mode_frequencies = defaultdict(list)
    modes_p_v = defaultdict(list)
    
    ENERGY_LABEL = "$\Delta$ U"
    RMSD_LABEL = "RMSD"
    nmd_file_name = {"CC":"normalized_modes.1.nmd", 
                     "IC":"normalized_modes_cc.1.nmd"}
    
    v1s = []
    v2s = []
    for (p1,v1),(p2,v2) in pair_parameter_values(experiment_details["check"], experiment_details["parameter_values"]):
        v1s.append(v1)
        v2s.append(v2)
        
        folder_name = "%s_%s_%s_%s_%s"%(experiment_details["prefix"],
                                            experiment_details["parameter_abbv"][p1], parameter_value_to_string(v1),
                                            experiment_details["parameter_abbv"][p2], parameter_value_to_string(v2))
        
        if experiment_details["prefix"] == "CC":
            raw_data, data_len = load_cc_data(os.path.join(workspace, 
                                                          folder_name,
                                                          options.folder),
                                             full_pele_energy = False,
                                             skip_first = 15)
        
        if experiment_details["prefix"] == "IC":
            raw_data, data_len = load_ic_data(os.path.join(workspace, 
                                                          folder_name,
                                                          options.folder),
                                             skip_first = 15)
    step_granularity = 100
    max_samples = 1000

    if options.data is None:
        acceptances = {}
        rmsf = {}
        rmsd = {}
        rmsf_ref = numpy.loadtxt(options.rmsf_ref)[:-1]
        for dataset in datasets:
            acceptances[dataset["prefix"]] = {}
            rmsf[dataset["prefix"]] = {}
            rmsd[dataset["prefix"]] = {}
            for T, v1, v2 in dataset["parameters"]:
                folder_name = "%s_%s_%s_%s_%s" % (
                    dataset["prefix"], "dispFact",
                    parameter_value_to_string(v1), "rmsg",
                    parameter_value_to_string(v2))
                main_folder = "%s_%d" % (dataset["prefix"], T)
                data_folder = os.path.join(dataset["source_folder"],
                                           main_folder, dataset["workspace"],
                                           folder_name, "info")

                print data_folder
                if dataset["prefix"] == "CC":

                    raw_data, min_len = load_data(
                        data_folder,
                        "perturb_energy_before.log",
                        "final_energy.log",  # Energy of the whole step
                        "initial_cc.log",
                        "after_minimization_cc.log",
    cutoff_keys = []
    for (p1, v1), (p2, v2) in pair_parameter_values(
            experiment_details["check"],
            experiment_details["parameter_values"]):
        for sim_type in ["CC", "IC", "IC_FULL"]:
            if p1 == "prot":
                prot_keys.append(v1)
                cutoff_keys.append(v2)
                key = (v1, v2)
            else:
                prot_keys.append(v2)
                cutoff_keys.append(v1)
                key = (v2, v1)
            folder_name = "%s_%s_%s_%s_%s" % (
                prefixes[sim_type], experiment_details["parameter_abbv"][p1],
                parameter_value_to_string(v1),
                experiment_details["parameter_abbv"][p2],
                parameter_value_to_string(v2))

            rev_folder_name = "%s_%s_%s_%s_%s" % (
                prefixes[sim_type], experiment_details["parameter_abbv"][p2],
                parameter_value_to_string(v2),
                experiment_details["parameter_abbv"][p1],
                parameter_value_to_string(v1))

            nmd_file_path = os.path.join(workspace_folder[sim_type],
                                         folder_name, "info",
                                         nmd_file_name[sim_type])
            rev_nmd_file_path = os.path.join(workspace_folder[sim_type],
                                             rev_folder_name, "info",
                                             nmd_file_name[sim_type])
Beispiel #4
0
        for p1_key in p1_keys:
            #Choose all elements with p1 key
            p1_indices = df[plot_using[0]] == p1_key
            for p2_key in p2_keys:
                p2_indices = df[plot_using[1]] == p2_key
                subdf = df.loc[p1_indices].loc[p2_indices]
                x, y = subdf.T.loc[average_by[0]].mean(), subdf.T.loc[
                    average_by[1]].mean()
                x_err, y_err = subdf.T.loc[average_by[0]].std(), subdf.T.loc[
                    average_by[1]].std()
                xs.append(x)
                ys.append(y)
                xs_std.append(x_err)
                ys_std.append(y_err)

                labels.append("%s %s" % (parameter_value_to_string(p1_key),
                                         parameter_value_to_string(p2_key)))
        plt.scatter(xs, ys, marker='o', c=colors[i], label=plt_labels[folder])
        #         plt.errorbar(xs, ys, xerr=xs_std, yerr=ys_std, linestyle="None", c = colors[i])
        for label, x, y in zip(labels, xs, ys):
            plt.annotate(label,
                         xy=(x, y),
                         xytext=(5, 5),
                         textcoords='offset points',
                         ha='right',
                         va='bottom',
                         size=6)
    plt.xlabel(RMSD_LABEL)
    plt.ylabel(ENERGY_LABEL)
    lgd = plt.legend()  #(loc='upper center', ncol=4)
    plt.show()