Beispiel #1
0
def main():
    args = parse_args()

    if len(args.x_path) > 1:
        x = data.load_multiple(args.x_path)
    else:
        x = data.load_data(args.x_path[0])
    if len(args.y_path) > 1:
        y = data.load_multiple(args.y_path)
    else:
        y = data.load_data(args.y_path[0])
    assert len(x) == len(y)
    p = np.random.permutation(len(x))
    x, y = x[p], y[p]

    # Scale images
    xmax = x.max()
    ymax = y.max()
    print('x_max: {}, y_max: {}'.format(xmax, ymax))
    x /= xmax
    y /= ymax

    if not os.path.isdir(args.save_dir):
        os.makedirs(args.save_dir)
    np.save(os.path.join(args.save_dir, 'xymax.npy'), np.array([xmax, ymax]))

    if args.model is None:
        model = nn.build(feat_maps=args.feat_maps,
                         growth_rate=args.growth_rate,
                         blocks=args.blocks,
                         dropout=args.dropout,
                         reduction=args.reduction,
                         bottleneck=args.bottleneck)
    else:
        model = keras.models.load_model(args.model,
                                        custom_objects={'npcc': nn.npcc})
    nn.train(model,
             x,
             y,
             args.save_dir,
             batch_size=args.batch_size,
             max_epochs=args.epochs,
             validation_split=args.validation_split,
             patience=args.patience,
             lr0=args.learning_rate,
             decay=args.decay)

    if args.x_test_path is not None and args.y_test_path is not None:
        x_test = data.load_data(args.x_test_path)
        y_test = data.load_data(args.y_test_path)
        assert len(x_test) == len(y_test)
        x_test /= xmax
        y_test /= ymax
        test_loss = model.evaluate(x_test, y_test)
        print('Test loss:', test_loss)
Beispiel #2
0
def updateQ():
    global trainingStarted
    global totalEpisodes
    if (trainingStarted):
        X = []
        Y = []
        newlist = random.sample(replaymemory, batchSize)

        for i in range(0, len(newlist)):
            state, action, nextState, reward = newlist[i]
            y = reward + gamma * bestQ(nextState)
            X.append(encodeInput(state, action))
            Y.append(y)
        if totalEpisodes == 1:
            nn.train(model, X, Y)
Beispiel #3
0
def train(train_x, train_y):
    ''' this is a function to train all classifiers '''
    tree_start = time.time()
    tree_clf = tree.train(train_x, train_y)
    print('Decision Tree - Training Time: ', round(time.time() - tree_start,
                                                   3), 's')

    svm_start = time.time()
    svm_clf = svm.train(train_x, train_y)
    print('SVM - Training Time: ', round(time.time() - svm_start, 3), 's')

    knn_start = time.time()
    knn_clf = knn.train(train_x, train_y)
    print('k-NN - Training Time: ', round(time.time() - knn_start, 3), 's')

    nn_start = time.time()
    nn_clf = nn.train(train_x, train_y)
    print('Neural Network - Training Time: ', round(time.time() - nn_start, 3),
          's')

    boost_start = time.time()
    boost_clf = boost.train(train_x, train_y)
    print('Boosted Tree - Training Time: ', round(time.time() - boost_start,
                                                  3), 's')

    return [tree_clf, svm_clf, knn_clf, nn_clf, boost_clf]
Beispiel #4
0
def trainModels(train,
                groundtruth,
                name,
                useDistance=False,
                useNeighbours=False,
                usePatch=False,
                layers=[10, 5, 1],
                k=5):

    n = len(train) // k

    for i in range(k):
        out_path = local_folder + "pixelwise/models/" + name + "_" + str(
            i) + ".h5"
        if not os.path.isfile(out_path):

            print("Training model...", name, i)

            (XX, YY) = getXX_YY(train, groundtruth, i, n, useDistance,
                                useNeighbours, usePatch)

            model = nn.train(XX, YY, layers)
            model.save(out_path)

            del model
            del XX
            del YY
Beispiel #5
0
def train(folds_x, folds_y):
    ''' this is a function to train all classifiers '''
    tree_clf = tree.train(folds_x, folds_y)
    svm_clf = svm.train(folds_x, folds_y)
    knn_clf = knn.train(folds_x, folds_y)
    nn_clf = nn.train(folds_x, folds_y)
    boost_clf = boost.train(folds_x, folds_y)

    return [tree_clf, svm_clf, knn_clf, nn_clf, boost_clf]  #
def main():
    # Setup matplotlib
    x_bounds = [-10, 10]
    y_bounds = [-10, 10]

    x_bounds = [-10, 10]
    y_bounds = [-10, 10]

    fig = plt.figure(figsize=(8, 8))
    ax = fig.add_subplot(111)
    ax.set_xlim(x_bounds)
    ax.set_ylim(y_bounds)
    ax.set_aspect('equal')

    # Setup and train the neural net
    training_sample_size = 500000
    test_sample_size = 10

    print("Generating training data...")
    # TODO This could be more efficient
    train_data = generate_box_samples_fast(training_sample_size, x_bounds,
                                           y_bounds)
    test_data = generate_box_samples_fast(test_sample_size, x_bounds, y_bounds)

    # TODO test data should be from a different part of the plane to make sure we are generalizing

    print("Done.")

    # Layer sizes
    vec_size = len(train_data[0])
    assert vec_size == 8
    layer_widths = [vec_size, 200, 3, 200, vec_size]

    # Optimization hyperparameters
    param_scale = 0.1  #??
    batch_size = 512  # TODO does batch size effect learning rate?
    num_epochs = 20
    step_size = 0.01

    params = nn.init_params(layer_widths, param_scale)

    print("Training")
    params = nn.train(train_data, test_data, layer_widths, step_size,
                      num_epochs, batch_size)
    with open("./models/my-nn-model.bin", 'wb') as f:
        np.save(f, params)
    print("Done.")

    # Draw some output
    # Draw some output
    decoded_boxes = nn.evaluate_net(test_data, params)
    num_to_show = 15

    draw_boxes_from_samples(ax, test_data, 'r', linewidth=5)
    draw_boxes_from_samples(ax, decoded_boxes, 'b')

    plt.show()
Beispiel #7
0
def main():
    mode = sys.argv[1]
    print "mode = ", mode
    
    train_data = np.array([[0, 0], [0, 1], [1,0], [1,1]])
    train_label = np.array([[1, 0], [0, 1], [0, 1], [1, 0]])
    wHid, wOut = train(train_data, train_label, mode)
    test_data = np.array([[0,0], [0,1], [1,0], [1,1]])
    test(test_data, wHid, wOut)
Beispiel #8
0
def main():
    X_train, X_test, Y_train, Y_test = dp.get_data()
    train_info = nn.train(X_train, Y_train, X_test, Y_test,
                       n_iter=1_000, test_every=100, learning_rate=0.001,
                       hidden_size=13, batch_size=23, 
                       return_losses=True, return_weights=True,
                       return_scores=True, seed=80718)

