def test_graph_unlink_backward(seed):
    rng = np.random.RandomState(seed)
    x0 = nn.Variable([2, 4], need_grad=True)
    x1 = nn.Variable([2, 4], need_grad=True)
    x0.d = rng.randn(*x0.shape)
    x1.d = rng.randn(*x1.shape)
    x0.grad.zero()
    x1.grad.zero()
    with nn.parameter_scope("fc0"):
        h0 = PF.affine(x0, 2)
        h0.need_grad = False
    with nn.parameter_scope("fc1"):
        h1 = PF.affine(x1, 2)
    h = h0 + h1
    with nn.parameter_scope("fc"):
        y1 = PF.affine(h, 1)
        y2 = PF.affine(h, 1)
    nn.forward_all([y1, y2])

    y1.backward(clear_buffer=True)
    assert np.all(x0.g == 0)
    assert not np.all(x1.g == 0)

    y2.backward(clear_buffer=True)
    assert np.all(x0.g == 0)
    assert not np.all(x1.g == 0)
Beispiel #2
0
def test_stft(window_size, stride, fft_size, window_type):
    # clear all previous STFT conv/deconv kernels
    nn.clear_parameters()

    # Compare to `scipy.signal.stft` - only done if SciPy available
    x = np.random.randn(1, window_size * 10)

    nx = nn.Variable.from_numpy_array(x)
    nyr, nyi = F.stft(nx,
                      window_size=window_size,
                      stride=stride,
                      fft_size=fft_size,
                      window_type=window_type,
                      center=False)
    nn.forward_all([nyr, nyi])

    stft_nnabla = nyr.d + 1j * nyi.d
    _f, _t, stft_scipy = sig.stft(x,
                                  window=window_type,
                                  nperseg=window_size,
                                  noverlap=window_size - stride,
                                  nfft=fft_size,
                                  boundary=None,
                                  padded=False)

    # scipy does a different scaling - take care here
    stft_nnabla /= fft_size // 2

    assert (np.allclose(stft_nnabla, stft_scipy, atol=1e-5, rtol=1e-5))
Beispiel #3
0
def test_intermediate_outputs(clear_buffer, clear_no_need_grad):
    rng = np.random.RandomState(311)

    # unuse cached array to clear buffers immediately
    nn.prefer_cached_array(False)

    x = nn.Variable.from_numpy_array(rng.randn(2, 10))

    h1 = x + 1
    y1 = h1 + 1

    h2 = x + 1
    h2.persistent = True
    y2 = h2 + 1

    nn.forward_all([h1, y1],
                   clear_buffer=clear_buffer,
                   clear_no_need_grad=clear_no_need_grad)
    nn.forward_all([h2, y2],
                   clear_buffer=clear_buffer,
                   clear_no_need_grad=clear_no_need_grad)

    assert_allclose(h1.d, h2.d)
    assert_allclose(y1.d, y2.d)

    # revert perference (this is also done in conftest.py, but just in case)
    nn.prefer_cached_array(True)
Beispiel #4
0
def test_graph_more_than_2_outputs(seed, clear_buffer):
    count = 0

    def func_hook(f):
        nonlocal count
        if f.name == 'Split':
            count += 1

    nn.clear_parameters()

    a = nn.Variable.from_numpy_array(np.ones((10, )))
    b = nn.Variable.from_numpy_array(np.ones((10, )))
    c = F.add2(a, b, inplace=True, outputs=[a.data])
    y = F.split(c, axis=0)
    nn.forward_all(y, function_pre_hook=func_hook)

    assert count == 1

    res = [x.d for x in y]
    assert_allclose(res, [2.0] * 10)

    a = nn.Variable.from_numpy_array(np.ones((10, )))
    b = nn.Variable.from_numpy_array(np.ones((10, )))
    c = F.add2(a, b, inplace=True, outputs=[a.data])
    y = F.split(c, axis=0)
    for yy in y:
        yy.forward()
    res = [x.d for x in y]
    assert_allclose(res, [11.0] * 10)
Beispiel #5
0
    def run(self, epoch):
        lr = self._update_learning_rate(epoch)

        # Training loop
        epoch_loss = 0.0
        epoch_error = 0
        pbar = trange(self.num_iter_per_epoch,
                      desc='Train at epoch %d' % epoch,
                      disable=self.comm.rank > 0)

        # pbar = range(self.num_iter_per_epoch)

        self.reporter.reset(epoch, pbar)

        for i in pbar:
            # nvtx.range_push("train_{}".format(i))

            # wait here until back-prop has been finished
            self.stream_event_handler.event_synchronize()

            next_image, next_label = self.data.next()
            self.model.image.data = next_image
            self.model.label.data = next_label

            # Synchronizing null-stream and host here makes update faster. I'm not sure why.
            self.stream_event_handler.default_stream_synchronize()

            self.reporter(lr * self.loss_scaling)

            nn.forward_all([self.model.loss, self.model.error],
                           clear_no_need_grad=True)
            # self.model.loss.forward(clear_no_need_grad=True, function_pre_hook=None)

            comm_callback = None
            if self.comm.n_procs > 1:
                params = [x.grad for x in nn.get_parameters().values()]
                comm_callback = self.comm.comm.all_reduce_callback(
                    params, 1024 * 1024 * 2)
            self.solver.zero_grad()
            self.model.loss.backward(
                self.loss_scaling, clear_buffer=True,
                communicator_callbacks=comm_callback
            )

            # Subscript event
            self.stream_event_handler.add_default_stream_event()

            # # Update
            self.solver.weight_decay(self.weight_decay)
            self.solver.update()
            self.reporter.update()

            # if i == 10:
            #     import sys

            # nvtx.range_pop()

        self.reporter(lr * self.loss_scaling, force=True)
        self.reporter.on_epoch_end()
def test_graph_logreg(seed):
    rng = np.random.RandomState(seed)
    x = nn.Variable([2, 3, 4], need_grad=True)
    w1 = nn.Variable([12, 5], need_grad=True)
    w2 = nn.Variable([12, 5], need_grad=True)
    b1 = nn.Variable([5], need_grad=True)
    b2 = nn.Variable([5], need_grad=True)
    t = nn.Variable([2, 1])
    x.d = rng.randn(*x.shape)
    w1.d = rng.randn(*w1.shape)
    w2.d = rng.randn(*w2.shape)
    b1.d = rng.randn(*b1.shape)
    b2.d = rng.randn(*b2.shape)
    t.d = rng.randint(0, 5, size=t.shape)

    nn.set_default_context(nn.Context())

    # Forwardprop by definintion
    z1 = F.affine(x, w1, b1, 1)
    z2 = F.affine(x, w2, b2, 1)
    l1 = F.softmax_cross_entropy(z1, t, 1)
    L1 = F.mean(l1)
    l2 = F.softmax_cross_entropy(z2, t, 1)
    L2 = F.mean(l2)
    nn.forward_all([L1, L2])

