(WMH2_025,'out_file',WMH_output,'mask2025')
    #wf.connect(WMH3_025,'out_file',WMH_output,'mask3025')
    wf.connect(WMH1_050, 'out_file', WMH_output, 'mask1050')
    #wf.connect(WMH2_050,'out_file',WMH_output,'mask2050')
    #wf.connect(WMH3_050,'out_file',WMH_output,'mask3050')
    wf.connect(WMH1_075, 'out_file', WMH_output, 'mask1075')
    #wf.connect(WMH2_075,'out_file',WMH_output,'mask2070')
    #wf.connect(WMH3_075,'out_file',WMH_output,'mask3075')

    return wf
Beispiel #6
0
def test_BET_inputs():
    input_map = dict(args=dict(argstr='%s',
    ),
    center=dict(argstr='-c %s',
    units='voxels',
    ),
    environ=dict(nohash=True,
    usedefault=True,
    ),
    frac=dict(argstr='-f %.2f',
    ),
    functional=dict(argstr='-F',
    xor=('functional', 'reduce_bias', 'robust', 'padding', 'remove_eyes', 'surfaces', 't2_guided'),
    ),
    ignore_exception=dict(nohash=True,
    usedefault=True,
    ),
    in_file=dict(argstr='%s',
    mandatory=True,
    position=0,
    ),
    mask=dict(argstr='-m',
    ),
    mesh=dict(argstr='-e',
    ),
    no_output=dict(argstr='-n',
    ),
    out_file=dict(argstr='%s',
    genfile=True,
    hash_files=False,
    position=1,
    ),
    outline=dict(argstr='-o',
    ),
    output_type=dict(),
    padding=dict(argstr='-Z',
    xor=('functional', 'reduce_bias', 'robust', 'padding', 'remove_eyes', 'surfaces', 't2_guided'),
    ),
    radius=dict(argstr='-r %d',
    units='mm',
    ),
    reduce_bias=dict(argstr='-B',
    xor=('functional', 'reduce_bias', 'robust', 'padding', 'remove_eyes', 'surfaces', 't2_guided'),
    ),
    remove_eyes=dict(argstr='-S',
    xor=('functional', 'reduce_bias', 'robust', 'padding', 'remove_eyes', 'surfaces', 't2_guided'),
    ),
    robust=dict(argstr='-R',
    xor=('functional', 'reduce_bias', 'robust', 'padding', 'remove_eyes', 'surfaces', 't2_guided'),
    ),
    skull=dict(argstr='-s',
    ),
    surfaces=dict(argstr='-A',
    xor=('functional', 'reduce_bias', 'robust', 'padding', 'remove_eyes', 'surfaces', 't2_guided'),
    ),
    t2_guided=dict(argstr='-A2 %s',
    xor=('functional', 'reduce_bias', 'robust', 'padding', 'remove_eyes', 'surfaces', 't2_guided'),
    ),
    terminal_output=dict(mandatory=True,
    nohash=True,
    ),
    threshold=dict(argstr='-t',
    ),
    vertical_gradient=dict(argstr='-g %.2f',
    ),
    )
    inputs = BET.input_spec()

    for key, metadata in input_map.items():
        for metakey, value in metadata.items():
            yield assert_equal, getattr(inputs.traits()[key], metakey), value
Beispiel #7
0
def custom_brain_extraction(output_base_name,
                            in_file,
                            output_dir,
                            output_type,
                            median_radius=3,
                            numpass=1,
                            autocrop=False,
                            dilate=2,
                            selem=10):
    """This function create a brain mask for the diffusion data. It calculate the average of the 4D diffusion image
        and use this average to create a rough brain mask with FSL bet. This mask is then dilated, used to mask the average 
        diffusion image and the result is fed to the dipy.median_oshu function. Possible hole in the mask caused by failure of the
        oshu method are then filled with a morphological operation.
    Parameters
        ----------
        output_base_name: string, a bids_compatible sub-name_ses-name
        in_file: string or path-like object, the original 4d diffusion data
        output_dir: a valid directory in the form of /base_bids/derivatives/fsl-dipy_dti-preproc/sub-name_ses-name
        output_type: ["NIFTI", "NIFTI_GZ"], the type of nifti output desired,
        ...: options from median_otsu and dilate
        
    Returns
        ----------
        
        mask: brain mask
        masked_data: masked 4d diffusion data
        
        
        """
    if output_type == "NIFTI":
        ext = ".nii"
    elif output_type == "NIFTI_GZ":
        ext = ".nii.gz"
    else:
        raise ValueError(
            "Output file type {} not recognized".format(output_type))
    mask_output_filename = "{}/{}_mask{}".format(output_dir, output_base_name,
                                                 ext)
    masked_output_filename = "{}/{}_masked{}".format(output_dir,
                                                     output_base_name, ext)
    if isfile(masked_output_filename):
        print("skipping masking")
        return (None)
    diff_image = nb.load(in_file)
    diff_image_array = diff_image.get_fdata()
    diff_mean = diff_image_array.mean(axis=3)
    diff_mean_filename = "{}/{}_mean_temp{}".format(output_dir,
                                                    output_base_name, ext)
    nb.save(nb.Nifti1Image(diff_mean, diff_image.affine, diff_image.header),
            diff_mean_filename)
    bet_out_file = "{}/{}_ec_bet{}".format(output_dir, output_base_name, ext)
    bet_out_file_mask = "{}/{}_ec_bet_mask{}".format(output_dir,
                                                     output_base_name, ext)
    bet = BET(in_file=diff_mean_filename,
              out_file=bet_out_file,
              mask=True,
              output_type=output_type)
    bet.run()
    b0_mask = nb.load(bet_out_file_mask)
    b0_mask_array = b0_mask.get_fdata()
    b0_mask_dilate = dilate_mask(b0_mask_array, selem=selem)
    diff_mean_dilate_mask = diff_mean * b0_mask_dilate
    _, mask = median_otsu(diff_mean_dilate_mask,
                          vol_idx=None,
                          median_radius=median_radius,
                          numpass=numpass,
                          autocrop=autocrop,
                          dilate=dilate)
    mask_filled = fill_mask(mask)
    masked_diff = diff_image_array * np.expand_dims(mask_filled, 3)
    nb.save(nb.Nifti1Image(mask_filled, diff_image.affine, diff_image.header),
            mask_output_filename)
    nb.save(nb.Nifti1Image(masked_diff, diff_image.affine, diff_image.header),
            masked_output_filename)
    remove(diff_mean_filename)
    remove(bet_out_file)
    remove(bet_out_file_mask)
    return (mask_output_filename, masked_output_filename)