    losses = train_info[0]
    weights = train_info[1]
    val_scores = train_info[2]
    print(f'val_scores: {[round(s, 2) for s in val_scores]}')
    plt.xlabel('iteration')
    plt.ylabel('loss (RMSE)')
    plt.plot(losses)
    plt.show()
Beispiel #9
0
def main():
    if len(sys.argv) == 1:
        print("USAGE: python3", sys.argv[0], " num-games")
        sys.exit(1)

    try:
        games = int(sys.argv[1])
        if games <= 0:
            raise ValueError("number of games must be positive")
    except ValueError as ex:
        print("USAGE: python3", sys.argv[0], " num-games")
        sys.exit(1)

    model = nn.train()
    strat = nn.NNStrategy(model)
    print(
        "RESULT:",
        yahtzee.evaluate_strategy(games, strat.choose_dice,
                                  strat.choose_category))
Beispiel #10
0
def runTests(X, Y):
    Xtr, Xte, Ytr, Yte = utils.splitData(X, Y, 0.9)

    print("X and Y shapes =", X.shape, Y.shape)

    results, estimator = nn.train(Xtr, Ytr)

    print(results)

    estimator.fit(Xtr, Ytr)
    Yhat = estimator.predict(Xte)

    mse = utils.mse(Yte, Yhat)

    print("mse on testing data is", mse)

    return (
        results,
        mse,
    )
Beispiel #11
0
            (training_label[0:first], training_label[last:training_size]))
        tr_size = training_size - q
        result.append((vl_data, vl_label, vl_size, tr_data, tr_label, tr_size))
    return result


K = 10
data = K_fold(training_data, training_size, training_label, K)
layers = []
vl_acc = []
num_nodes = 20

print "Training is starting"
for i in xrange(K):
    print " Case #" + str(i + 1) + ":"
    layer = train(data[i][3], data[i][4], data[i][5], feature_size, num_nodes,
                  0.005, 300)
    accur = accuracy(data[i][0], data[i][1], data[i][2], layer, num_nodes)
    layers.append(layer)
    vl_acc.append(accur)
    print "  Validation accuracy: " + str(accur)
tr_acc = [
    accuracy(training_data, training_label, training_size, x, num_nodes)
    for x in layers
]
print "Training is done"

print "Testing is starting"
max_ac = max(vl_acc)
ind_ac = 0
for i in xrange(K):
    if (vl_acc[i] == max_ac):
def trainModel(layerSizes, X, y, lmbda, maxIter):
    start_time = time.time()
    model = nn.train(layerSizes, X, y, lmbda, maxIter)
    print "Model trained in %s seconds" % (time.time() - start_time)
    return model
import time
import mxnet as mx
from mxnet import nd

import nn
import data_gen

num_sets = 64
num_assoc = 16

batch_size = 64
num_epochs = 100
num_train_batches = 100
num_test_batches = 10

train_data, train_labels = data_gen.GenData(num_train_batches,
                                            batch_size,
                                            num_sets,
                                            speed=2,
                                            coverage=1)

test_data, test_labels = data_gen.GenData(num_test_batches,
                                          batch_size,
                                          num_sets,
                                          speed=2,
                                          coverage=1)

net = nn.train(train_data, train_labels, test_data, test_labels, batch_size,
               num_epochs)
Beispiel #14
0
# print inputnodes
# print outputnodes
# print categories.index('workforce of the future')

nn = nn.neuralnetwork(inputnodes,hiddennodes,outputnodes,learningrate)



for x in range(0,train_num):
	nn_input = getNN_input(inputs[x], nn_cat)
	nn_output =  getNN_output(targets[x],categories)
	# print (nn_input.shape)
	# print (nn_output.shape)

	nn.train(nn_input,nn_output)
	pass

for test_num in range(3000, 3200):
	test = getNN_input(inputs[test_num], nn_cat)
	actual_result = targets[test_num]
	result_matrix = nn.query(test)
	predicted_result = categories[np.argsort(result_matrix)[0]]
	print "%s > %s > %s > %s" % (inputs[test_num], categories[np.argsort(result_matrix)[-1]],categories[np.argsort(result_matrix)[-2]], categories[np.argsort(result_matrix)[-3]]) 
	# print "%s was tested with result %s, with the actual label being %s" % (inputs[test_num], actual_result, predicted_result)
	pass



# print result_matrix
Beispiel #15
0
        vl_size = q;
        tr_data = np.vstack((training_data[0:first],training_data[last:training_size]));
        tr_label = np.hstack((training_label[0:first],training_label[last:training_size]));
        tr_size = training_size - q;
        result.append((vl_data, vl_label, vl_size, tr_data, tr_label, tr_size));
    return result;

K = 10;
data = K_fold(training_data, training_size, training_label, K);
layers = []; vl_acc = [];
num_nodes = 20;

print "Training is starting";
for i in xrange(K):
    print " Case #"+str(i+1)+":";
    layer = train(data[i][3], data[i][4], data[i][5], feature_size, num_nodes, 0.005, 300);
    accur = accuracy(data[i][0], data[i][1], data[i][2], layer, num_nodes);
    layers.append(layer);
    vl_acc.append(accur);
    print "  Validation accuracy: "+str(accur);
tr_acc = [accuracy(training_data, training_label, training_size, x, num_nodes) for x in layers];
print "Training is done";

print "Testing is starting";
max_ac = max(vl_acc);
ind_ac = 0;
for i in xrange(K):
    if (vl_acc[i] == max_ac):
        ind_ac = i;
        break;
training_accuracy = accuracy(training_data, training_label, training_size, layers[ind_ac], num_nodes);
Beispiel #16
0
def main(datasource, feature_extractor, target, chroma_network,
         optimiser, training, regularisation, augmentation, testing):

    err = False
    if chroma_network is None:
        print(Colors.red('ERROR: Specify a chroma extractor!'))
        err = True
    if feature_extractor is None:
        print(Colors.red('ERROR: Specify a feature extractor!'))
        err = True
    if target is None:
        print(Colors.red('ERROR: Specify a target!'))
        err = True
    if chroma_network is None:
        print(Colors.red('ERROR: Specify a chroma extractor!'))
        err = True
    if err:
        return 1

    # intermediate target is always chroma vectors
    target_chroma = targets.ChromaTarget(
        feature_extractor['params']['fps'])

    target_chords = targets.create_target(
        feature_extractor['params']['fps'],
        target
    )

    if not isinstance(datasource['test_fold'], list):
        datasource['test_fold'] = [datasource['test_fold']]

    if not isinstance(datasource['val_fold'], list):
        datasource['val_fold'] = [datasource['val_fold']]