    # Backprop for z1
    # Diff should be initialized since they are always accumulated
    x.g = 0
    w1.g = 0
    b1.g = 0
    L1.backward(clear_buffer=True)

    inputs = [x, w1, b1]

    from nbla_test_utils import \
        compute_analytical_and_numerical_grad_graph as grads
    agrad, ngrad = grads(L1, inputs, 1e-3, False)
    assert_allclose(ngrad, agrad, atol=1e-2)

    # Backprop for z2
    # Diff should be initialized since they are always accumulated
    x.g = 0
    w2.g = 0
    b2.g = 0
    L2.backward(clear_buffer=True)

    inputs = [x, w2, b2]

    from nbla_test_utils import \
        compute_analytical_and_numerical_grad_graph as grads
    agrad, ngrad = grads(L2, inputs, 1e-3, False)
    assert_allclose(ngrad, agrad, atol=1e-2)
def test_graph_clear_buffer(seed):
    np.random.seed(313)
    rng = np.random.RandomState(seed)
    x = nn.Variable([2, 3, 4, 4])
    t = nn.Variable([2, 1])
    x.d = rng.randn(*x.shape)
    t.d = rng.randint(0, 5, size=t.shape)

    # Network definition
    nn.set_default_context(nn.Context())
    nn.clear_parameters()
    x1 = x + 1
    x2 = x1 - 1
    with nn.parameter_scope('conv1'):
        z = PF.convolution(x2, 3, (2, 2))
        z2 = F.relu(z, inplace=True)
    with nn.parameter_scope('fc2'):
        z3 = PF.affine(z2, 5)
        z4 = PF.affine(z2, 5)
    l1 = F.softmax_cross_entropy(z3, t, 1)
    L1 = F.mean(l1)
    l2 = F.softmax_cross_entropy(z4, t, 1)
    L2 = F.mean(l2)

    # Forwardprop
    import tempfile
    import os
    tmpd = tempfile.mkdtemp()
    nn.save_parameters(os.path.join(tmpd, 'parameter.h5'))
    first = False
    for cnng in [False, True]:
        for cb in [False, True]:
            _ = nn.load_parameters(os.path.join(tmpd, 'parameter.h5'))
            for v in nn.get_parameters().values():
                v.grad.zero()
            nn.forward_all([L1, L2], clear_no_need_grad=cnng)

            # for now, the first backward cannot be
            # called with clear_buffer=True
            L1.backward(clear_buffer=False)
            L2.backward(clear_buffer=cb)
            if not first:
                first = True
                g = list(nn.get_parameters().values())[0].g.copy()
            else:
                g2 = list(nn.get_parameters().values())[0].g.copy()
                import platform
                if platform.machine() == 'ppc64le':
                    pytest.skip("This test fails on ppc64le")
                assert np.all(g == g2)
Beispiel #8
0
def test_stft(audio, nb_channels, nfft, hop):
    # clear STFT kernels (from previous tests with different frame size)
    nn.clear_parameters()

    # compute STFT using NNabla
    X_real, X_imag = model.STFT(audio, n_fft=nfft, n_hop=hop, center=True)
    nn.forward_all([
        X_real, X_imag
    ])  # forward both at the same time to not create new random `audio`
    X = X_real.d + X_imag.d * 1j

    # compute iSTFT using Scipy
    out = test.istft(X, n_fft=nfft, n_hopsize=hop)

    assert np.sqrt(np.mean((audio.d - out)**2)) < 1e-6
Beispiel #9
0
def test_stft(ctx, window_size, stride, fft_size, window_type):
    backend = ctx.backend[0].split(":")[0]
    if backend == 'cuda':
        pytest.skip('CUDA Convolution N-D is only supported in CUDNN extension')

    # clear all previous STFT conv/deconv kernels
    nn.clear_parameters()

    # Compare to `scipy.signal.stft` - only done if SciPy available
    x = np.random.randn(1, window_size * 10)

    nx = nn.Variable.from_numpy_array(x)

    with nn.context_scope(ctx):
        nyr, nyi = F.stft(nx,
                          window_size=window_size,
                          stride=stride,
                          fft_size=fft_size,
                          window_type=window_type,
                          center=False)
    nn.forward_all([nyr, nyi])

    stft_nnabla = nyr.d + 1j * nyi.d

    window_type_scipy = window_type
    if window_type == 'rectangular' or window_type is None:
        window_type_scipy = 'boxcar'

    _f, _t, stft_scipy = sig.stft(x,
                                  window=window_type_scipy,
                                  nperseg=window_size,
                                  noverlap=window_size-stride,
                                  nfft=fft_size,
                                  boundary=None,
                                  padded=False)

    # scipy does a different scaling - take care here
    stft_nnabla /= fft_size // 2

    assert(np.allclose(stft_nnabla,
                       stft_scipy,
                       atol=1e-5, rtol=1e-5))
Beispiel #10
0
def test_function_hook():
    '''
    Testing function hooks in forward and backward
    '''

    x = nn.Variable.from_numpy_array(np.zeros(
        (2, 3), dtype=np.float32)).apply(need_grad=True)
    x.grad.zero()
    h = x + 2
    h.data.zero()
    h.grad.zero()
    y = h * 0.5
    y.data.zero()

    def forward_pre_hook(f):
        assert_allclose(f.outputs[0].d, 0)

    def forward_post_hook(f):
        if f.info.type_name == 'AddScalar':
            assert_allclose(f.outputs[0].d, 2)
        if f.info.type_name == 'MulScalar':
            assert_allclose(f.outputs[0].d, 1)

    def backward_pre_hook(f):
        assert_allclose(f.inputs[0].g, 0)

    def backward_post_hook(f):
        # Both h and x grad will be 0.5
        assert_allclose(f.inputs[0].g, 0.5)

    y.forward(function_pre_hook=forward_pre_hook,
              function_post_hook=forward_post_hook)
    y.backward(function_pre_hook=backward_pre_hook,
               function_post_hook=backward_post_hook)

    x.grad.zero()
    z = x * 0.1
    # Just calling test
    nn.forward_all((y, z),
                   function_pre_hook=lambda f: None,
                   function_post_hook=lambda f: None)
Beispiel #11
0
    def run(self, epoch):

        pbar = trange(self.num_iter_per_epoch,
                      desc='Val at epoch %d' % epoch,
                      disable=self.comm.rank > 0)

        self.reporter.reset(epoch, pbar)
        for i in pbar:
            # wait here until forward-prop has been finished
            self.stream_event_handler.event_synchronize()
            next_image, next_label = self.data.next()
            self.reporter(0)
            self.model.image.data = next_image
            self.model.label.data = next_label
            nn.forward_all([self.model.loss, self.model.error],
                           clear_buffer=True)
            self.stream_event_handler.add_default_stream_event()
            self.reporter.update()

        self.reporter(0, force=True)
        self.reporter.on_epoch_end()
def test_graph_forward_clear_buffer(seed, clear_buffer):
    nn.clear_parameters()

    x = nn.Variable((2, 10))
    h = PF.affine(x, 10, name='hidden')
    y1 = PF.affine(h, 10, name='out1')
    y2 = PF.affine(h, 10, name='out2')

