def print_field():
    for i in range(1, 299):
        x = i * 0.01
        probed = mag.probe([x])
        m_y_fe = 0.0
        m_y_dy = 0.0
        if len(probed) == 2:
            m_y_fe = probed[1][1][1]
            m_y_dy = probed[0][1][1]
        elif len(probed) == 1:
            m_y_fe = probed[0][1][1]
        print "EDATA ", x, m_y_fe, m_y_dy


for i in range(1, 200):
    #mag.advance_time([0.0,0.5,0.0],time=0.4) # apply an external field in +y direction
    mag.advance_time([0.0, 2.5, 0.0], steps=1000)
    print "Total magnetization(%d): " % i, mag.integrate()
    print "Energy(%d):" % i, mag.total_energy()

    nfem.visual.fields2vtkfile([mag.default_simulation_context.field_M],
                               'data%05d.vtk' % i,
                               mesh=mag.default_simulation_context.mesh)
    sys.stdout.flush()

print_field()

# ../bin/nsim exchange-spring-ord2.py | perl -ne 'BEGIN{open F, ">ord2.gdata"}END{close F} m/^EDATA (.*)/ and print F "$1\n"'
# nfem.visual.fields2vtkfile([mag.default_simulation_context.field_M],'data%05d.vtk' % 0,mesh=mag.default_simulation_context.mesh)

def print_field():
    for i in range(1,299):
        x=i*0.01
        probed=mag.probe([x])
        m_y_fe = 0.0
        m_y_dy = 0.0
        if len(probed)==2:
            m_y_fe=probed[1][1][1]
            m_y_dy=probed[0][1][1]
        elif len(probed)==1:
            m_y_fe=probed[0][1][1]
        print "EDATA ",x,m_y_fe,m_y_dy

for i in range(1,400):
    #mag.advance_time([0.0,0.5,0.0],time=0.4) # apply an external field in +y direction
    mag.advance_time([0.0,2.5,0.0],steps=1000)
    print "Total magnetization(%d): " % i, mag.integrate()
    print "Energy(%d):" %i,mag.total_energy()
    
    # nfem.visual.fields2vtkfile([mag.default_simulation_context.field_M],'data%05d.vtk' % i,mesh=mag.default_simulation_context.mesh)
    sys.stdout.flush()

    # nfem.field_entry_wise(mag.default_simulation_context.field_m,debugprint) # so that we have all the sites

print_field()


# ../bin/nsim exchange-spring-ord2.py | perl -ne 'BEGIN{open F, ">ord2.gdata"}END{close F} m/^EDATA (.*)/ and print F "$1\n"'
Beispiel #3
0
    if dir == 0:
        return math.cos(coords[0])
    elif dir == 1:
        return math.sin(coords[0])
    else:
        return 0


mag.set_magnetization([1.0, 0.0, 0.0])  # may also provide a function here!

#mag.set_magnetization(initial_M) # may also provide a function here!

# NOTE: set_magnetization should also be able
# to take just a constant vector as an argument.

print "Total magnetization: ", mag.integrate()

f = open("data.dat", "w")

import nfem
import nfem.visual

frame = 0

rejected = 0
accepted = 0

last_T = 0

for n in range(1, 5000):
    time, status = mag.default_simulation_context.timestepper.advance_time(
Beispiel #4
0
def initial_M(dof_name,coords):
    dir=dof_name[1][0]
    if dir==0:
        return math.cos(coords[0])
    elif dir==1:
        return math.sin(coords[0])
    else: return 0
    
mag.set_magnetization([1.0,0.0,0.0]) # may also provide a function here!

#mag.set_magnetization(initial_M) # may also provide a function here!

# NOTE: set_magnetization should also be able
# to take just a constant vector as an argument.

print "Total magnetization: ", mag.integrate()

f=open("data.dat","w")

import nfem
import nfem.visual


frame = 0

rejected = 0
accepted = 0

last_T = 0

for n in range(1,5000):
Beispiel #5
0
mag.create_mesh()


def initial_M(dof_name, coords):
    dir = dof_name[1][0]
    if dir == 0:
        return math.cos(coords[0])
    elif dir == 1:
        return math.sin(coords[0])
    else:
        return 0


#mag.set_magnetization([1.0,0.0,0.0]) # may also provide a function here!

mag.set_magnetization(initial_M)  # may also provide a function here!

# NOTE: set_magnetization should also be able
# to take just a constant vector as an argument.

print "Total magnetization: ", mag.integrate()

# XXXDDDXXXDDD
for n in range(1, 100):
    print "T=", mag.default_simulation_context.timestepper.advance_time(
        [0.0, 0.0, 0.0, 0.0, 0.0])
    # this needs the intensive params!

# time.sleep(1000) # so we do not lose the dynamically generated C code...
Beispiel #6
0
# mag.defregion("Ball 1",nm.shifted([-3,0,0],sphere))
# mag.defregion("Ball 2",nm.shifted([ 3,0,0],sphere))

mag.set_meshing_parameters(cache_name="two-balls")

mag.create_mesh()

def initial_M(dof_name,coords):
    dir=dof_name[1][0]
    if dir==0:
        return math.cos(coords[0])
    elif dir==1:
        return math.sin(coords[0])
    else: return 0
    
#mag.set_magnetization([1.0,0.0,0.0]) # may also provide a function here!

mag.set_magnetization(initial_M) # may also provide a function here!

# NOTE: set_magnetization should also be able
# to take just a constant vector as an argument.

print "Total magnetization: ", mag.integrate()

# XXXDDDXXXDDD
for n in range(1,100):
    print "T=",mag.default_simulation_context.timestepper.advance_time([0.0,0.0,0.0,0.0,0.0])
    # this needs the intensive params!

# time.sleep(1000) # so we do not lose the dynamically generated C code...