        # if no validation folds are specified, always use the
        # 'None' and determine validation fold automatically
        if datasource['val_fold'][0] is None:
            datasource['val_fold'] *= len(datasource['test_fold'])

    if len(datasource['test_fold']) != len(datasource['val_fold']):
        print(Colors.red('ERROR: Need same number of validation and '
                         'test folds'))
        return 1

    all_pred_files = []
    all_gt_files = []

    print(Colors.magenta('\nStarting experiment ' + ex.observers[0].hash()))

    with TempDir() as exp_dir:
        for test_fold, val_fold in zip(datasource['test_fold'],
                                       datasource['val_fold']):
            print('')
            print(Colors.yellow(
                '=' * 20 + ' FOLD {} '.format(test_fold) + '=' * 20))
            # Load data sets
            print(Colors.red('\nLoading data...\n'))

            feature_ext = features.create_extractor(feature_extractor,
                                                    test_fold)
            train_set, val_set, test_set, gt_files = data.create_datasources(
                dataset_names=datasource['datasets'],
                preprocessors=datasource['preprocessors'],
                compute_features=feature_ext,
                compute_targets=target_chroma,
                context_size=datasource['context_size'],
                test_fold=test_fold,
                val_fold=val_fold,
                cached=datasource['cached']
            )

            if testing['test_on_val']:
                test_set = val_set

            print(Colors.blue('Train Set:'))
            print('\t', train_set)

            print(Colors.blue('Validation Set:'))
            print('\t', val_set)

            print(Colors.blue('Test Set:'))
            print('\t', test_set)
            print('')

            # build network
            print(Colors.red('Building network...\n'))

            model_type = globals()[chroma_network['model']['type']]
            mdl = model_type.build_model(in_shape=train_set.dshape,
                                         out_size_chroma=train_set.tshape[0],
                                         out_size=target_chords.num_classes,
                                         model=chroma_network['model'])

            chroma_neural_net = mdl['chroma_network']
            chord_neural_net = mdl['chord_network']
            input_var = mdl['input_var']
            chroma_target_var = mdl['chroma_target_var']
            chord_target_var = mdl['chord_target_var']
            chroma_loss_fn = mdl['chroma_loss_fn']
            chord_loss_fn = mdl['chord_loss_fn']

            chroma_opt, chroma_lrs = create_optimiser(chroma_network['optimiser'])
            chord_opt, chord_lrs = create_optimiser(optimiser)

            chroma_train_fn = nn.compile_train_fn(
                chroma_neural_net, input_var, chroma_target_var,
                loss_fn=chroma_loss_fn, opt_fn=chroma_opt,
                **chroma_network['regularisation']
            )

            chroma_test_fn = nn.compile_test_func(
                chroma_neural_net, input_var, chroma_target_var,
                loss_fn=chroma_loss_fn,
                **chroma_network['regularisation']
            )

            chroma_process_fn = nn.compile_process_func(
                chroma_neural_net, input_var
            )

            chord_train_fn = nn.compile_train_fn(
                chord_neural_net, input_var, chord_target_var,
                loss_fn=chord_loss_fn, opt_fn=chord_opt, tags={'chord': True},
                **regularisation
            )

            chord_test_fn = nn.compile_test_func(
                chord_neural_net, input_var, chord_target_var,
                loss_fn=chord_loss_fn, tags={'chord': True},
                **regularisation
            )

            chord_process_fn = nn.compile_process_func(
                chord_neural_net, input_var
            )

            print(Colors.blue('Chroma Network:'))
            print(nn.to_string(chroma_neural_net))
            print('')

            print(Colors.blue('Chords Network:'))
            print(nn.to_string(chord_neural_net))
            print('')

            print(Colors.red('Starting training chroma network...\n'))

            chroma_training = chroma_network['training']
            chroma_train_batches, chroma_validation_batches = \
                model_type.create_iterators(train_set, val_set,
                                            chroma_training, augmentation)
            crm_train_losses, crm_val_losses, _, crm_val_accs = nn.train(
                network=chroma_neural_net,
                train_fn=chroma_train_fn, train_batches=chroma_train_batches,
                test_fn=chroma_test_fn,
                validation_batches=chroma_validation_batches,
                threads=10, callbacks=[chroma_lrs] if chroma_lrs else [],
                num_epochs=chroma_training['num_epochs'],
                early_stop=chroma_training['early_stop'],
                early_stop_acc=chroma_training['early_stop_acc'],
                acc_func=nn.nn.elemwise_acc
            )

            # we need to create a new dataset with a new target (chords)
            del train_set
            del val_set
            del test_set
            del gt_files

            train_set, val_set, test_set, gt_files = data.create_datasources(
                dataset_names=datasource['datasets'],
                preprocessors=datasource['preprocessors'],
                compute_features=feature_ext,
                compute_targets=target_chords,
                context_size=datasource['context_size'],
                test_fold=test_fold,
                val_fold=val_fold,
                cached=datasource['cached']
            )

            if testing['test_on_val']:
                test_set = val_set

            print(Colors.blue('Train Set:'))
            print('\t', train_set)

            print(Colors.blue('Validation Set:'))
            print('\t', val_set)

            print(Colors.blue('Test Set:'))
            print('\t', test_set)
            print('')

            print(Colors.red('Starting training chord network...\n'))

            chord_train_batches, chord_validation_batches = \
                model_type.create_iterators(train_set, val_set, training,
                                            augmentation)

            crd_train_losses, crd_val_losses, _, crd_val_accs = nn.train(
                network=chord_neural_net,
                train_fn=chord_train_fn, train_batches=chord_train_batches,
                test_fn=chord_test_fn,
                validation_batches=chord_validation_batches,
                threads=10, callbacks=[chord_lrs] if chord_lrs else [],
                num_epochs=training['num_epochs'],
                early_stop=training['early_stop'],
                early_stop_acc=training['early_stop_acc'],
            )

            print(Colors.red('\nStarting testing...\n'))

            param_file = os.path.join(
                exp_dir, 'params_fold_{}.pkl'.format(test_fold))
            nn.save_params(chord_neural_net, param_file)
            ex.add_artifact(param_file)

            pred_files = test.compute_labeling(
                chord_process_fn, target_chords, test_set, dest_dir=exp_dir,
                use_mask=False, batch_size=testing['batch_size']
            )

            # compute chroma vectors for the test set
            # TODO: replace this with experiment.compute_features
            for cf in compute_chroma(chroma_process_fn, test_set,
                                     batch_size=training['batch_size'],
                                     dest_dir=exp_dir):
                ex.add_artifact(cf)

            test_gt_files = dmgr.files.match_files(
                pred_files, test.PREDICTION_EXT, gt_files, data.GT_EXT
            )

            all_pred_files += pred_files
            all_gt_files += test_gt_files

            print(Colors.blue('Results:'))
            scores = test.compute_average_scores(test_gt_files, pred_files)
            test.print_scores(scores)
            result_file = os.path.join(
                exp_dir, 'results_fold_{}.yaml'.format(test_fold))
            yaml.dump(dict(scores=scores,
                           chord_train_losses=map(float, crd_train_losses),
                           chord_val_losses=map(float, crd_val_losses),
                           chord_val_accs=map(float, crd_val_accs),
                           chroma_train_losses=map(float, crm_train_losses),
                           chroma_val_losses=map(float, crm_val_losses),
                           chroma_val_accs=map(float, crm_val_accs)),
                      open(result_file, 'w'))
            ex.add_artifact(result_file)