    # input
    rng = np.random.RandomState(seed)
    data = rng.randn(*x.shape)

    # reference values
    x.d = data
    y1.forward()
    y2.forward()
    ref_y1 = y1.d.copy()
    ref_y2 = y2.d.copy()

    # check
    nn.forward_all([y1, y2], clear_buffer=clear_buffer)
    assert_allclose(y1.d, ref_y1)
    assert_allclose(y2.d, ref_y2)
Beispiel #13
0
def reconstruct(args):

    # get context
    ctx = get_extension_context(args.context)
    nn.set_default_context(ctx)
    logger.setLevel(logging.ERROR)  # to supress minor messages

    config = read_yaml(args.config)

    dataset_params = config.dataset_params
    model_params = config.model_params

    if args.detailed:
        vis_params = config.visualizer_params
        visualizer = Visualizer(**vis_params)

    if not args.params:
        assert "log_dir" in config, "no log_dir found in config. therefore failed to locate pretrained parameters."
        param_file = os.path.join(
            config.log_dir, config.saved_parameters)
    else:
        param_file = args.params
    nn.load_parameters(param_file)

    bs, h, w, c = [1] + dataset_params.frame_shape
    source = nn.Variable((bs, c, h, w))
    driving_initial = nn.Variable((bs, c, h, w))
    driving = nn.Variable((bs, c, h, w))

    with nn.parameter_scope("kp_detector"):
        kp_source = detect_keypoint(source,
                                    **model_params.kp_detector_params,
                                    **model_params.common_params,
                                    test=True, comm=False)
        persistent_all(kp_source)

    with nn.parameter_scope("kp_detector"):
        kp_driving = detect_keypoint(driving,
                                     **model_params.kp_detector_params,
                                     **model_params.common_params,
                                     test=True, comm=False)
        persistent_all(kp_driving)

    with nn.parameter_scope("generator"):
        generated = occlusion_aware_generator(source,
                                              kp_source=unlink_all(kp_source),
                                              kp_driving=kp_driving,
                                              **model_params.generator_params,
                                              **model_params.common_params,
                                              test=True, comm=False)

    if not args.full and 'sparse_deformed' in generated:
        del generated['sparse_deformed']  # remove needless info

    persistent_all(generated)

    generated['kp_driving'] = kp_driving
    generated['kp_source'] = kp_source

    # generated contains these values;
    # 'mask': <Variable((bs, num_kp+1, h/4, w/4)) when scale_factor=0.25
    # 'sparse_deformed': <Variable((bs, num_kp+1, num_channel, h/4, w/4))  # (bs, num_kp + 1, c, h, w)
    # 'occlusion_map': <Variable((bs, 1, h/4, w/4))
    # 'deformed': <Variable((bs, c, h, w))
    # 'prediction': <Variable((bs, c, h, w))

    mode = "reconstruction"
    if "log_dir" in config:
        result_dir = os.path.join(args.out_dir, os.path.basename(config.log_dir), f"{mode}")
    else:
        result_dir = os.path.join(args.out_dir, "test_result", f"{mode}")

    # create an empty directory to save generated results
    _ = nm.Monitor(result_dir)
    if args.eval:
        os.makedirs(os.path.join(result_dir, "png"), exist_ok=True)

    # load the header images.
    header = imread("imgs/header_combined.png", channel_first=True)

    filenames = sorted(glob.glob(os.path.join(
        dataset_params.root_dir, "test", "*")))
    recon_loss_list = list()

    for filename in tqdm(filenames):
        # process repeated until all the test data is used
        driving_video = read_video(
            filename, dataset_params.frame_shape)  # (#frames, h, w, 3)
        driving_video = np.transpose(
            driving_video, (0, 3, 1, 2))  # (#frames, 3, h, w)

        generated_images = list()
        source_img = driving_video[0]

        source.d = np.expand_dims(source_img, 0)
        driving_initial.d = driving_video[0]

        # compute these in advance and reuse
        nn.forward_all(
            [kp_source["value"], kp_source["jacobian"]], clear_buffer=True)

        num_of_driving_frames = driving_video.shape[0]

        for frame_idx in tqdm(range(num_of_driving_frames)):
            driving.d = driving_video[frame_idx]
            nn.forward_all([generated["prediction"],
                            generated["deformed"]], clear_buffer=True)

            if args.detailed:
                # visualize source w/kp, driving w/kp, deformed source, generated w/kp, generated image, occlusion map
                visualization = visualizer.visualize(
                    source=source.d, driving=driving.d, out=generated)
                if args.full:
                    visualization = reshape_result(visualization)  # (H, W, C)
                combined_image = visualization.transpose(2, 0, 1)  # (C, H, W)

            elif args.only_generated:
                combined_image = np.clip(
                    generated["prediction"].d[0], 0.0, 1.0)
                combined_image = (
                    255*combined_image).astype(np.uint8)  # (C, H, W)

            else:
                # visualize source, driving, and generated image
                driving_fake = np.concatenate([np.clip(driving.d[0], 0.0, 1.0),
                                               np.clip(generated["prediction"].d[0], 0.0, 1.0)], axis=2)
                header_source = np.concatenate([np.clip(header / 255., 0.0, 1.0),
                                                np.clip(source.d[0], 0.0, 1.0)], axis=2)
                combined_image = np.concatenate(
                    [header_source, driving_fake], axis=1)
                combined_image = (255*combined_image).astype(np.uint8)

            generated_images.append(combined_image)
            # compute L1 distance per frame.
            recon_loss_list.append(
                np.mean(np.abs(generated["prediction"].d[0] - driving.d[0])))

        # post process only for reconstruction evaluation.
        if args.eval:
            # crop generated images region only.
            if args.only_generated:
                eval_images = generated_images
            elif args.full:
                eval_images = [_[:, :h, 4*w:5*w] for _ in generated_images]
            elif args.detailed:
                assert generated_images[0].shape == (c, h, 5*w)
                eval_images = [_[:, :, 3*w:4*w] for _ in generated_images]
            else:
                eval_images = [_[:, h:, w:] for _ in generated_images]
            # place them horizontally and save for evaluation.
            image_for_eval = np.concatenate(
                eval_images, axis=2).transpose(1, 2, 0)
            imsave(os.path.join(result_dir, "png", f"{os.path.basename(filename)}.png"),
                   image_for_eval)

