Beispiel #1
0
    def summarize(self, text, num=6):
        # 切句
        if type(text) == str:
            sentences = cut_sentence(text)
        elif type(text) == list:
            sentences = text
        else:
            raise RuntimeError("text type must be list or str")
        # str of sentence >>> index
        corpus = _build_corpus(sentences)
        # pagerank and so on
        most_important_docs = summarize_corpus(corpus)

        count = 0
        sentences_score = {}
        for cor in corpus:
            tuple_cor = tuple(cor)
            sentences_score[sentences[count]] = most_important_docs[tuple_cor]
            count += 1
        # 最小句子数
        num_min = min(num, int(len(sentences) * 0.6))
        score_sen = [(rc[1], rc[0]) for rc in sorted(
            sentences_score.items(), key=lambda d: d[1], reverse=True)
                     ][0:num_min]
        return score_sen
Beispiel #2
0
 def summarize(self, text, type='mix', num=3):
     """
         lead-s
     :param sentences: list
     :param type: str, you can choose 'begin', 'end' or 'mix'
     :return: list
     """
     sentences = cut_sentence(text)
     if len(sentences) < num:
         return sentences
     # 最小句子数
     num_min = min(num, len(sentences))
     if type == 'begin':
         summers = sentences[0:num]
     elif type == 'end':
         summers = sentences[-num:]
     else:
         summers = [sentences[0]] + [sentences[-1]] + sentences[1:num - 1]
     summers_s = {}
     for i in range(len(summers)):  # 得分计算
         if len(summers) - i == 1:
             summers_s[summers[i]] = (num - 0.75) / (num + 1)
         else:
             summers_s[summers[i]] = (num - i - 0.5) / (num + 1)
     score_sen = [(rc[1], rc[0]) for rc in sorted(
         summers_s.items(), key=lambda d: d[1], reverse=True)][0:num_min]
     return score_sen
def text_summarize(
        doc,
        num=None,
        multi_process=False,
        fs=[text_pronouns, text_teaser, mmr, text_rank, lead3, lda, lsi, nmf]):
    """
        抽取式文本摘要, 汇总, 使用几个方法
    :param doc: str or list, 用户输入
    :param num: int, 返回的句子个数
    :param multi_process: bool, 是否使用多进程
    :return: res_score: list, sentences of doc with score
    """
    if type(doc) == list:
        doc = "。".join(doc)
    elif not doc or (type(doc) != str):
        raise RuntimeError(" type of doc must be 'list' or 'str' ")
    if not num:
        from nlg_yongzhuo.data_preprocess.text_preprocess import cut_sentence
        num = len(cut_sentence(doc))
    # 是否使用多进程, 注意: 当cpu数量不足或性能较差时, 多进程不一定比串行快
    if multi_process:
        res = summary_multi_preprocess(doc, num, fs)
    else:
        res = summary_serial(doc, num, fs)
    # 后处理
    res_score = summary_post_preprocess(res)
    return res_score
Beispiel #4
0
    def summarize(self, text, num=8, alpha=0.6):
        """

        :param text: str
        :param num: int
        :return: list
        """
        # 切句
        if type(text) == str:
            self.sentences = cut_sentence(text)
        elif type(text) == list:
            self.sentences = text
        else:
            raise RuntimeError("text type must be list or str")
        # 切词
        sentences_cut = [[
            word for word in jieba_cut(extract_chinese(sentence))
            if word.strip()
        ] for sentence in self.sentences]
        # 去除停用词等
        self.sentences_cut = [
            list(filter(lambda x: x not in self.stop_words, sc))
            for sc in sentences_cut
        ]
        self.sentences_cut = [" ".join(sc) for sc in self.sentences_cut]
        # # 计算每个句子的词语个数
        # sen_word_len = [len(sc)+1 for sc in sentences_cut]
        # 计算每个句子的tfidf
        sen_tfidf = tfidf_fit(self.sentences_cut)
        # 矩阵中两两句子相似度
        SimMatrix = (sen_tfidf *
                     sen_tfidf.T).A  # 例如: SimMatrix[1, 3]  # "第2篇与第4篇的相似度"
        # 输入文本句子长度
        len_sen = len(self.sentences)
        # 句子标号
        sen_idx = [i for i in range(len_sen)]
        summary_set = []
        mmr = {}
        for i in range(len_sen):
            if not self.sentences[i] in summary_set:
                sen_idx_pop = copy.deepcopy(sen_idx)
                sen_idx_pop.pop(i)
                # 两两句子相似度
