Beispiel #1
0
class KaldiWWSpotter(EventEmitter):
    _default_models = ["/opt/kaldi/model/kaldi-generic-en-tdnn_250",
                       "/opt/kaldi/model/kaldi-generic-de-tdnn_250"]

    def __init__(self, source=None, volume=None, aggressiveness=None,
                 model_dir=None, lang=None, config=CONFIG):
        EventEmitter.__init__(self)
        self.config = config

        # ensure default values
        for k in CONFIG["listener"]:
            if k not in self.config["listener"]:
                self.config["listener"][k] = CONFIG["listener"][k]

        volume = volume or self.config["listener"]["default_volume"]
        aggressiveness = aggressiveness or self.config["listener"][
            "default_aggressiveness"]
        model_dir = model_dir or self.config["listener"]["default_model_dir"]
        self.lang = lang or self.config["lang"]
        if "-" in self.lang:
            self.lang = self.lang.split("-")[0]

        if "{lang}" in model_dir:
            model_dir = model_dir.format(lang=self.lang)

        if not isfile(model_dir):
            if model_dir in self._default_models:
                logging.error("you need to install the package: "
                              "kaldi-chain-zamia-speech-{lang}".format(
                    lang=self.lang))
            raise ModelNotFound

        self.rec = PulseRecorder(source_name=source, volume=volume)
        self.vad = VAD(aggressiveness=aggressiveness)
        logging.info("Loading model from %s ..." % model_dir)

        self.asr = ASR(engine=ASR_ENGINE_NNET3, model_dir=model_dir,
                       kaldi_beam=self.config["listener"]["default_beam"],
                       kaldi_acoustic_scale=self.config["listener"][
                           "default_acoustic_scale"],
                       kaldi_frame_subsampling_factor=self.config["listener"][
                           "default_frame_subsampling_factor"])
        self._hotwords = dict(self.config["hotwords"])

    def add_hotword(self, name, config=None):
        config = config or {"transcriptions": [name], "intent": name}
        self._hotwords[name] = config

    def remove_hotword(self, name):
        if name in self._hotwords.keys():
            self._hotwords.pop(name)

    @property
    def hotwords(self):
        return self._hotwords

    def _detection_event(self, message_type, message_data):
        serialized_message = json.dumps(
            {"type": message_type, "data": message_data})
        logging.debug(serialized_message)
        self.emit(message_type, serialized_message)

    def _process_transcription(self, user_utt, confidence=0.99):
        for hotw in self.hotwords:
            if not self.hotwords[hotw].get("active"):
                continue
            rule = self.hotwords[hotw].get("rule", "sensitivity")
            s = 1 - self.hotwords[hotw].get("sensitivity", 0.2)
            confidence = (confidence + s) / 2
            for w in self.hotwords[hotw]["transcriptions"]:

                if (w in user_utt and rule == "in") or \
                        (user_utt.startswith(w) and rule == "start") or \
                        (user_utt.endswith(w) and rule == "end") or \
                        (fuzzy_match(w,
                                     user_utt) >= s and rule == "sensitivity") or \
                        (w == user_utt and rule == "equal"):
                    yield {"hotword": hotw,
                           "utterance": user_utt,
                           "confidence": confidence,
                           "intent": self.hotwords[hotw]["intent"]}

    def _detect_ww(self, user_utt, confidence=0.99):
        for hw_data in self._process_transcription(user_utt, confidence):
            sound = self.hotwords[hw_data["hotword"]].get("sound")
            if sound and isfile(sound):
                play_sound(sound)
            self._detection_event("hotword", hw_data)

    def decode_wav_file(self, wav_file):
        user_utt, confidence = self.asr.decode_wav_file(wav_file)
        confidence = 1 - exp(-1 * confidence)
        return user_utt, confidence

    def wav_file_hotwords(self, wav_file):
        user_utt, confidence = self.decode_wav_file(wav_file)
        return list(self._process_transcription(user_utt, confidence))

    def run(self):

        self.rec.start_recording()
        logging.info("Listening")

        while True:

            samples = self.rec.get_samples()

            audio, finalize = self.vad.process_audio(samples)

            if not audio:
                continue

            logging.debug('decoding audio len=%d finalize=%s audio=%s' % (
                len(audio), repr(finalize), audio[0].__class__))

            user_utt, confidence = self.asr.decode(audio, finalize,
                                                   stream_id="mic")
            confidence = 1 - exp(-1 * confidence)
            if finalize and user_utt:
                self._detection_event("transcription",
                                      {"utterance": user_utt,
                                       "confidence": confidence})
                self._detect_ww(user_utt, confidence)
Beispiel #2
0
 def test_asr_kaldi_wavefile(self):
     asr = ASR(engine=ASR_ENGINE_NNET3)
     s, l = asr.decode_wav_file(TEST_WAVE_EN)
     self.assertEqual(s.strip(), TEST_WAVE_EN_TS)
Beispiel #3
0
#!/usr/bin/env python3
from nltools.asr import ASR

MODELDIR = '/opt/kaldi/model/kaldi-generic-en-tdnn_250'
WAVFILE = 'dw961.wav'

asr = ASR(model_dir=MODELDIR)

s, l = asr.decode_wav_file(WAVFILE)
print("Decoded %s: %s" % (WAVFILE, s))
Beispiel #4
0
 def test_asr_pocketsphinx_wavefile(self):
     asr = ASR(engine=ASR_ENGINE_POCKETSPHINX,
               model_dir=POCKETSPHINX_MODELDIR,
               model_name=POCKETSPHINX_MODELNAME)
     s, l = asr.decode_wav_file(TEST_WAVE_EN)
     self.assertEqual(s.strip(), TEST_WAVE_EN_TS_PS)