            # close all files
            del train_set
            del val_set
            del test_set
            del gt_files

        # if there is something to aggregate
        if len(datasource['test_fold']) > 1:
            print(Colors.yellow('\nAggregated Results:\n'))
            scores = test.compute_average_scores(all_gt_files, all_pred_files)
            test.print_scores(scores)
            result_file = os.path.join(exp_dir, 'results.yaml')
            yaml.dump(dict(scores=scores), open(result_file, 'w'))
            ex.add_artifact(result_file)

        for pf in all_pred_files:
            ex.add_artifact(pf)

    print(Colors.magenta('Stopping experiment ' + ex.observers[0].hash()))
Beispiel #17
0
def main(_log, datasource, feature_extractor, target, model, optimiser,
         training, regularisation, augmentation, testing):

    err = False
    if model is None or not model or 'type' not in model:
        _log.error(Colors.red('Specify a model!'))
        err = True
    if feature_extractor is None:
        _log.error(Colors.red('Specify a feature extractor!'))
        err = True
    if target is None:
        _log.error(Colors.red('Specify a target!'))
        err = True
    if err:
        return 1

    target_computer = targets.create_target(
        feature_extractor['params']['fps'],
        target
    )

    if not isinstance(datasource['test_fold'], list):
        datasource['test_fold'] = [datasource['test_fold']]

    if not isinstance(datasource['val_fold'], list):
        datasource['val_fold'] = [datasource['val_fold']]

        # if no validation folds are specified, always use the
        # 'None' and determine validation fold automatically
        if datasource['val_fold'][0] is None:
            datasource['val_fold'] *= len(datasource['test_fold'])

    if len(datasource['test_fold']) != len(datasource['val_fold']):
        _log.error(Colors.red('Need same number of validation and test folds'))
        return 1

    all_pred_files = []
    all_gt_files = []

    print(Colors.magenta('\nStarting experiment ' + ex.observers[0].hash()))

    with TempDir() as exp_dir:
        for test_fold, val_fold in zip(datasource['test_fold'],
                                       datasource['val_fold']):
            print('')
            print(Colors.yellow(
                '=' * 20 + ' FOLD {} '.format(test_fold) + '=' * 20))
            # Load data sets
            print(Colors.red('\nLoading data...\n'))

            train_set, val_set, test_set, gt_files = data.create_datasources(
                dataset_names=datasource['datasets'],
                preprocessors=datasource['preprocessors'],
                compute_features=features.create_extractor(feature_extractor,
                                                           test_fold),
                compute_targets=target_computer,
                context_size=datasource['context_size'],
                test_fold=test_fold,
                val_fold=val_fold,
                cached=datasource['cached'],
            )

            if testing['test_on_val']:
                test_set = val_set

            print(Colors.blue('Train Set:'))
            print('\t', train_set)
            print(Colors.blue('Validation Set:'))
            print('\t', val_set)
            print(Colors.blue('Test Set:'))
            print('\t', test_set)
            print('')

            # build network
            print(Colors.red('Building network...\n'))

            model_type = globals()[model['type']]
            mdl = model_type.build_model(in_shape=train_set.dshape,
                                         out_size=train_set.tshape[0],
                                         model=model)

            # mandatory parts of the model
            neural_net = mdl['network']
            input_var = mdl['input_var']
            target_var = mdl['target_var']
            loss_fn = mdl['loss_fn']

            # optional parts
            mask_var = mdl.get('mask_var')
            feature_out = mdl.get('feature_out')

            train_batches, validation_batches = model_type.create_iterators(
                train_set, val_set, training, augmentation
            )

            opt, lrs = create_optimiser(optimiser)

            train_fn = nn.compile_train_fn(
                neural_net, input_var, target_var,
                loss_fn=loss_fn, opt_fn=opt, mask_var=mask_var,
                **regularisation
            )

            test_fn = nn.compile_test_func(
                neural_net, input_var, target_var,
                loss_fn=loss_fn, mask_var=mask_var,
                **regularisation
            )

            process_fn = nn.compile_process_func(
                neural_net, input_var, mask_var=mask_var)

            if feature_out is not None:
                feature_fn = nn.compile_process_func(
                    feature_out, input_var, mask_var=mask_var
                )
            else:
                feature_fn = None

            print(Colors.blue('Neural Network:'))
            print(nn.to_string(neural_net))
            print('')

            if 'param_file' in training:
                nn.load_params(neural_net,
                               training['param_file'].format(test_fold))
                train_losses = []
                val_losses = []
                val_accs = []
            else:
                if 'init_file' in training:
                    print('initialising')
                    nn.load_params(neural_net,
                                   training['init_file'].format(test_fold))
                print(Colors.red('Starting training...\n'))
                train_losses, val_losses, _, val_accs = nn.train(
                    network=neural_net,
                    train_fn=train_fn, train_batches=train_batches,
                    test_fn=test_fn, validation_batches=validation_batches,
                    threads=10, callbacks=[lrs] if lrs else [],
                    num_epochs=training['num_epochs'],
                    early_stop=training['early_stop'],
                    early_stop_acc=training['early_stop_acc']
                )
                param_file = os.path.join(
                    exp_dir, 'params_fold_{}.pkl'.format(test_fold))
                nn.save_params(neural_net, param_file)
                ex.add_artifact(param_file)

            print(Colors.red('\nStarting testing...\n'))

            if feature_fn is not None:
                dest_dir = os.path.join(exp_dir,
                                        'features_fold_{}'.format(test_fold))
                compute_features(
                    feature_fn, train_set, batch_size=testing['batch_size'],
                    dest_dir=dest_dir, extension='.features.npy',
                    use_mask=mask_var is not None)
                compute_features(
                    feature_fn, val_set, batch_size=testing['batch_size'],
                    dest_dir=dest_dir, extension='.features.npy',
                    use_mask=mask_var is not None)
                compute_features(
                    feature_fn, test_set, batch_size=testing['batch_size'],
                    dest_dir=dest_dir, extension='.features.npy',
                    use_mask=mask_var is not None)
                ex.add_artifact(dest_dir)

            pred_files = test.compute_labeling(
                process_fn, target_computer, test_set, dest_dir=exp_dir,
                use_mask=mask_var is not None, batch_size=testing['batch_size']
            )

            test_gt_files = dmgr.files.match_files(
                pred_files, test.PREDICTION_EXT, gt_files, data.GT_EXT
            )

            all_pred_files += pred_files
            all_gt_files += test_gt_files

            print(Colors.blue('Results:'))
            scores = test.compute_average_scores(test_gt_files, pred_files)
            test.print_scores(scores)
            result_file = os.path.join(
                exp_dir, 'results_fold_{}.yaml'.format(test_fold))
            yaml.dump(dict(scores=scores,
                           train_losses=map(float, train_losses),
                           val_losses=map(float, val_losses),
                           val_accs=map(float, val_accs)),
                      open(result_file, 'w'))
            ex.add_artifact(result_file)