                sim_i_j = [SimMatrix[i, j] for j in sen_idx_pop]
                score_tfidf = sen_tfidf[i].toarray()[0].sum(
                )  # / sen_word_len[i], 如果除以词语个数就不准确
                mmr[self.sentences[i]] = alpha * score_tfidf - (
                    1 - alpha) * max(sim_i_j)
                summary_set.append(self.sentences[i])
        score_sen = [
            (rc[1], rc[0])
            for rc in sorted(mmr.items(), key=lambda d: d[1], reverse=True)
        ]
        if len(mmr) > num:
            score_sen = score_sen[0:num]
        return score_sen
 def summarize(self, text, num=6):
     """
         根据词语意义确定中心句
     :param text: str
     :param num: int
     :return: list
     """
     # 切句
     if type(text) == str:
         self.sentences = cut_sentence(text)
     elif type(text) == list:
         self.sentences = text
     else:
         raise RuntimeError("text type must be list or str")
     # 切词
     sentences_cut = [[word for word in jieba_cut(extract_chinese(sentence))
                       if word.strip()] for sentence in self.sentences]
     # 去除停用词等
     self.sentences_cut = [list(filter(lambda x: x not in self.stop_words, sc)) for sc in sentences_cut]
     # 词频统计
     self.words = []
     for sen in self.sentences_cut:
         self.words = self.words + sen
     self.word_count = dict(Counter(self.words))
     self.word_count_rank = sorted(self.word_count.items(), key=lambda f: f[1], reverse=True)
     # 最小句子数
     num_min = min(num, len(self.sentences))
     # 词语排序, 按照词频
     self.word_rank = [wcr[0] for wcr in self.word_count_rank][0:num_min]
     res_sentence = []
     # 抽取句子, 顺序, 如果词频高的词语在句子里, 则抽取
     for word in self.word_rank:
         for i in range(0, len(self.sentences)):
             # 当返回关键句子到达一定量, 则结束返回
             if len(res_sentence) < num_min:
                 added = False
                 for sent in res_sentence:
                     if sent == self.sentences[i]: added = True
                 if (added == False and word in self.sentences[i]):
                     res_sentence.append(self.sentences[i])
                     break
     # 只是计算各得分,没什么用
     res_sentence = [(1-1/(len(self.sentences)+1), rs) for rs in res_sentence]
     return res_sentence
Beispiel #6
0
def textrank_tfidf(sentences, topk=6):
    """
        使用tf-idf作为相似度, networkx.pagerank获取中心句子作为摘要
    :param sentences: str, docs of text
    :param topk:int
    :return:list
    """
    # 切句子
    sentences = list(cut_sentence(sentences))
    # tf-idf相似度
    matrix_norm = tdidf_sim(sentences)
    # 构建相似度矩阵
    tfidf_sim = nx.from_scipy_sparse_matrix(matrix_norm * matrix_norm.T)
    # nx.pagerank
    sens_scores = nx.pagerank(tfidf_sim)
    # 得分排序
    sen_rank = sorted(sens_scores.items(), key=lambda x: x[1], reverse=True)
    # 保留topk个, 防止越界
    topk = min(len(sentences), topk)
    # 返回原句子和得分
    return [(sr[1], sentences[sr[0]]) for sr in sen_rank][0:topk]
Beispiel #7
0
    def summarize(self, text, num=8, topic_min=6, judge_topic=None):
        """

        :param text: str
        :param num: int
        :return: list
        """
        # 切句
        if type(text) == str:
            self.sentences = cut_sentence(text)
        elif type(text) == list:
            self.sentences = text
        else:
            raise RuntimeError("text type must be list or str")
        len_sentences_cut = len(self.sentences)
        # 切词
        sentences_cut = [[
            word for word in jieba_cut(extract_chinese(sentence))
            if word.strip()
        ] for sentence in self.sentences]
        # 去除停用词等
        self.sentences_cut = [
            list(filter(lambda x: x not in self.stop_words, sc))
            for sc in sentences_cut
        ]
        self.sentences_cut = [" ".join(sc) for sc in self.sentences_cut]
        # 计算每个句子的tf
        vector_c = CountVectorizer(ngram_range=(1, 2),
                                   stop_words=self.stop_words)
        tf_ngram = vector_c.fit_transform(self.sentences_cut)
        # 主题数, 经验判断
        topic_num = min(topic_min, int(len(sentences_cut) / 2))  # 设定最小主题数为3
        lda = LatentDirichletAllocation(n_components=topic_num,
                                        max_iter=32,
                                        learning_method='online',
