Beispiel #1
0
 def __init__(self, *args, **kwargs):
     """ Constructor. """
     super(NNVisualiseTestCase, self).__init__(*args, **kwargs)
     self.cnns = generate_cnn_architectures()
     self.mlps_reg = generate_mlp_architectures('reg')
     self.mlps_class = generate_mlp_architectures('class')
     self.save_dir = '../scratch/unittest_visualisations/'
     self.save_dir_for_pres = '../scratch/unittest_visualisations_for_pres/'
Beispiel #2
0
 def test_mlp_distance_computation(self):
     """ Tests the computation of the distance for CNNs. """
     self.report('Testing distance computation for specific mlps.')
     # Create the transport computation object
     mlp_layer_labels, label_mismatch_penalty = \
       nn_comparators.get_mlp_layer_label_mismatch_penalties(self.non_assignment_penalty,
                                                             'reg')
     mlp_tp_comp = nn_comparators.OTMANNDistanceComputer(
         mlp_layer_labels,
         label_mismatch_penalty,
         self.non_assignment_penalty,
         nn_comparators.MLP_STRUCTURAL_PENALTY_GROUPS,
         nn_comparators.PATH_LENGTH_TYPES,
         dflt_mislabel_coeffs=1.0,
         dflt_struct_coeffs=1.0)
     # Create the mlp architectures
     mlps = generate_mlp_architectures()
     struct_coeffs = [0.1, 0.2]
     dist_types = ['lp-emd', 'lp', 'emd']
     mislabel_coeffs = [1.0] * len(struct_coeffs)
     self.report(
         'Testing distance computation for specific mlps with default coeffs.'
     )
     self._test_dist_comp_for_single_conn_coeff(mlps, dist_types,
                                                mlp_tp_comp)
     self.report(
         'Testing distance computation for specific mlps with conn_coeffs=%s.'
         % (struct_coeffs))
     self._test_dist_comp_for_multiple_coeffs(mlps, dist_types,
                                              mislabel_coeffs,
                                              struct_coeffs, mlp_tp_comp)
 def test_call_with_list(self):
     """ Tests the __call__ function with a single input of the modifier. """
     self.report('Testing the __call__ function with a list of inputs.')
     num_modifications = 40
     num_steps_probs = [0.5, 0.25, 0.125, 0.075, 0.05]
     save_dir = os.path.join(self.save_dir, 'modifier_call_list')
     if os.path.exists(save_dir):
         rmtree(save_dir)
     test_probs = [
         self.cnns, self.mlps,
         generate_mlp_architectures('class')
     ]
     for idx, prob in enumerate(test_probs):
         save_prefix = str(idx)
         modifier = self.modifier_wo_cc
         modifications = modifier(prob, num_modifications, num_steps_probs)
         for new_idx, new_nn in enumerate(modifications):
             assert isinstance(new_nn, NeuralNetwork)
             visualise_nn(
                 new_nn,
                 os.path.join(save_dir, '%s_%d' % (save_prefix, new_idx)))
         self.report(
             'With list of %d nns(%s):: #new-networks: %d.' %
             (len(prob), prob[0].nn_class, len(modifications)),
             'test_result')
 def __init__(self, *args, **kwargs):
   """ Constructor. """
   super(NNConstraintCheckerTestCase, self).__init__(*args, **kwargs)
   self.nns = generate_cnn_architectures() + generate_mlp_architectures()
   self.cnn_constraint_checker = nn_constraint_checkers.CNNConstraintChecker(
     25, 5, 500000, 0, 5, 2, 15, 512, 16, 4)
   self.mlp_constraint_checker = nn_constraint_checkers.MLPConstraintChecker(
     25, 5, 500000, 900, 5, 2, 15, 30, 8)
 def __init__(self, *args, **kwargs):
     """ Constructor. """
     super(NNModifierTestCase, self).__init__(*args, **kwargs)
     self.cnns = generate_cnn_architectures()
     self.mlps = generate_mlp_architectures()
     self.save_dir = '../scratch/unittest_modifier_class/'
     self.cnn_constraint_checker = nn_constraint_checkers.CNNConstraintChecker(
         50, 4, np.inf, 4.0, 5, 5, 100, 8000, 8)
     self.mlp_constraint_checker = nn_constraint_checkers.MLPConstraintChecker(
         50, 4, np.inf, 4.0, 5, 5, 100, 8000, 8)
     self.cnn_modifier = nn_modifiers.NNModifier(
         self.cnn_constraint_checker)
     self.mlp_modifier = nn_modifiers.NNModifier(
         self.mlp_constraint_checker)
     self.modifier_wo_cc = nn_modifiers.NNModifier(None)
Beispiel #6
0
 def __init__(self, *args, **kwargs):
     """ Constructor. """
     super(DistSumNNKernelTestCase, self).__init__(*args, **kwargs)
     self.non_assignment_penalty = 1
     mlp_layer_labels, label_mismatch_penalty = \
       nn_comparators.get_mlp_layer_label_mismatch_penalties(self.non_assignment_penalty,
                                                             'reg')
     self.all_layer_labels = mlp_layer_labels
     self.label_mismatch_penalty = label_mismatch_penalty
     self.tp_comp = nn_comparators.OTMANNDistanceComputer(
         mlp_layer_labels, label_mismatch_penalty,
         self.non_assignment_penalty,
         nn_comparators.MLP_STRUCTURAL_PENALTY_GROUPS,
         nn_comparators.PATH_LENGTH_TYPES)
     self.mislabel_coeffs = [2.0, 2.0, 1.0, 1.0, 1.0]
     self.struct_coeffs = [0.25, 0.5, 1.0, 2.0, 4.0]
     self.lp_betas = [1e-6] * len(self.struct_coeffs)
     self.emd_betas = [1] * len(self.struct_coeffs)
     self.mlps = generate_mlp_architectures()