        # once each video is generated, save it.
        output_filename = f"{os.path.splitext(os.path.basename(filename))[0]}.mp4"
        if args.output_png:
            monitor_vis = nm.MonitorImage(output_filename, nm.Monitor(result_dir),
                                          interval=1, num_images=1,
                                          normalize_method=lambda x: x)
            for frame_idx, img in enumerate(generated_images):
                monitor_vis.add(frame_idx, img)
        else:
            generated_images = [_.transpose(1, 2, 0) for _ in generated_images]
            # you might need to change ffmpeg_params according to your environment.
            mimsave(f'{os.path.join(result_dir, output_filename)}', generated_images,
                    fps=args.fps,
                    ffmpeg_params=["-pix_fmt", "yuv420p",
                                   "-vcodec", "libx264",
                                   "-f", "mp4",
                                   "-q", "0"])
    print(f"Reconstruction loss: {np.mean(recon_loss_list)}")

    return
Beispiel #14
0
    def run(self, epoch):

        # Update epoch counter of lr scheduler
        self.learning_rate_scheduler.set_epoch(epoch)

        # Training loop
        pbar = trange(self.num_iter_per_epoch,
                      desc='Train at epoch %d' % epoch,
                      disable=self.comm.rank > 0)

        # pbar = range(self.num_iter_per_epoch)

        self.reporter.reset(epoch, pbar)

        for i in pbar:
            # nvtx.range_push("train_{}".format(i))

            # Update learning rate
            lr = self.learning_rate_scheduler.get_lr_and_update()
            self.solver.set_learning_rate(lr * self.lr_factor)

            # wait here until back-prop has been finished
            self.stream_event_handler.event_synchronize()

            next_image, next_label = self.data.next()
            self.model.image.data = next_image
            self.model.label.data = next_label

            # Sample mixup ratios
            if self.mixup is not None:
                self.mixup.reset_mixup_ratio()

            # Synchronizing null-stream and host here makes update faster. I'm not sure why.
            self.stream_event_handler.default_stream_synchronize()

            self.reporter(lr)

            nn.forward_all([self.model.loss, self.model.error],
                           clear_no_need_grad=True)
            # self.model.loss.forward(clear_no_need_grad=True, function_pre_hook=None)
            comm_callback = self.comm.get_all_reduce_callback()
            self.solver.zero_grad()
            self.model.loss.backward(self.loss_scaling,
                                     clear_buffer=True,
                                     communicator_callbacks=comm_callback)

            # Subscript event
            self.stream_event_handler.add_default_stream_event()

            # # Update
            self.solver.weight_decay(self.weight_decay)
            self.solver.update()
            self.reporter.update()

            # if i == 10:
            #     import sys

            # nvtx.range_pop()

        self.reporter(lr, force=True)
        self.reporter.on_epoch_end()
Beispiel #15
0
def train(args, train_dataset, tokenizer):
    """ Train the model """
    # Load the pretrianed model
    nn.load_parameters(args.pretrained_model)
    # Drop final layer for task-specific fine-tuning
    nn.parameter.pop_parameter('affine_seq_class/affine/W')
    nn.parameter.pop_parameter('affine_seq_class/affine/b')

    train_dataloader = data_iterator(
        train_dataset, batch_size=args.train_batch_size)

    global_step = 0
    train_loss = 0.0
    model = BertForSequenceClassification()

    input_ids = nn.Variable((args.train_batch_size, args.max_seq_length))
    attention_mask = nn.Variable((args.train_batch_size, args.max_seq_length))
    token_type_ids = nn.Variable((args.train_batch_size, args.max_seq_length))
    labels = nn.Variable((args.train_batch_size, ))

    input_ids_eval = nn.Variable((args.eval_batch_size, args.max_seq_length))
    attention_mask_eval = nn.Variable(
        (args.eval_batch_size, args.max_seq_length))
    token_type_ids_eval = nn.Variable(
        (args.eval_batch_size, args.max_seq_length))
    labels_eval = nn.Variable((args.eval_batch_size, ))

    activation = F.gelu
    if args.activation == 'relu':
        activation = F.relu
    loss, _, train_error = model(args, input_ids=input_ids, attention_mask=attention_mask,
                                 token_type_ids=token_type_ids, labels=labels,
                                 num_labels=args.num_labels, vocab_size=args.vocab_size,
                                 num_embed_dim=args.num_embed_dim,
                                 num_pos_ids=args.num_position_ids,
                                 num_attention_layers=args.num_attention_layers,
                                 num_attention_embed_dim=args.num_attention_embed_dim,
                                 num_attention_heads=args.num_attention_heads,
                                 num_attention_dim_feedforward=args.num_attention_dim_feedforward,
                                 attention_activation=activation, pool_outmap=args.num_pool_outmap,
                                 embed_dropout_prob=args.embed_dropout,
                                 attention_dropout_prob=args.attention_dropout,
                                 dropout_prob=args.last_dropout, test=False)

    loss.persistent = True
    if args.solver == 'Adam':
        solver = S.Adam(args.learning_rate, eps=args.adam_epsilon)
    else:
        solver = S.AdamW(args.learning_rate, eps=args.adam_epsilon)
    solver.set_parameters(nn.get_parameters())

    monitor = Monitor(args.output_dir)
    monitor_loss = MonitorSeries(
        "Training Loss", monitor, interval=10)
    monitor_eloss = MonitorSeries(
        "Evaluation Loss", monitor, interval=10)
    monitor_train_error = MonitorSeries(
        "Training Error Rate", monitor, interval=10)
    monitor_lr = MonitorSeries(
        "learning Rate", monitor, interval=10)

    total_steps = train_dataloader.size // args.train_batch_size
    var_linear = total_steps * args.num_train_epochs
    var_warmup = total_steps * (args.num_train_epochs - 1)
    for epoch in range(args.num_train_epochs):
        logger.info("Starting Epoch %d out of %d",
                    epoch+1, args.num_train_epochs)
        for it in range(total_steps):
            batch = train_dataloader.next()
            input_ids.d = batch[0]
            attention_mask.d = batch[1]
            token_type_ids.d = batch[2]
            labels.d = batch[3]

            learning_rate_linear = lr_linear(global_step, var_linear)
            learning_rate = args.learning_rate * learning_rate_linear

            if epoch == 0:
                learning_rate = args.learning_rate * (global_step/total_steps)
            if epoch > 0:
                learning_rate_linear = lr_linear(
                    (global_step-total_steps), var_warmup)
                learning_rate = args.learning_rate * learning_rate_linear

            solver.zero_grad()
            nn.forward_all([loss, train_error], clear_no_need_grad=True)
            loss.backward(clear_buffer=True)
            solver.weight_decay(args.weight_decay)
            solver.clip_grad_by_norm(args.max_grad_norm)
            solver.set_learning_rate(learning_rate)
            solver.update()

