Beispiel #1
0
def compute(exp_name):
    # type: (str) -> None

    cnf = Conf(exp_name=exp_name)

    # init Code Predictor
    predictor = CodePredictor()  # type: BaseModel
    predictor.to(cnf.device)
    predictor.eval()
    predictor.requires_grad(False)
    predictor.load_w(cnf.exp_log_path / 'best.pth')

    # init Decoder
    autoencoder = Autoencoder()  # type: BaseModel
    autoencoder.to(cnf.device)
    autoencoder.eval()
    autoencoder.requires_grad(False)
    autoencoder.load_w(Path(__file__).parent / 'models/weights/vha.pth')

    # init Hole Filler
    hole_filler = Refiner(pretrained=True)
    hole_filler.to(cnf.device)
    hole_filler.eval()
    hole_filler.requires_grad(False)
    hole_filler.load_w(
        Path(__file__).parent / 'models/weights/pose_refiner.pth')

    # init data loader
    ts = JTATestingSet(cnf=cnf)
    loader = DataLoader(dataset=ts, batch_size=1, shuffle=False, num_workers=0)

    metrics_dict = {}
    for th in THS:
        for key in ['pr', 're', 'f1']:
            metrics_dict[f'{key}@{th}'] = []  # without refinement
            metrics_dict[f'{key}@{th}+'] = []  # with refinement

    for step, sample in enumerate(loader):

        x, coords3d_true, fx, fy, cx, cy, frame_path = sample
        x = x.to(cnf.device)
        coords3d_true = json.loads(coords3d_true[0])
        fx, fy, cx, cy = fx.item(), fy.item(), cx.item(), cy.item()

        # image --> [code_predictor] --> code
        code_pred = predictor.forward(x).unsqueeze(0)

        # code --> [decoder] --> hmap
        hmap_pred = autoencoder.decode(code_pred).squeeze()

        # hmap --> [local maxima search] --> pseudo-3D coordinates
        coords2d_pred = []
        confs = []
        for jtype, hmp in enumerate(hmap_pred.squeeze()):
            res = nms3d_cuda.NMSFilter3d(nn.ConstantPad3d(1, 0)(hmp), 3, 1)
            nz = torch.nonzero(res).cpu()
            for el in nz:
                confid = res[tuple(el)]
                if confid > 0.1:
                    coords2d_pred.append(
                        (jtype, el[0].item(), el[1].item(), el[2].item()))
                    confs.append(confid.cpu())

        # pseudo-3D coordinates --> [to_3d] --> real 3D coordinates
        coords3d_pred = []
        for i in range(len(coords2d_pred)):
            joint_type, cam_dist, y2d, x2d = coords2d_pred[i]
            x2d, y2d, cam_dist = utils.rescale_to_real(x2d,
                                                       y2d,
                                                       cam_dist,
                                                       q=cnf.q)
            x3d, y3d, z3d = utils.to3d(x2d,
                                       y2d,
                                       cam_dist,
                                       fx=fx,
                                       fy=fy,
                                       cx=cx,
                                       cy=cy)
            coords3d_pred.append((joint_type, x3d, y3d, z3d))

        # real 3D coordinates --> [association] --> list of poses
        poses = coords_to_poses(coords3d_pred, confs)

        # a solitary joint is a joint that has been excluded from the association
        # process since no valid connection could be found;
        # note that only solitary joints with a confidence value >0.6 are considered
        all_pose_joints = []
        for pose in poses:
            all_pose_joints += [(j.type, j.confidence, j.x3d, j.y3d, j.z3d)
                                for j in pose]
        coords3d_pred_ = [(c[0], confs[k], c[1], c[2], c[3])
                          for k, c in enumerate(coords3d_pred)]
        solitary = [(s[0], s[2], s[3], s[4])
                    for s in (set(coords3d_pred_) - set(all_pose_joints))
                    if s[1] > 0.6]

        # list of poses --> [hole filler] --> refined list of poses
        refined_poses = []
        for person_id, pose in enumerate(poses):
            confidences = [j.confidence for j in pose]
            pose = [(joint.type, joint.x3d, joint.y3d, joint.z3d)
                    for joint in pose]
            refined_pose = hole_filler.refine(pose=pose,
                                              hole_th=0.2,
                                              confidences=confidences,
                                              replace_th=1)
            refined_poses.append(refined_pose)