            # delete datasets so disk space is free
            del train_set
            del val_set
            del test_set

        # if there is something to aggregate
        if len(datasource['test_fold']) > 1:
            print(Colors.yellow('\nAggregated Results:\n'))
            scores = test.compute_average_scores(all_gt_files, all_pred_files)
            test.print_scores(scores)
            result_file = os.path.join(exp_dir, 'results.yaml')
            yaml.dump(dict(scores=scores), open(result_file, 'w'))
            ex.add_artifact(result_file)

        for pf in all_pred_files:
            ex.add_artifact(pf)

    print(Colors.magenta('Stopping experiment ' + ex.observers[0].hash()))
Beispiel #18
0
import nn
import numpy as np

predictions = nn.train( xFile='../BizFeatures/resnet/BizFeature_resnet_together_train_pca256_cluster64.csv',
                        yFile='../BizFeatures/labels/biz_labels.csv',
                        testFile='../BizFeatures/resnet/BizFeature_resnet_together_test_pca256_cluster64.csv',
                        colNumber = 256*64,
                        classNumber = 9,
                        learningRate = 1e-4,
                        training_epochs = 700,
                        batch_size = 100,
                        display_step = 5,
                        labelThreshold = 0.3,
                        returnProb = True)

print(predictions.shape)
#np.save('../LabelConvert/OneHot/nnPredictions.npy', predictions)
np.save('../Ensemble/data/nnPredictionsProb.npy', predictions)
Beispiel #19
0
def varyTrainingData():
    ngames, epochs, upperbonus, upperbonusthreshold, nSteps, nTrains, nGenerations, test_NN_size = parseInput(
    )
    y_axis = []
    state_potentials = None

    dict_name = "dict_UPT" + str(upperbonusthreshold) + "_UP" + str(upperbonus)
    optimal_strategy.initGame(upperbonusthreshold, upperbonus)
    YahtzeeScoresheet.UPPER_BONUS = upperbonus
    YahtzeeScoresheet.UPPER_BONUS_THRESHOLD = upperbonusthreshold

    dataout = "dataset_UPT" + str(upperbonusthreshold) + "_UP" + str(
        upperbonus)
    dataout += "_testNNsize" if test_NN_size else ""

    try:
        state_potentials = optimal_strategy.loadDict(dict_name)
        print("Value: " + str(
            optimal_strategy.queryValueOfModifiedGame(upperbonusthreshold,
                                                      upperbonus)))
    except FileNotFoundError:
        print("Dictionary " + dict_name + " not found, generating now")
        state_potentials = optimal_strategy.buildDict()
        optimal_strategy.saveDict(dict_name, state_potentials)

    for trial in range(1, nSteps + 1):
        dataout = dataout.split('-')
        dataout = dataout[0]
        dataout += '-'
        dataout += str(trial * 2500) if not test_NN_size else str(trial)
        global_mean = 0
        for generation in range(0, nGenerations):
            filename = dataout + "_" + str(generation)
            try:
                f = open("training/" + filename, "r")
                f.close()
            except FileNotFoundError:
                n_training_examples = trial * 2500 if not test_NN_size else 55000
                print("Training set " + filename +
                      " not found, generating now.")
                manager = mp.Manager()
                all_data = manager.list()
                jobs = []
                for procid in range(0, N_PROCESSES):
                    proc_dict = deepcopy(state_potentials)
                    proc_policy = OptimalPolicy(proc_dict)
                    proc = mp.Process(
                        target=proc_policy.generate_training_data,
                        args=(n_training_examples // N_PROCESSES, all_data))
                    jobs.append(proc)
                    proc.start()
                for proc in jobs:
                    proc.join()

                labelout = open("training/" + filename, "a")
                for line in all_data:
                    labelout.write(line)
                labelout.close()

            mean = 0
            size = 100 if not test_NN_size else trial * 5
            for training_session in range(0, nTrains):
                trial_model = nn.train(filename, size, epochs)
                trial_policy = nn.NNPolicy(trial_model)
                mean += evaluate_policy(ngames, trial_policy.choose_dice,
                                        trial_policy.choose_category)
            global_mean += mean / nTrains
        y_axis.append(global_mean / nGenerations)
        print(y_axis)

    dataoutresults = open("training/" + dataout.split("-")[0] + "_final", "a")
    dataoutresults.write(str(y_axis))
    dataoutresults.close()
weight_decay = config['weight_decay']
net = []
regularizers = []
inputs = np.random.randn(config['batch_size'], 1, 28, 28)
net += [layers.Convolution(inputs, 16, 5, "conv1")]
regularizers += [
    layers.L2Regularizer(net[-1].weights, weight_decay, 'conv1_l2reg')
]
net += [layers.MaxPooling(net[-1], "pool1")]
net += [layers.ReLU(net[-1], "relu1")]
net += [layers.Convolution(net[-1], 32, 5, "conv2")]
regularizers += [
    layers.L2Regularizer(net[-1].weights, weight_decay, 'conv2_l2reg')
]
net += [layers.MaxPooling(net[-1], "pool2")]
net += [layers.ReLU(net[-1], "relu2")]
## 7x7
net += [layers.Flatten(net[-1], "flatten3")]
net += [layers.FC(net[-1], 512, "fc3")]
regularizers += [
    layers.L2Regularizer(net[-1].weights, weight_decay, 'fc3_l2reg')
]
net += [layers.ReLU(net[-1], "relu3")]
net += [layers.FC(net[-1], 10, "logits")]

data_loss = layers.SoftmaxCrossEntropyWithLogits()
loss = layers.RegularizedLoss(data_loss, regularizers)

nn.train(train_x, train_y, valid_x, valid_y, net, loss, config)
nn.evaluate("Test", test_x, test_y, net, loss, config)
Beispiel #21
0
    },
    {
        "input_dim": 50,
        "output_dim": 25,
        "activation": "relu"
    },
    {
        "input_dim": 25,
        "output_dim": 1,
        "activation": "sigmoid"
    },
]

# Training
params_values = nn.train(np.transpose(X_train),
                         np.transpose(y_train.reshape((y_train.shape[0], 1))),
                         NN_ARCHITECTURE, 10000, 0.01)

# Prediction
Y_test_hat, _ = nn.full_forward_propagation(np.transpose(X_test),
                                            params_values, NN_ARCHITECTURE)

# Accuracy achieved on the test set
acc_test = nn.get_accuracy_value(
    Y_test_hat, np.transpose(y_test.reshape((y_test.shape[0], 1))))
print("Test set accuracy: {:.2f} - David".format(acc_test))