            monitor_loss.add(
                (train_dataloader.size//args.train_batch_size)*epoch+it,
                loss.d.copy())
            monitor_train_error.add(
                (train_dataloader.size//args.train_batch_size)*epoch+it,
                train_error.d.copy())
            monitor_lr.add(global_step, learning_rate)
            global_step += 1
            train_loss += F.mean(loss.data)

        eval_task_names = (
            "mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
        eval_outputs_dirs = (args.output_dir, args.output_dir +
                             '-MM') if args.task_name == "mnli" else (args.output_dir,)

        results = {}
        for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
            print(eval_task)
            eval_dataset = BERTDataSource(
                args, tokenizer, evaluate=True, shuffle=False)
            if not os.path.exists(eval_output_dir):
                os.makedirs(eval_output_dir)

            eval_dataloader = data_iterator(
                eval_dataset, batch_size=args.eval_batch_size)
            total_eval_steps = eval_dataloader.size // args.eval_batch_size
            eval_loss = 0.0
            nb_eval_steps = 0
            preds = None
            out_label_ids = None
            tmp_eval_loss, logits, eval_error = model(args, input_ids=input_ids_eval,
                                                      attention_mask=attention_mask_eval,
                                                      token_type_ids=token_type_ids_eval, labels=labels_eval,
                                                      num_labels=args.num_labels, vocab_size=args.vocab_size,
                                                      num_embed_dim=args.num_embed_dim,
                                                      num_pos_ids=args.num_position_ids,
                                                      num_attention_layers=args.num_attention_layers,
                                                      num_attention_embed_dim=args.num_attention_embed_dim,
                                                      num_attention_heads=args.num_attention_heads,
                                                      num_attention_dim_feedforward=args.num_attention_dim_feedforward,
                                                      attention_activation=activation, pool_outmap=args.num_pool_outmap,
                                                      embed_dropout_prob=args.embed_dropout,
                                                      attention_dropout_prob=args.attention_dropout,
                                                      dropout_prob=args.last_dropout, test=True)

            tmp_eval_loss.persistent = True
            eval_loss += F.mean(tmp_eval_loss)
            for it in range(total_eval_steps):
                print(it, "  ", total_eval_steps)
                batch_eval = eval_dataloader.next()
                input_ids_eval.d = batch_eval[0]
                attention_mask_eval.d = batch_eval[1]
                token_type_ids_eval.d = batch_eval[2]
                labels_eval.d = batch_eval[3]
                nb_eval_steps += 1
                eval_loss.forward()
                monitor_eloss.add(it, eval_loss.d.copy())

                if preds is None:
                    preds = logits.d.copy()
                    out_label_ids = labels_eval.d.copy()
                else:
                    preds = np.append(preds, logits.d.copy(), axis=0)

                    out_label_ids = np.append(
                        out_label_ids, labels_eval.d.copy(), axis=0)
            eval_loss = eval_loss.d / nb_eval_steps
            if args.output_mode == "classification":
                preds = np.argmax(preds, axis=1)
            elif args.output_mode == "regression":
                preds = np.squeeze(preds)

            result = compute_metrics(eval_task, preds, out_label_ids)
            results.update(result)

            output_eval_file = os.path.join(
                eval_output_dir, "", "eval_results.txt")
            with open(output_eval_file, "a") as writer:
                logger.info("***** Evaluation results {} *****".format(""))
                for key in sorted(result.keys()):
                    logger.info("%d  %s = %s\n", epoch +
                                1, key, str(result[key]))
                    writer.write("%d %s = %s\n" %
                                 (epoch+1, key, str(result[key])))
                print("results", results)
    return results
def test_graph_model(model, seed):
    np.random.seed(313)
    rng = np.random.RandomState(seed)
    x = nn.Variable([2, 3, 4, 4], need_grad=True)
    t = nn.Variable([2, 1])
    x.d = rng.randn(*x.shape)
    t.d = rng.randint(0, 5, size=t.shape)

    nn.set_default_context(nn.Context())

    # Forwardprop by definintion
    nn.clear_parameters()
    if model == "mlp":
        with nn.parameter_scope('fc1'):
            z = PF.affine(x, 3)
        z2 = F.relu(z, inplace=True)
        with nn.parameter_scope('fc2'):
            z3 = PF.affine(z2, 5)
            z4 = PF.affine(z2, 5)
    elif model == "recurrent":
        with nn.parameter_scope('fc1'):
            z = PF.affine(x, 4)
            z2 = F.relu(z, inplace=True)
        h = z2
        for _ in range(2):
            with nn.parameter_scope('fc2'):
                h = PF.affine(h, 4)
                h = F.relu(h, inplace=True)
        with nn.parameter_scope('fc3'):
            z3 = PF.affine(h, 5)
            z4 = PF.affine(h, 5)
    elif model == "convolution":
        with nn.parameter_scope('conv1'):
            z = PF.convolution(x, 3, (2, 2))
            z2 = F.relu(z, inplace=True)
        with nn.parameter_scope('fc2'):
            z3 = PF.affine(z2, 5)
            z4 = PF.affine(z2, 5)
    else:
        raise ValueError()
    l1 = F.softmax_cross_entropy(z3, t, 1)
    L1 = F.mean(l1)
    l2 = F.softmax_cross_entropy(z4, t, 1)
    L2 = F.mean(l2)

    # Forwardprop
    nn.forward_all([L1, L2])

    parameters = nn.get_parameters()

    # Backprop for L1
    # Diff should be initialized since they are always accumulated
    x.grad.zero()
    initialize_grad(parameters)
    L1.backward(clear_buffer=True)
    inputs = [x] + list(parameters.values())

    from nbla_test_utils import \
        compute_analytical_and_numerical_grad_graph as grads
    agrad, ngrad = grads(L1, inputs, 1e-3, False)
    assert_allclose(ngrad, agrad, atol=1.05e-2)