        # refined list of poses --> [something] --> refined_coords3d_pred
        refined_coords3d_pred = []
        for pose in refined_poses:
            refined_coords3d_pred += pose

        # compute metrics without refinement
        for th in THS:
            __m = joint_det_metrics(points_pred=coords3d_pred,
                                    points_true=coords3d_true,
                                    th=th)
            for key in ['pr', 're', 'f1']:
                metrics_dict[f'{key}@{th}'].append(__m[key])

        # compute metrics with refinement
        for th in THS:
            __m = joint_det_metrics(points_pred=refined_coords3d_pred +
                                    solitary,
                                    points_true=coords3d_true,
                                    th=th)
            for key in ['pr', 're', 'f1']:
                metrics_dict[f'{key}@{th}+'].append(__m[key])

        # print test progress
        print(f'\r>> processing test image {step} of {len(loader)}', end='')

    print('\r', end='')
    for th in THS:
        print(f'(PR, RE, F1)@{th}:'
              f'\tno_ref=('
              f'{np.mean(metrics_dict[f"pr@{th}"]) * 100:.2f}, '
              f'{np.mean(metrics_dict[f"re@{th}"]) * 100:.2f}, '
              f'{np.mean(metrics_dict[f"f1@{th}"]) * 100:.2f})'
              f'\twith_ref=('
              f'{np.mean(metrics_dict[f"pr@{th}+"]) * 100:.2f}, '
              f'{np.mean(metrics_dict[f"re@{th}+"]) * 100:.2f}, '
              f'{np.mean(metrics_dict[f"f1@{th}+"]) * 100:.2f}) ')
Beispiel #2
0
def results(cnf):
    # type: (Conf) -> None
    """
    Shows a visual representation of the obtained results
    using the test set images as input
    """

    # init Code Predictor
    code_predictor = CodePredictor()
    code_predictor.to(cnf.device)
    code_predictor.eval()
    code_predictor.requires_grad(False)
    code_predictor.load_w(f'log/{cnf.exp_name}/best.pth')

    # init Decoder
    autoencoder = Autoencoder(pretrained=True)
    autoencoder.to(cnf.device)
    autoencoder.eval()
    autoencoder.requires_grad(False)

    # init Hole Filler
    refiner = Refiner(pretrained=True)
    # refiner.to(cnf.device)
    refiner.eval()
    refiner.requires_grad(False)

    # init data loader
    ts = JTAValidationSet(cnf=cnf)
    loader = DataLoader(dataset=ts, batch_size=1, shuffle=False, num_workers=0)

    for step, sample in enumerate(loader):

        x, _, fx, fy, cx, cy, frame_path = sample

        x = x.to(cnf.device)
        fx, fy, cx, cy = fx.item(), fy.item(), cx.item(), cy.item()

        # image --> [code_predictor] --> code
        code_pred = code_predictor.forward(x).unsqueeze(0)

        # code --> [decode] --> hmap
        hmap_pred = autoencoder.decode(code_pred).squeeze()

        # hmap --> [local maxima search with cuda kernel] --> pseudo-3D coordinates
        pseudo3d_coords_pred = []
        confidences = []
        for jtype, hmp in enumerate(hmap_pred):
            suppressed_hmap = nms3d_cuda.NMSFilter3d(
                torch.nn.ConstantPad3d(1, 0)(hmp), 3, 1)
            nonzero_coords = torch.nonzero(suppressed_hmap).cpu()
            for coord in nonzero_coords:
                confidence = suppressed_hmap[tuple(coord)]
                if confidence > cnf.nms_th:
                    pseudo3d_coords_pred.append(
                        (jtype, coord[0].item(), coord[1].item(),
                         coord[2].item()))
                    confidences.append(confidence.cpu())

        # pseudo-3D coordinates --> [reverse projection] --> real 3D coordinates
        coords3d_pred = []
        for i in range(len(pseudo3d_coords_pred)):
            joint_type, cam_dist, y2d, x2d = pseudo3d_coords_pred[i]
            x2d, y2d, cam_dist = utils.rescale_to_real(x2d,
                                                       y2d,
                                                       cam_dist,
                                                       q=cnf.q)
            x3d, y3d, z3d = utils.to3d(x2d,
                                       y2d,
                                       cam_dist,
                                       fx=fx,
                                       fy=fy,
                                       cx=cx,
                                       cy=cy)
            coords3d_pred.append((joint_type, x3d, y3d, z3d))
        filter_joints(coords3d_pred, duplicate_th=0.05)