# karas
# Building a model
model = Sequential()
model.add(Dense(25, input_dim=2, activation='relu'))
Beispiel #22
0
def main():
    parser = argparse.ArgumentParser(description="Command Line Parser")
    parser.add_argument("--train-data",
                        dest="train_data",
                        default='$',
                        help="Give path to the training data set.")
    parser.add_argument("--test-data",
                        dest="test_data",
                        required=True,
                        help="Give path to the testing data set.")
    parser.add_argument("--dataset",
                        dest="dataset",
                        required=True,
                        help="Give Name of data set.")
    parser.add_argument("--configuration",
                        dest="configuration",
                        default='$',
                        help="Give structure of Neural Net.")
    args = parser.parse_args()
    train_data = args.train_data
    test_data = args.test_data
    dataset = args.dataset
    configuration = args.configuration
    if configuration != '$':
        configuration = list(map(int, configuration.strip('[]').split(',')))
    #Test mode
    if train_data == '$':

        test_filename = test_data
        testdata = list()
        if dataset == 'MNIST':
            num_classes = 10

            with open("../mem/weight_mnist.pkl", 'r') as saved:
                w = pkl.load(saved)
            with open("../mem/bias_mnist.pkl", 'r') as saved:
                b = pkl.load(saved)
            with open("../mem/configuration_mnist.pkl", 'r') as saved:
                nn_structure = pkl.load(saved)

            files = os.listdir(test_filename)
            for f in files:
                #print "Reading File", f
                file_path = os.path.join(test_filename, f)
                img = PIL.Image.open(file_path).convert("L")
                matrix = np.array(img)
                shape = matrix.shape
                reshaped_matrix = np.reshape(matrix, [
                    shape[0] * shape[1],
                ])
                testdata.append(reshaped_matrix)
                e = float(files.index(f) + 1) / len(files)
            sys.stdout.write('{}% File Reading Completed .....\r'.format(
                int(e * 100)))
            test_scaler = StandardScaler()
            testdata = test_scaler.fit_transform(np.array(testdata))
            n_components = 64
            pca_test = PCA(n_components)
            testdata = pca_test.fit_transform(testdata)

            predicted_y = nn.predict(np.array(testdata), w, b,
                                     len(nn_structure))
            print "Prediction is: ", predicted_y
            print len(nn_structure)

        else:
            num_classes = 2

            with open("../mem/weight_catdog.pkl", 'r') as saved:
                w = pkl.load(saved)
            with open("../mem/bias_catdog.pkl", 'r') as saved:
                b = pkl.load(saved)
            with open("../mem/configuration_catdog.pkl", 'r') as saved:
                nn_structure = pkl.load(saved)

            files = os.listdir(test_filename)
            for f in files:
                #print "Reading File", f
                file_path = os.path.join(test_filename, f)
                img = PIL.Image.open(file_path).convert("L")
                matrix = np.array(img)
                shape = matrix.shape
                reshaped_matrix = np.reshape(matrix, [
                    shape[0] * shape[1],
                ])
                testdata.append(reshaped_matrix)
                e = float(files.index(f) + 1) / len(files)
            sys.stdout.write('{}% File Reading Completed .....\r'.format(
                int(e * 100)))
            test_scaler = StandardScaler()
            testdata = test_scaler.fit_transform(np.array(testdata))
            n_components = 64
            pca_test = PCA(n_components)
            testdata = pca_test.fit_transform(testdata)
            predicted_y = nn.predict(np.array(testdata), w, b,
                                     len(nn_structure))
            predicted = ['cat' if x == 0 else 'dog' for x in predicted_y]
            print "Prediction is:", predicted

    else:
        train_filename = train_data
        test_filename = test_data
        raw_data, raw_labels, num_classes = nn.read_data(train_filename)
        #nn_structure = configuration
        testdata = list()
        if dataset == 'MNIST':
            #configuration = [64]+configuration+[10]
            #print configuration
            nn_structure = [64] + configuration + [10]
            scaler = StandardScaler()
            scaled_data = scaler.fit_transform(raw_data)
            print "Scaling Completed ....."
            n_components = 64
            pca = PCA(n_components)
            data = pca.fit_transform(scaled_data)
            print "Dimensionaly Reduced ....."
            labels = np.array(list(map(int, raw_labels)))
            onehot_labels = nn.one_hot(labels, num_classes)
            w, b, cost_list = nn.train(nn_structure, data, onehot_labels)

            with open("../mem/weight_mnist.pkl", 'w') as saver:
                pkl.dump(w, saver)

            with open("../mem/bias_mnist.pkl", 'w') as saver:
                pkl.dump(b, saver)

            with open("../mem/configuration_mnist.pkl", 'w') as saver:
                pkl.dump(nn_structure, saver)

            #num_classes = 10
            files = os.listdir(test_filename)
            for f in files:
                #print "Reading File", f
                file_path = os.path.join(test_filename, f)
                img = PIL.Image.open(file_path).convert("L")
                matrix = np.array(img)
                shape = matrix.shape
                reshaped_matrix = np.reshape(matrix, [
                    shape[0] * shape[1],
                ])
                testdata.append(reshaped_matrix)
                e = float(files.index(f) + 1) / len(files)
            sys.stdout.write('{}% File Reading Completed .....\r'.format(
                int(e * 100)))
            test_scaler = StandardScaler()
            testdata = test_scaler.fit_transform(np.array(testdata))
            n_components = 64
            pca_test = PCA(n_components)
            testdata = pca_test.fit_transform(testdata)
            predicted_y = nn.predict(np.array(testdata), w, b,
                                     len(nn_structure))
            print "Prediction is:", predicted_y

        else:
            nn_structure = [64] + configuration + [2]
            scaler = StandardScaler()
            scaled_data = scaler.fit_transform(raw_data)
            print "Scaling Completed ....."
            n_components = 64
            pca = PCA(n_components)
            data = pca.fit_transform(scaled_data)
            print "Dimensionaly Reduced ....."
            print "Cat is class 0 and Dog is class 1 ....."
            labels = np.array([0 if x == 'cat' else 1 for x in raw_labels])
            onehot_labels = nn.one_hot(labels, num_classes)
            w, b, cost_list = nn.train(nn_structure, data, onehot_labels)

            with open("../mem/weight_catdog.pkl", 'w') as saver:
                pkl.dump(w, saver)

            with open("../mem/bias_catdog.pkl", 'w') as saver:
                pkl.dump(b, saver)

            with open("../mem/configuration_catdog.pkl", 'w') as saver:
                pkl.dump(nn_structure, saver)

