Beispiel #1
0
 def crack(self):
     result = []
     # 加载数据
     with open(os.path.join(current_dir, 'image_data.json'), 'r') as f:
         image_data = json.load(f)
     for letter in self.handle_split_image():
         letter_vector = build_vector(letter)
         guess = []
         for image in image_data:
             for x, y in image.items():
                 guess.append((distance_hanmming(y, letter_vector), x))
         guess.sort()
         result.append(guess[0][1])
     return ''.join(result)
Beispiel #2
0
 def crack(self):
     # 装载训练数据集
     with open(os.path.join(current_dir, 'imageset.dat'), 'rb') as f:
         imageset = pickle.load(f)
     # 对验证码图片进行切割
     result = []
     for letter in letters:
         final = self.im.crop((letter[0], 0, letter[1], self.im.size[1]))
         letter_vector = build_vector(final)
         guess = []
         # 将切割得到的验证码小片段与每个训练片段进行比较
         for image in imageset:
             for x, y in image.items():
                 guess.append((distance_cos(y, letter_vector), x))
         guess.sort()
         result.append(guess[0][1])
     return "".join(result)
 def crack(self):
     result = []
     # 加载数据
     with open(os.path.join(current_dir, 'image_data.json'), 'rb') as f:
         image_data = json.load(f)
     for letter in self.handle_split_image():
         letter_vector = build_vector(letter)
         guess = []
         for image in image_data:
             for x, y in image.items():
                 guess.append((distance_hanmming(y, letter_vector), x))
         guess.sort()
         neighbors = guess[:15]  # 距离最近的十五个向量
         class_votes = {}  # 投票
         for neighbor in neighbors:
             class_votes.setdefault(neighbor[-1], 0)
             class_votes[neighbor[-1]] += 1
         sorted_votes = sorted(class_votes.items(),
                               key=lambda x: x[1],
                               reverse=True)
         result.append(sorted_votes[0][0])
     return ''.join(result)
Beispiel #4
0
import os
import json

from PIL import Image

from njupt.utils.captchas import build_vector

if __name__ == "__main__":
    # 字符集
    letters = ['2', '3', '4', '5', '6', '7', '8', '9']
    # 将图像数据转为向量数据并保存
    image_data = []
    for letter in letters:
        for img in os.listdir('captcha_chars/{}/'.format(letter)):
            if img != "Thumbs.db" and img != ".DS_Store":
                temp = build_vector(
                    Image.open("captcha_chars/{}/{}".format(letter, img)))
                image_data.append({letter: temp})

    with open('image_data.json', 'w') as f:
        json.dump(image_data, f)
Beispiel #5
0
import json
from io import BytesIO

import requests
from PIL import Image

from njupt import Library
from njupt.utils.captchas import build_vector
from njupt.utils.captchas.library.libray_captcha import LibraryCaptcha

if __name__ == "__main__":
    image_data = []

    for i in range(10):
        r = requests.get(Library.URLs.CAPTCHA)
        im = Image.open(BytesIO(r.content))
        im.show()
        captcha = LibraryCaptcha(image=im)
        letters = input()
        for letter, im in zip(letters, captcha.handle_split_image()):
            vector = build_vector(im)
            image_data.append({letter: vector})

    with open('image_data.json', 'w') as f:
        json.dump(image_data, f)