        # real 3D coordinates --> [association] --> list of poses
        poses = joint_association(coords3d_pred)

        # 3D poses -> [refiner] -> refined 3D poses
        refined_poses = []
        for _pose in poses:
            refined_pose = refine_pose(pose=_pose, refiner=refiner)
            if refined_pose is not None:
                refined_poses.append(refined_pose)

        # show output
        print(f'\n\t▶▶ Showing results of \'{frame_path[0]}\'')
        print(f'\t▶▶ It may take some time: please wait')
        print(f'\t▶▶ Close mayavi window to continue')
        show_poses(refined_poses)
Beispiel #3
0
def results(cnf):
    # type: (Conf) -> None
    """
    Shows a visual representation of the obtained results
    using the test set images as input
    """

    # init Code Predictor
    code_predictor = CodePredictor()
    code_predictor.to(cnf.device)
    code_predictor.eval()
    code_predictor.requires_grad(False)
    code_predictor.load_w(f'log/{cnf.exp_name}/best.pth')

    # init Decoder
    autoencoder = Autoencoder(pretrained=True)
    autoencoder.to(cnf.device)
    autoencoder.eval()
    autoencoder.requires_grad(False)

    # init Hole Filler
    refiner = Refiner(pretrained=True)
    refiner.to(cnf.device)
    refiner.eval()
    refiner.requires_grad(False)

    # init data loader
    ts = JTATestSet(cnf=cnf)
    loader = DataLoader(dataset=ts, batch_size=1, shuffle=False, num_workers=0)

    for step, sample in enumerate(loader):

        x, _, fx, fy, cx, cy, frame_path = sample

        x = x.to(cnf.device)
        fx, fy, cx, cy = fx.item(), fy.item(), cx.item(), cy.item()

        # image --> [code_predictor] --> code
        code_pred = code_predictor.forward(x).unsqueeze(0)

        # code --> [decode] --> hmap
        hmap_pred = autoencoder.decode(code_pred).squeeze()

        # hmap --> [local maxima search] --> pseudo-3D coordinates
        # coords2d_pred, confs = utils.local_maxima_3d(hmap_pred, threshold=0.2, device=cnf.device, ret_confs=True)

        # hmap --> [local maxima search with cuda kernel] --> pseudo-3D coordinates
        coords2d_pred = []
        confs = []
        for jtype, hmp in enumerate(hmap_pred):
            res = nms3d_cuda.NMSFilter3d(
                torch.nn.ConstantPad3d(1, 0)(hmp), 3, 1)
            nz = torch.nonzero(res).cpu()
            for el in nz:
                confid = res[tuple(el)]
                if confid > 0.1:
                    coords2d_pred.append(
                        (jtype, el[0].item(), el[1].item(), el[2].item()))
                    confs.append(confid.cpu())

        # pseudo-3D coordinates --> [to_3d] --> real 3D coordinates
        coords3d_pred = []
        for i in range(len(coords2d_pred)):
            joint_type, cam_dist, y2d, x2d = coords2d_pred[i]
            x2d, y2d, cam_dist = utils.rescale_to_real(x2d, y2d, cam_dist)
            x3d, y3d, z3d = utils.to3d(x2d,
                                       y2d,
                                       cam_dist,
                                       fx=fx,
                                       fy=fy,
                                       cx=cx,
                                       cy=cy)
            coords3d_pred.append((joint_type, x3d, y3d, z3d))

        # real 3D coordinates --> [association] --> list of poses
        poses = coords_to_poses(coords3d_pred, confs)

        # list of poses ---> [pose refiner] ---> refined list of poses
        refined_poses = []
        for person_id, pose in enumerate(poses):
            confidences = [j.confidence for j in pose]
            pose = [(joint.type, joint.x3d, joint.y3d, joint.z3d)
                    for joint in pose]
            refined_pose = refiner.refine(pose=pose,
                                          hole_th=0.2,
                                          confidences=confidences,
                                          replace_th=1)
            refined_poses.append(refined_pose)

        # show input
        img = cv2.imread(frame_path[0])
        cv2.imshow('input image', img)

        # show output
        show_poses(refined_poses)