                                        learning_offset=50.,
                                        random_state=2019)
        res_lda_u = lda.fit_transform(tf_ngram.T)
        res_lda_v = lda.components_

        if judge_topic:
            ### 方案一, 获取最大那个主题的k个句子
            ##################################################################################
            topic_t_score = np.sum(res_lda_v, axis=-1)
            # 对每列(一个句子topic_num个主题),得分进行排序,0为最大
            res_nmf_h_soft = res_lda_v.argsort(axis=0)[-topic_num:][::-1]
            # 统计为最大每个主题的句子个数
            exist = (res_nmf_h_soft <= 0) * 1.0
            factor = np.ones(res_nmf_h_soft.shape[1])
            topic_t_count = np.dot(exist, factor)
            # 标准化
            topic_t_count /= np.sum(topic_t_count, axis=-1)
            topic_t_score /= np.sum(topic_t_score, axis=-1)
            # 主题最大个数占比, 与主题总得分占比选择最大的主题
            topic_t_tc = topic_t_count + topic_t_score
            topic_t_tc_argmax = np.argmax(topic_t_tc)
            # 最后得分选择该最大主题的
            res_nmf_h_soft_argmax = res_lda_v[topic_t_tc_argmax].tolist()
            res_combine = {}
            for l in range(len_sentences_cut):
                res_combine[self.sentences[l]] = res_nmf_h_soft_argmax[l]
            score_sen = [(rc[1], rc[0]) for rc in sorted(
                res_combine.items(), key=lambda d: d[1], reverse=True)]
            #####################################################################################
        else:
            ### 方案二, 获取最大主题概率的句子, 不分主题
            res_combine = {}
            for i in range(len_sentences_cut):
                res_row_i = res_lda_v[:, i]
                res_row_i_argmax = np.argmax(res_row_i)
                res_combine[self.sentences[i]] = res_row_i[res_row_i_argmax]
            score_sen = [(rc[1], rc[0]) for rc in sorted(
                res_combine.items(), key=lambda d: d[1], reverse=True)]
        num_min = min(num, int(len_sentences_cut * 0.6))
        return score_sen[0:num_min]
Beispiel #8
0
    def summarize(self, text, num=6, title=None):
        """
            文本句子排序
        :param docs: list
        :return: list
        """
        # 切句
        if type(text) == str:
            self.sentences = cut_sentence(text)
        elif type(text) == list:
            self.sentences = text
        else:
            raise RuntimeError("text type must be list or str")
        self.title = title
        if self.title:
            self.title = jieba_cut(title)
        # 切词,含词性标注
        self.sentences_tag_cut = [
            jieba_tag_cut(extract_chinese(sentence))
            for sentence in self.sentences
        ]
        # 词语,不含词性标注
        sentences_cut = [[jc for jc in jtc.keys()]
                         for jtc in self.sentences_tag_cut]
        # 去除停用词等
        self.sentences_cut = [
            list(filter(lambda x: x not in self.stop_words, sc))
            for sc in sentences_cut
        ]
        # 词频统计
        self.words = []
        for sen in self.sentences_cut:
            self.words = self.words + sen
        self.word_count = dict(Counter(self.words))
        # 按频次计算词语的得分, 得到self.word_freq=[{'word':, 'freq':, 'score':}]
        self.word_freqs = {}
        self.len_words = len(self.words)
        for k, v in self.word_count.items():
            self.word_freqs[k] = v * 0.5 / self.len_words
        # uni_bi_tri_gram特征
        gram_uni, gram_bi, gram_tri = gram_uni_bi_tri("".join(self.sentences))
        ngrams = gram_uni + gram_bi + gram_tri
        self.ngrams_count = dict(Counter(ngrams))
        # 句子位置打分
        scores_posi = self.score_position()
        # 句子长度打分
        scores_length = self.score_length()
        # 句子词性打分, 名词(1.2)-代词(0.8)-动词(1.0)
        scores_tag = self.score_tag()

        res_rank = {}
        self.res_score = []
        for i in range(len(sentences_cut)):
            sen_cut = self.sentences_cut[i]  # 句子中的词语
            # ngram得分
            gram_uni_, gram_bi_, gram_tri_ = gram_uni_bi_tri(self.sentences[i])
            n_gram_s = gram_uni_ + gram_bi_ + gram_tri_
            score_ngram = sum([
                self.ngrams_count[ngs] if ngs in self.ngrams_count else 0
                for ngs in n_gram_s
            ]) / (len(n_gram_s) + 1)