    # Backprop for L2
    # Diff should be initialized since they are always accumulated
    x.grad.zero()
    initialize_grad(parameters)
    L2.backward(clear_buffer=True)
    inputs = [x] + list(parameters.values())

    from nbla_test_utils import \
        compute_analytical_and_numerical_grad_graph as grads
    agrad, ngrad = grads(L2, inputs, 1e-3, False)
    assert_allclose(ngrad, agrad, atol=1.05e-2)
Beispiel #17
0
def colorize_video(conf, ref):
    '''
    Colorize the input frames and save the output as colorized frames and video
    Args:
        conf: conf object
        ref: refrence image
    '''
    def load_weights():
        nn.load_parameters(f'{conf.checkpoint.path}/{conf.checkpoint.vgg19}')
        nn.load_parameters(
            f'{conf.checkpoint.path}/{conf.checkpoint.non_local}')
        nn.load_parameters(
            f'{conf.checkpoint.path}/{conf.checkpoint.colornet}')

    reference_file = os.path.join(conf.data.ref_path, ref)
    output_path = os.path.join(conf.data.output_path,
                               'out_' + ref.split(".")[0])
    if not os.path.exists(output_path):
        os.makedirs(output_path)
    filenames = [
        f for f in os.listdir(conf.data.input_path)
        if os.path.isfile(os.path.join(conf.data.input_path, f))
    ]
    print(f"processing the folder: {conf.data.input_path}")
    # sort the frames in order as in video
    filenames.sort(key=lambda f: int("".join(filter(str.isdigit, f) or -1)))
    # read reference name from reference input else first frame assuming it's
    # colorized
    ref_name = conf.data.input_path + \
        filenames[0] if conf.data.frame_propagation else reference_file
    i_last_lab_predict = None
    # Load the Weights
    nn.clear_parameters()
    load_weights()
    print(f"reference = {ref_name}")
    # Preprocess reference image
    frame_ref = np.array(Image.open(ref_name))
    ib_lab_large = nn.Variable.from_numpy_array(
        transform(frame_ref, conf.data.image_size))
    for iter_num, frame_name in enumerate(filenames):
        print("input =", frame_name)
        frame = Image.open(os.path.join(conf.data.input_path, frame_name))
        ia_lab_large = nn.Variable.from_numpy_array(
            transform(np.array(frame), conf.data.image_size))
        ia_lab, ib_lab = interpolate_nn(ia_lab_large,
                                        ib_lab_large,
                                        scale=(0.5, 0.5))
        ia_l = ia_lab[:, 0:1, :, :]
        if i_last_lab_predict is None:
            if conf.data.frame_propagation:
                i_last_lab_predict = ib_lab
            else:
                i_last_lab_predict = nn.Variable(ia_lab.shape)
        i_reference_l = ib_lab[:, 0:1, :, :]
        i_reference_ab = ib_lab[:, 1:3, :, :]
        i_reference_rgb = preprocess.lab2rgb(
            F.concatenate(preprocess.uncenter_l(i_reference_l, conf),
                          i_reference_ab,
                          axis=1))
        if type(i_last_lab_predict).__module__ == "numpy":
            i_last_lab_predict_nn = nn.Variable.from_numpy_array(
                i_last_lab_predict)
        else:
            i_last_lab_predict_nn = i_last_lab_predict
        t_start = time.time()
        features_b_nn = vgg_net(i_reference_rgb, pre_process=True, fix=True)
        i_current_ab_predict, _i_current_nonlocal_lab, _features_gray = frame_colorization(
            ia_lab,
            ib_lab,
            i_last_lab_predict_nn,
            features_b_nn,
            feature_noise=0,
            temperature=1e-10)
        # forward the network
        nn.forward_all([i_current_ab_predict])
        i_last_lab_predict = np.concatenate(
            (ia_l.data.data, i_current_ab_predict.data.data), axis=1)
        print(f"Runtime: {time.time() - t_start:.2g} second")
        rgb_frame = get_rgb_frame(ia_lab_large.d, i_current_ab_predict, conf)
        preprocess.save_frames(rgb_frame, output_path, iter_num)
        iter_num = iter_num + 1
    # save the video
    preprocess.frames2vid(frame_folder=output_path,
                          frame_shape=conf.data.image_size,
                          output_dir=output_path,
                          filename=conf.data.output_video)
def test_graph_rewire(seed, clear_buffer):
    nn.clear_parameters()

    # A. defining graph definition utility
    def mlp2(x, scope):
        with nn.parameter_scope(scope):
            h = F.tanh(PF.affine(x, 10, name='a1'))
            h = F.tanh(PF.affine(h, 10, name='a1'))
            return h

    # A. Create a graph A.
    xa = nn.Variable((2, 10), need_grad=True)
    ya = mlp2(xa, 'a')

    # B. Create a graph B.
    xb = nn.Variable((2, 10), need_grad=True)
    yb1 = mlp2(xb, 'b1')
    yb2 = mlp2(xb, 'b2')

    # C. Create directly connected graph.
    xc = nn.Variable((2, 10))
    h = mlp2(xc, 'a')
    yc1 = mlp2(h, 'b1')
    yc2 = mlp2(h, 'b2')

    # D. Rewire the graphs A and B.
    xb.rewire_on(ya)

    # E. Check whether the results are the same.
    rng = np.random.RandomState(seed)
    data = rng.randn(*xa.shape)
    xa.d = data
    xc.d = data
    params = nn.get_parameters()

    def zero_grad():
        for p in params.values():
            p.grad.zero()

    def backup_params():
        return [p.g.copy() for p in params.values()]

    # Checking forward
    nn.forward_all([yb1, yb2, yc1, yc2], clear_no_need_grad=clear_buffer)
    assert_allclose(yb1.d, yc1.d)
    assert_allclose(yb2.d, yc2.d)

    # Checking backward for yb1 and yc1
    # for now, the first backward cannot be called with clear_buffer=True
    zero_grad()
    yb1.backward(clear_buffer=False)
    gb = backup_params()
    zero_grad()
    yc1.backward(clear_buffer=False)
    gc = backup_params()
    assert_allclose(xa.d, xc.d)
    for b, c in zip(gb, gc):
        assert_allclose(b, c)

    # Checking backward for yb2 and yc2
    zero_grad()
    yb2.backward(clear_buffer=clear_buffer)
    gb = backup_params()
    zero_grad()
    yc2.backward(clear_buffer=clear_buffer)
    gc = backup_params()
    assert_allclose(xa.d, xc.d)
    for b, c in zip(gb, gc):
        assert_allclose(b, c)
Beispiel #19
0
def train(args):

    # Variable size.
    bs, ch, h, w = args.batch_size, 3, args.loadSizeH, args.loadSizeW

    # Determine normalization method.
    if args.norm == "instance":
        norm_layer = functools.partial(PF.instance_normalization,
                                       fix_parameters=True,
                                       no_bias=True,
                                       no_scale=True)
    else:
        norm_layer = PF.batch_normalization

    # Prepare Generator and Discriminator based on user config.
    generator = functools.partial(models.generator,
                                  input_nc=args.input_nc,
                                  output_nc=args.output_nc,
                                  ngf=args.ngf,
                                  norm_layer=norm_layer,
                                  use_dropout=False,
                                  n_blocks=9,
                                  padding_type='reflect')
    discriminator = functools.partial(models.discriminator,
                                      input_nc=args.output_nc,
                                      ndf=args.ndf,
                                      n_layers=args.n_layers_D,
                                      norm_layer=norm_layer,
                                      use_sigmoid=False)

    # --------------------- Computation Graphs --------------------

    # Input images and masks of both source / target domain
    x = nn.Variable([bs, ch, h, w], need_grad=False)
    a = nn.Variable([bs, 1, h, w], need_grad=False)

    y = nn.Variable([bs, ch, h, w], need_grad=False)
    b = nn.Variable([bs, 1, h, w], need_grad=False)