            files = os.listdir(test_filename)
            for f in files:
                #print "Reading File", f
                file_path = os.path.join(test_filename, f)
                img = PIL.Image.open(file_path).convert("L")
                matrix = np.array(img)
                shape = matrix.shape
                reshaped_matrix = np.reshape(matrix, [
                    shape[0] * shape[1],
                ])
                testdata.append(reshaped_matrix)
                e = float(files.index(f) + 1) / len(files)
            sys.stdout.write('{}% File Reading Completed .....\r'.format(
                int(e * 100)))
            test_scaler = StandardScaler()
            testdata = test_scaler.fit_transform(np.array(testdata))
            n_components = 64
            pca_test = PCA(n_components)
            testdata = pca_test.fit_transform(testdata)
            predicted_y = nn.predict(np.array(testdata), w, b,
                                     len(nn_structure))
            predicted = ['cat' if x == 0 else 'dog' for x in predicted_y]
            print "Prediction is:", predicted
Beispiel #23
0
    trainProbabilities = np.zeros((10, trainLabels.size));
    for a in range(trainLabels.size):
        trainProbabilities[trainLabels[a], a] = 1
    testProbabilities = np.zeros((10, testLabels.size));
    for a in range(testLabels.size):
        testProbabilities[testLabels[a], a] = 1

    estimatedTrainProbabilities = nn.ff(model, trainData)
    trainLoss = np.zeros(epochMax+1)
    trainAcc = np.zeros(epochMax+1)
    trainLoss[0], trainAcc[0] = nn.evaluate(model, opt, trainData, trainProbabilities)    
    testLoss = np.zeros(epochMax+1)
    testAcc = np.zeros(epochMax+1)
    testLoss[0], testAcc[0] = nn.evaluate(model, opt, testData, testProbabilities)    
    for epoch in range(1, epochMax+1):
        nn.train(model, opt, trainData, trainProbabilities)
        trainLoss[epoch], trainAcc[epoch] = nn.evaluate(model, opt, trainData, trainProbabilities)    
        testLoss[epoch], testAcc[epoch] = nn.evaluate(model, opt, testData, testProbabilities)    
        print('Epoch:', epoch, ', Learning Rate:', opt.lr, ', Loss:', trainLoss[epoch], '/', testLoss[epoch], 'Acc:', trainAcc[epoch], '/', testAcc[epoch])
        if trainLoss[epoch]>trainLoss[epoch-1]:
            opt.lrDecay();

    time_end = time.time()
    print('Elapsed time:', time_end-time_start, 'seconds.')
    print('Training accuracy:', trainAcc[-1]*100, '%;')
    print('Test accuracy:', testAcc[-1]*100, '%.')
    
    fig1 = pyplot.figure()
    ax1 = fig1.add_subplot(1, 1, 1)
    ax1.plot(range(epochMax+1), 100*trainAcc, label='Training')
    ax1.plot(range(epochMax+1), 100*testAcc, label='Test')
Beispiel #24
0
# coding: utf-8
# neural_network/test_handwritten_digits.py
"""手写字符集
"""
import nn
import numpy as np
from sklearn import datasets
from scipy.io import loadmat

# digits = datasets.load_digits()
#
#
# X = digits.images.reshape((len(digits.images), -1))
# y = digits.target.reshape(-1, 1)

data = loadmat('data/handwritten_digits.mat')
Thetas = loadmat('data/ex4weights.mat')
Thetas = [Thetas['Theta1'], Thetas['Theta2']]


X = np.mat(data['X'])
y = np.mat(data['y'])

res = nn.train(X,y,hiddenNum=1,unitNum=25,Thetas=Thetas, precision = 0.5)
print 'Error is: %.4f'%res['error']
Beispiel #25
0
from nn import train

params = {
    "batch_size": 5,
    "epochs": 1000,
    #"learning_rate" : 0.0005,
    "learning_rate": 0.009,
    "beta1": 0.5,
    "print_interval": 10,
    "save_interval": 100,
    "save_path": "models/"
}

train("test_data/train", "test_data/valid", params)
Beispiel #26
0
NeuralNetwork = nn.NeuralNetwork

nn = NeuralNetwork(2, 2, 1)

training = [
    {
        'inputs': [1, 0],
        'targets': [1]
    },
    {
        'inputs': [0, 1],
        'targets': [1]
    },
    {
        'inputs': [1, 1],
        'targets': [0]
    },
    {
        'inputs': [0, 0],
        'targets': [0]
    },
]

for i in range(100):
    data = training[random.randint(0, 3)]
    nn.train(data['inputs'], data['targets'])

answer = nn.predict([1, 0])
print(answer)
Beispiel #27
0
                 batchImagePixels = [
                     traindata[i]
                     for i in range(batchstartIndex, batchendIndex)
                 ]
                 batchImageLabels = [
                     trainlabel[i]
                     for i in range(batchstartIndex, batchendIndex)
                 ]
                 X = np.asarray(batchImagePixels, dtype=None, order=None)
                 y = []
                 for i in range(len(batchImageLabels)):
                     labellist = [0 for i in range(opdim)]
                     labellist[int(batchImageLabels[i])] = 1
                     y.append(labellist)
                 Y = np.asarray(y, dtype=None, order=None)
                 weights = nn.train(model, X, Y, weights, learning_rate)
                 batchstartIndex = batchendIndex
                 batchendIndex = batchstartIndex + batchsize
         X_test = np.asarray(testdata, dtype=None, order=None)
         accuracyOfMyCode, f1_score_macro, f1_score_micro = nn.predict(
             X_test, testlabel, weights)
         print("Test Accuracy ", accuracyOfMyCode)
         f.write("Test Accuracy " + str(accuracyOfMyCode))
         f.write("\n")
         print("Test F1 Score(Macro) ", f1_score_macro)
         f.write("Test F1 Score(Macro) " + str(f1_score_macro))
         f.write("\n")
         print("Test F1 Score(Micro) ", f1_score_micro)
         f.write("Test F1 Score(Micro) " + str(f1_score_micro))
         f.write("\n")
 f.close()
Beispiel #28
0
def train_model(models_dir, training_data_dir, num_epochs, batch_size,
                auto_save_interval, max_to_keep, ckpt_n_hours, model_name,
                train_percent, val_percent, test_percent, keep_percent, mean,
                weight_decay, learning_rate, dropout):

    logger.info("Fetching data.")