            # 句子中词语的平均长度
            score_word_length_avg = sum([len(sc) for sc in sen_cut
                                         ]) / (len(sen_cut) + 1)
            score_posi = scores_posi[i]
            score_length = scores_length[i]
            score_tag = scores_tag[i]
            if self.title:  # 有标题的文本打分合并
                score_title = self.score_title(sen_cut)
                score_total = (score_title * 0.5 + score_ngram * 2.0 +
                               score_word_length_avg * 0.5 + score_length * 0.5
                               + score_posi * 1.0 + score_tag * 0.6) / 6.0
                # 可查阅各部分得分统计
                self.res_score.append([
                    "score_title", "score_ngram", "score_word_length_avg",
                    "score_length", "score_posi", "score_tag"
                ])
                self.res_score.append([
                    score_title, score_ngram, score_word_length_avg,
                    score_length, score_posi, score_tag, self.sentences[i]
                ])
            else:  # 无标题的文本打分合并
                score_total = (score_ngram * 2.0 + score_word_length_avg * 0.5
                               + score_length * 0.5 + score_posi * 1.0 +
                               score_tag * 0.6) / 5.0
                # 可查阅各部分得分统计
                self.res_score.append([
                    "score_ngram", "score_word_length_avg", "score_length",
                    "score_posi", "score_tag"
                ])
                self.res_score.append([
                    score_ngram, score_word_length_avg, score_length,
                    score_posi, score_tag, self.sentences[i]
                ])
            res_rank[self.sentences[i].strip()] = score_total
        # 最小句子数
        num_min = min(num, int(len(self.word_count) * 0.6))
        res_rank_sort = sorted(res_rank.items(),
                               key=lambda rr: rr[1],
                               reverse=True)
        res_rank_sort_reverse = [(rrs[1], rrs[0])
                                 for rrs in res_rank_sort][0:num_min]
        return res_rank_sort_reverse
Beispiel #9
0
    def summarize(self, text, num=8, topic_min=3, judge_topic="all"):
        """

        :param text: text or list, input docs
        :param num: int, number or amount of return
        :param topic_min: int, topic number
        :param judge_topic: str, calculate ways of topic
        :return: 
        """
        # 切句
        if type(text) == str:
            self.sentences = cut_sentence(text)
        elif type(text) == list:
            self.sentences = text
        else:
            raise RuntimeError("text type must be list or str")
        # 切词
        sentences_cut = [[
            word for word in jieba_cut(extract_chinese(sentence))
            if word.strip()
        ] for sentence in self.sentences]
        len_sentences_cut = len(sentences_cut)
        # 去除停用词等
        self.sentences_cut = [
            list(filter(lambda x: x not in self.stop_words, sc))
            for sc in sentences_cut
        ]
        self.sentences_cut = [" ".join(sc) for sc in self.sentences_cut]
        # 计算每个句子的tfidf
        sen_tfidf = tfidf_fit(self.sentences_cut)
        # 主题数, 经验判断
        topic_num = min(topic_min, int(len(sentences_cut) / 2))  # 设定最小主题数为3
        nmf_tfidf = NMF(n_components=topic_num, max_iter=320)
        res_nmf_w = nmf_tfidf.fit_transform(sen_tfidf.T)  # 基矩阵 or 权重矩阵
        res_nmf_h = nmf_tfidf.components_  # 系数矩阵 or 降维矩阵

        if judge_topic:
            ### 方案一, 获取最大那个主题的k个句子
            ##################################################################################
            topic_t_score = np.sum(res_nmf_h, axis=-1)
            # 对每列(一个句子topic_num个主题),得分进行排序,0为最大
            res_nmf_h_soft = res_nmf_h.argsort(axis=0)[-topic_num:][::-1]
            # 统计为最大每个主题的句子个数
            exist = (res_nmf_h_soft <= 0) * 1.0
            factor = np.ones(res_nmf_h_soft.shape[1])
            topic_t_count = np.dot(exist, factor)
            # 标准化
            topic_t_count /= np.sum(topic_t_count, axis=-1)
            topic_t_score /= np.sum(topic_t_score, axis=-1)
            # 主题最大个数占比, 与主题总得分占比选择最大的主题
            topic_t_tc = topic_t_count + topic_t_score