    # Apply image augmentation and get an unlinked variable
    xa_aug = image_augmentation(args, x, a)
    xa_aug.persistent = True
    xa_aug_unlinked = xa_aug.get_unlinked_variable()

    yb_aug = image_augmentation(args, y, b)
    yb_aug.persistent = True
    yb_aug_unlinked = yb_aug.get_unlinked_variable()

    # variables used for Image Pool
    x_history = nn.Variable([bs, ch, h, w])
    a_history = nn.Variable([bs, 1, h, w])
    y_history = nn.Variable([bs, ch, h, w])
    b_history = nn.Variable([bs, 1, h, w])

    # Generate Images (x -> y')
    with nn.parameter_scope("gen_x2y"):
        yb_fake = generator(xa_aug_unlinked)
    yb_fake.persistent = True
    yb_fake_unlinked = yb_fake.get_unlinked_variable()

    # Generate Images (y -> x')
    with nn.parameter_scope("gen_y2x"):
        xa_fake = generator(yb_aug_unlinked)
    xa_fake.persistent = True
    xa_fake_unlinked = xa_fake.get_unlinked_variable()

    # Reconstruct Images (y' -> x)
    with nn.parameter_scope("gen_y2x"):
        xa_recon = generator(yb_fake_unlinked)
    xa_recon.persistent = True

    # Reconstruct Images (x' -> y)
    with nn.parameter_scope("gen_x2y"):
        yb_recon = generator(xa_fake_unlinked)
    yb_recon.persistent = True

    # Use Discriminator on y' and x'
    with nn.parameter_scope("dis_y"):
        d_y_fake = discriminator(yb_fake_unlinked)
    d_y_fake.persistent = True

    with nn.parameter_scope("dis_x"):
        d_x_fake = discriminator(xa_fake_unlinked)
    d_x_fake.persistent = True

    # Use Discriminator on y and x
    with nn.parameter_scope("dis_y"):
        d_y_real = discriminator(yb_aug_unlinked)

    with nn.parameter_scope("dis_x"):
        d_x_real = discriminator(xa_aug_unlinked)

    # Identity Mapping (x -> x)
    with nn.parameter_scope("gen_y2x"):
        xa_idt = generator(xa_aug_unlinked)

    # Identity Mapping (y -> y)
    with nn.parameter_scope("gen_x2y"):
        yb_idt = generator(yb_aug_unlinked)

    # -------------------- Loss --------------------

    # (LS)GAN Loss (for Discriminator)
    loss_dis_x = (loss.lsgan_loss(d_y_fake, False) +
                  loss.lsgan_loss(d_y_real, True)) * 0.5
    loss_dis_y = (loss.lsgan_loss(d_x_fake, False) +
                  loss.lsgan_loss(d_x_real, True)) * 0.5
    loss_dis = loss_dis_x + loss_dis_y

    # Cycle Consistency Loss
    loss_cyc_x = args.lambda_cyc * loss.recon_loss(xa_recon, xa_aug_unlinked)
    loss_cyc_y = args.lambda_cyc * loss.recon_loss(yb_recon, yb_aug_unlinked)
    loss_cyc = loss_cyc_x + loss_cyc_y

    # Identity Mapping Loss
    loss_idt_x = args.lambda_idt * loss.recon_loss(xa_idt, xa_aug_unlinked)
    loss_idt_y = args.lambda_idt * loss.recon_loss(yb_idt, yb_aug_unlinked)
    loss_idt = loss_idt_x + loss_idt_y

    # Context Preserving Loss
    loss_ctx_x = args.lambda_ctx * \
        loss.context_preserving_loss(xa_aug_unlinked, yb_fake_unlinked)
    loss_ctx_y = args.lambda_ctx * \
        loss.context_preserving_loss(yb_aug_unlinked, xa_fake_unlinked)
    loss_ctx = loss_ctx_x + loss_ctx_y

    # (LS)GAN Loss (for Generator)
    d_loss_gen_x = loss.lsgan_loss(d_x_fake, True)
    d_loss_gen_y = loss.lsgan_loss(d_y_fake, True)
    d_loss_gen = d_loss_gen_x + d_loss_gen_y

    # Total Loss for Generator
    loss_gen = loss_cyc + loss_idt + loss_ctx + d_loss_gen

    # --------------------- Solvers --------------------

    # Initial learning rates
    G_lr = args.learning_rate_G
    #D_lr = args.learning_rate_D
    # As opposed to the description in the paper, D_lr is set the same as G_lr.
    D_lr = args.learning_rate_G

    # Define solvers
    solver_gen_x2y = S.Adam(G_lr, args.beta1, args.beta2)
    solver_gen_y2x = S.Adam(G_lr, args.beta1, args.beta2)
    solver_dis_x = S.Adam(D_lr, args.beta1, args.beta2)
    solver_dis_y = S.Adam(D_lr, args.beta1, args.beta2)

    # Set Parameters to each solver
    with nn.parameter_scope("gen_x2y"):
        solver_gen_x2y.set_parameters(nn.get_parameters())

    with nn.parameter_scope("gen_y2x"):
        solver_gen_y2x.set_parameters(nn.get_parameters())

    with nn.parameter_scope("dis_x"):
        solver_dis_x.set_parameters(nn.get_parameters())

    with nn.parameter_scope("dis_y"):
        solver_dis_y.set_parameters(nn.get_parameters())

    # create convenient functions manipulating Solvers
    def solvers_zero_grad():
        # Zeroing Gradients of all solvers
        solver_gen_x2y.zero_grad()
        solver_gen_y2x.zero_grad()
        solver_dis_x.zero_grad()
        solver_dis_y.zero_grad()

    def solvers_update_parameters(new_D_lr, new_G_lr):
        # Learning rate updater
        solver_gen_x2y.set_learning_rate(new_G_lr)
        solver_gen_y2x.set_learning_rate(new_G_lr)
        solver_dis_x.set_learning_rate(new_D_lr)
        solver_dis_y.set_learning_rate(new_D_lr)

    # -------------------- Data Iterators --------------------

    ds_train_A = insta_gan_data_source(args,
                                       train=True,
                                       domain="A",
                                       shuffle=True)
    di_train_A = insta_gan_data_iterator(ds_train_A, args.batch_size)

    ds_train_B = insta_gan_data_source(args,
                                       train=True,
                                       domain="B",
                                       shuffle=True)
    di_train_B = insta_gan_data_iterator(ds_train_B, args.batch_size)