    # NOTE: There is a potential bug here where the sizes of augmented/nonaugmented data do not match, i.e. one group is  > 512 and one is < 512. This case is (probably) not handled properly.

    raw_data_lst_nonaug, seg_data_lst_nonaug, orig_dims = pipeline.load_all_data(
        training_data_dir,
        no_empty=True,
        reorient=True,
        predicting=False,
        include_lower=False,
        load_augmented=False)

    raw_data_lst_aug, seg_data_lst_aug, aug_dims = pipeline.load_all_data(
        training_data_dir,
        no_empty=True,
        reorient=True,
        predicting=False,
        include_lower=False,
        load_augmented=True)

    training_height, training_width = raw_data_lst_nonaug[0].shape[
        0], raw_data_lst_nonaug[0].shape[1]

    print("type(seg_data_lst_nonaug):", type(seg_data_lst_nonaug))
    print("type(seg_data_lst_nonaug[0]):", type(seg_data_lst_nonaug[0]))

    print("len(raw_data_lst_nonaug), len(seg_data_lst_nonaug): ",
          len(raw_data_lst_nonaug), len(seg_data_lst_nonaug))

    print("training_height, training_width: ", training_height, training_width)

    print("raw_data_lst_nonaug[0].shape: ", raw_data_lst_nonaug[0].shape)
    print("seg_data_lst_nonaug[0].shape: ", seg_data_lst_nonaug[0].shape)

    logger.debug("ORIG DIMS: %s", orig_dims)

    logger.info("Initializing model.")

    tf.reset_default_graph()
    sess = tf.Session()
    model = Unet.Unet(mean,
                      weight_decay,
                      learning_rate,
                      dropout,
                      h=training_height,
                      w=training_width)
    sess.run(tf.global_variables_initializer())
    saver = tf.train.Saver(max_to_keep=max_to_keep,
                           keep_checkpoint_every_n_hours=ckpt_n_hours)

    x_train, x_val, x_test, y_train, y_val, y_test = pipeline.split_data(
        raw_data_lst_nonaug,
        seg_data_lst_nonaug,
        train_percent,
        val_percent,
        test_percent,
        keep_percent,
        total_keep=500)

    if len(raw_data_lst_aug) > 0:
        logger.debug("Splitting augmented data.")
        x_train_aug, x_val_aug, x_test_aug, y_train_aug, y_val_aug, y_test_aug = pipeline.split_data(
            raw_data_lst_aug,
            seg_data_lst_aug,
            percent_train=90,
            percent_val=5,
            percent_test=5,
            percent_keep=100,
            total_keep=1000)

        logger.debug("Extending training set.")

        x_train = np.concatenate((x_train, x_train_aug))
        y_train = np.concatenate((y_train, y_train_aug))

        logger.debug("Generated random indices.")

        indices = np.arange(x_train.shape[0])
        np.random.shuffle(indices)

        logger.debug("Shuffling training set.")

        x_train = x_train[indices]
        y_train = y_train[indices]

    logger.info("Training model. Details:")
    logger.info(" * Model name: %s", model_name)
    logger.info(" * Epochs: %d", num_epochs)
    logger.info(" * Batch size: %d", batch_size)
    logger.info(" * Max checkpoints to keep: %d", max_to_keep)
    logger.info(" * Keeping checkpoint every n hours: %d", ckpt_n_hours)
    logger.info(" * Keeping checkpoint every n epochs: %d", auto_save_interval)
    logger.info(" * Model directory save destination: %s", models_dir)
    logger.info(" * Training data directory: %s", training_data_dir)

    try:
        losses, accs = nn.train(sess,
                                model,
                                saver,
                                x_train,
                                y_train,
                                x_val,
                                y_val,
                                num_epochs,
                                batch_size,
                                auto_save_interval,
                                models_dir=models_dir,
                                model_name=model_name)
    except KeyboardInterrupt:
        logger.info("Training interrupted.")

    logger.info("Training done. Saving model.")

    pipeline.save_model(models_dir, model_name, saver, sess)

    logger.info("Computing accuracy on test set.")

    test_acc = nn.validate(sess, model, x_test, y_test, verbose=True)

    logger.info("Test accuracy: %s", test_acc)

    return losses, accs, test_acc
Beispiel #29
0
import preprocessing
import nn
import pickle
from data_utils import pearsonsR

if __name__ == '__main__':
	trainPosts, testPosts, devPosts, devTestPosts = preprocessing.prepare()
	countNot1 = 0
	for i in trainPosts[0]:
		if i[-1] != -1:
			countNot1 +=1
	print('Count not -1 is ', countNot1)

	pr = pearsonsR(trainPosts[0])
	for item in pr:
		print(item)
	with open('pearsonsR.p', 'wb') as f:
		pickle.dump(pr, file=f)
		pickle.dump

	print('Beginning nn')
#	nn = nn.simple_feed_forward()
	nn.train(trainPosts[0])
	nn.test(devTestPosts[0])
Beispiel #30
0
from preprocessing import Preprocessor
from nn import train
import torch
import torch.nn as nn

p = Preprocessor(dimensions=2)
data, focus_words, contexts = p.run()

model = train(input_dimension=len(p.vocabulary),
              embedding_dimension=2,
              learning_rate=0.1,
              focus_words=focus_words,
              contexts=contexts)


# check for similarity between batman and wayne vs joker and wayne
def who_is_wayne(m):
    w1 = model.layer1.weight
    # stack to merge rows like row_1 -> col_1 with row_2 -> col_2 as a single row
    # print w1 in case you need an explanation!
    w1 = torch.stack((w1[0], w1[1]), dim=1)

    b1 = model.layer1.bias

    # word vectors we're looking for from word2vec
    # are actually the backprop updated weights and biases of the
    # hidden layer
    vectors = w1 + b1

    print("")
    print("Preparing vectors")
Beispiel #31
0
        #convert into numpy array
        X, y, le = get_numpy_array(features_df)

        # split into training and testing data
        X_train, X_test, y_train, y_test = get_train_test(X, y)
        num_labels = y.shape[1]

        X_train = np.expand_dims(X_train, axis=2)
        X_test = np.expand_dims(X_test, axis=2)

        # create model architecture
        model = nn.create_cnn(num_labels)

        # train model
        print("Training..")
        nn.train(model, X_train, X_test, y_train, y_test, "trained_cnn.h5")

        # compute test loss and accuracy
        test_loss, test_accuracy = nn.compute(X_test, y_test, "trained_cnn.h5")
        print("Test loss", test_loss)
        print("Test accuracy", test_accuracy)

        # predicting using trained model with any test file in dataset
        nn.predict("sample_wav/new_file_Chainsaw.wav", le, "trained_cnn.h5")

    elif sys.argv[1] == "mlp":

        #convert into numpy array
        X, y, le = get_numpy_array(features_df)

        # split into training and testing data
Beispiel #32
0
        x_data = []
        for input_value in input_data:
            x_data.append(input_value[0])
            x_data.append(input_value[1])

        train_x.append(x_data)
        train_y.append(output)

train_x = np.array(train_x)
train_y = np.array(train_y)

net = []
inputs = np.random.randn(config['batch_size'], len(train_x))
net += [layers.FC(inputs, 50, "fc1")]
net += [layers.Sigmoid(net[-1], "sg1")]
net += [layers.FC(net[-1], 10, "fc2")]
net += [layers.Sigmoid(net[-1], "sg2")]
net += [layers.FC(net[-1], 5, "fc3")]

loss = layers.MeanSquareError()

nn.train(train_x, train_y, net, loss, config)

while True:
    pointsFilename = input("Enter file name:")
    with open(pointsFilename) as f:
        points = json.load(f)
        points = np.array(points).reshape(1, 100)
    nn.evaluate(net, np.array(points))
    print('DONE')