            topic_t_tc_argmax = np.argmax(topic_t_tc)
            # 最后得分选择该最大主题的
            res_nmf_h_soft_argmax = res_nmf_h[topic_t_tc_argmax].tolist()
            res_combine = {}
            for l in range(len_sentences_cut):
                res_combine[self.sentences[l]] = res_nmf_h_soft_argmax[l]
            score_sen = [(rc[1], rc[0]) for rc in sorted(
                res_combine.items(), key=lambda d: d[1], reverse=True)]
            #####################################################################################
        else:
            ### 方案二, 获取最大主题概率的句子, 不分主题
            res_combine = {}
            for i in range(len_sentences_cut):
                res_row_i = res_nmf_h[:, i]
                res_row_i_argmax = np.argmax(res_row_i)
                res_combine[self.sentences[i]] = res_row_i[res_row_i_argmax]
            score_sen = [(rc[1], rc[0]) for rc in sorted(
                res_combine.items(), key=lambda d: d[1], reverse=True)]
        num_min = min(num, len(self.sentences))
        return score_sen[0:num_min]
Beispiel #10
0
 def summarize(self, text, num=6, title=None):
     # 切句
     if type(text) == str:
         self.sentences = cut_sentence(text)
     elif type(text) == list:
         self.sentences = text
     else:
         raise RuntimeError("text type must be list or str")
     self.title = title
     if self.title:
         self.title = jieba_cut(title)
     # 切词
     sentences_cut = [[
         word for word in jieba_cut(extract_chinese(sentence))
         if word.strip()
     ] for sentence in self.sentences]
     # 去除停用词等
     self.sentences_cut = [
         list(filter(lambda x: x not in self.stop_words, sc))
         for sc in sentences_cut
     ]
     # 词频统计
     self.words = []
     for sen in self.sentences_cut:
         self.words = self.words + sen
     self.word_count = dict(Counter(self.words))
     # word_count_rank = sorted(word_count.items(), key=lambda f:f[1], reverse=True)
     # self.word_freqs = [{'word':wcr[0], 'freq':wcr[1]} for wcr in word_count_rank]
     # 按频次计算词语的得分, 得到self.word_freq=[{'word':, 'freq':, 'score':}]
     self.word_freqs = {}
     self.len_words = len(self.words)
     for k, v in self.word_count.items():
         self.word_freqs[k] = v * 0.5 / self.len_words
     # 句子位置打分
     scores_posi = self.score_position()
     res_rank = {}
     self.res_score = []
     for i in range(len(sentences_cut)):
         sen = self.sentences[i]  # 句子
         sen_cut = self.sentences_cut[i]  # 句子中的词语
         score_sbs = self.score_sbs(sen_cut)  # 句子中的词语打分1
         score_dbs = self.score_dbs(sen_cut)  # 句子中的词语打分2
         score_word = (score_sbs + score_dbs) * 10.0 / 2.0  # 句子中的词语打分mix
         score_length = self.score_length(sen)  # 句子文本长度打分
         score_posi = scores_posi[i]
         if self.title:  # 有标题的文本打分合并
             score_title = self.score_title(sen_cut)
             score_total = (score_title * 0.5 + score_word * 2.0 +
                            score_length * 0.5 + score_posi * 1.0) / 4.0
             # 可查阅各部分得分统计
             self.res_score.append([
                 "score_total", "score_sbs", "score_dbs", "score_word",
                 "score_length", "score_posi", "score_title", "sentences"
             ])
             self.res_score.append([
                 score_total, score_sbs, score_dbs, score_word,
                 score_length, score_posi, score_title, self.sentences[i]
             ])
         else:  # 无标题的文本打分合并
             score_total = (score_word * 2.0 + score_length * 0.5 +
                            score_posi * 1.0) / 3.5
             self.res_score.append([
                 "score_total", "score_sbs", "score_dbs", "score_word",
                 "score_length", "score_posi", "sentences"
             ])
             self.res_score.append([
                 score_total, score_sbs, score_dbs, score_word,
                 score_length, score_posi, self.sentences[i].strip()
             ])
         res_rank[self.sentences[i].strip()] = score_total
     # 最小句子数
     num_min = min(num, int(len(self.word_count) * 0.6))
     score_sen = [(rc[1], rc[0]) for rc in sorted(
         res_rank.items(), key=lambda d: d[1], reverse=True)][0:num_min]
     return score_sen