    # -------------------- Monitors --------------------

    monitoring_targets_dis = {
        'discriminator_loss_x': loss_dis_x,
        'discriminator_loss_y': loss_dis_y
    }
    monitors_dis = Monitors(args, monitoring_targets_dis)

    monitoring_targets_gen = {
        'generator_loss_x': d_loss_gen_x,
        'generator_loss_y': d_loss_gen_y,
        'reconstruction_loss_x': loss_cyc_x,
        'reconstruction_loss_y': loss_cyc_y,
        'identity_mapping_loss_x': loss_idt_x,
        'identity_mapping_loss_y': loss_idt_y,
        'content_preserving_loss_x': loss_ctx_x,
        'content_preserving_loss_y': loss_ctx_y
    }
    monitors_gen = Monitors(args, monitoring_targets_gen)

    monitor_time = MonitorTimeElapsed("Training_time",
                                      Monitor(args.monitor_path),
                                      args.log_step)

    # Training loop
    epoch = 0
    n_images = max([ds_train_B.size, ds_train_A.size])
    print("{} images exist.".format(n_images))
    max_iter = args.max_epoch * n_images // args.batch_size
    decay_iter = args.max_epoch - args.lr_decay_start_epoch

    for i in range(max_iter):
        if i % (n_images // args.batch_size) == 0 and i > 0:
            # Learning Rate Decay
            epoch += 1
            print("epoch {}".format(epoch))
            if epoch >= args.lr_decay_start_epoch:
                new_D_lr = D_lr * \
                    (1.0 - max(0, epoch - args.lr_decay_start_epoch - 1) /
                     float(decay_iter - 1))
                new_G_lr = G_lr * \
                    (1.0 - max(0, epoch - args.lr_decay_start_epoch - 1) /
                     float(decay_iter - 1))
                solvers_update_parameters(new_D_lr, new_G_lr)
                print("Current learning rate for Discriminator: {}".format(
                    solver_dis_x.learning_rate()))
                print("Current learning rate for Generator: {}".format(
                    solver_gen_x2y.learning_rate()))

        # Get data
        x_data, a_data = di_train_A.next()
        y_data, b_data = di_train_B.next()
        x.d, a.d = x_data, a_data
        y.d, b.d = y_data, b_data

        solvers_zero_grad()

        # Image Augmentation
        nn.forward_all([xa_aug, yb_aug], clear_buffer=True)

        # Generate fake images
        nn.forward_all([xa_fake, yb_fake], clear_no_need_grad=True)

        # -------- Train Discriminator --------

        loss_dis.forward(clear_no_need_grad=True)
        monitors_dis.add(i)

        loss_dis.backward(clear_buffer=True)
        solver_dis_x.update()
        solver_dis_y.update()

        # -------- Train Generators --------

        # since the gradients computed above remain, reset to zero.
        xa_fake_unlinked.grad.zero()
        yb_fake_unlinked.grad.zero()
        solvers_zero_grad()

        loss_gen.forward(clear_no_need_grad=True)

        monitors_gen.add(i)
        monitor_time.add(i)

        loss_gen.backward(clear_buffer=True)
        xa_fake.backward(grad=None, clear_buffer=True)
        yb_fake.backward(grad=None, clear_buffer=True)
        solver_gen_x2y.update()
        solver_gen_y2x.update()

        if i % (n_images // args.batch_size) == 0:
            # save translation results after every epoch.
            save_images(args,
                        i,
                        xa_aug,
                        yb_fake,
                        domain="x",
                        reconstructed=xa_recon)
            save_images(args,
                        i,
                        yb_aug,
                        xa_fake,
                        domain="y",
                        reconstructed=yb_recon)

    # save pretrained parameters
    nn.save_parameters(os.path.join(args.model_save_path,
                                    'params_%06d.h5' % i))
Beispiel #20
0
def test_prohibit_clear_data():
    import nnabla.functions as F
    nn.prefer_cached_array(False)
    shape = (2, 3, 4)
    var_np = np.random.rand(*shape)

    # the case of root variable
    x1 = nn.Variable.from_numpy_array(var_np)
    y1 = F.reshape(x1, (-1, ), inplace=True)
    y1 = F.reshape(y1, shape, inplace=True) * 2

    x2 = nn.Variable.from_numpy_array(var_np)
    y2 = F.reshape(x2, (-1, ), inplace=False)
    y2 = F.reshape(y2, shape, inplace=False) * 2

    nn.forward_all([y1, y2], clear_buffer=True)
    assert_allclose(x1.d, x2.d)
    assert_allclose(y1.d, y2.d)

    # the case of persistent variable
    x1 = nn.Variable.from_numpy_array(var_np)
    p_y1 = F.mul_scalar(x1, 2).apply(persistent=True)
    y1 = F.reshape(p_y1, (-1, ), inplace=True)
    y1 = F.reshape(y1, shape, inplace=True) * 2

    x2 = nn.Variable.from_numpy_array(var_np)
    p_y2 = F.mul_scalar(x2, 2).apply(persistent=True)
    y2 = F.reshape(p_y2, (-1, ), inplace=False)
    y2 = F.reshape(y2, shape, inplace=False) * 2

    nn.forward_all([y1, y2], clear_buffer=True)
    assert_allclose(p_y1.d, p_y2.d)
    assert_allclose(y1.d, y2.d)

    # the case of rewire_on root variable
    # graph A: x11 -> f_inplace -> y11
    x11 = nn.Variable.from_numpy_array(var_np)
    y11 = F.reshape(x11, (-1, ), inplace=True)

    # graph B: x12 -> f_inplace -> mul_scalar -> y12
    x12 = nn.Variable(shape=y11.shape)
    y12 = F.reshape(x12, shape, inplace=True) * 2

    # graph A->B: x11 -> f_inplace -> f_inplace -> mul_scalar -> y12
    x12.rewire_on(y11)

    x2 = nn.Variable.from_numpy_array(var_np)
    y2 = F.reshape(x2, (-1, ), inplace=False)
    y2 = F.reshape(y2, shape, inplace=False) * 2

    nn.forward_all([y12, y2], clear_buffer=True)
    assert_allclose(x11.d, x2.d)
    assert_allclose(y12.d, y2.d)

    # the case of rewire_on persistent variable
    # graph A: x11 -> mul_scalar -> p_x11 -> f_inplace -> y11
    x11 = nn.Variable.from_numpy_array(var_np)
    p_x11 = F.mul_scalar(x11, 2).apply(persistent=True)
    y11 = F.reshape(p_x11, (-1, ), inplace=True)

    # graph B: x12 -> f_inplace -> mul_scalar -> y12
    x12 = nn.Variable(shape=y11.shape)
    y12 = F.reshape(x12, shape, inplace=True) * 2

    # graph A->B: ... -> p_x11 -> f_inplace -> f_inplace -> mul_scalar -> y12
    x12.rewire_on(y11)

    x2 = nn.Variable.from_numpy_array(var_np)
    p_x2 = F.mul_scalar(x2, 2).apply(persistent=True)
    y2 = F.reshape(p_x2, (-1, ), inplace=False)
    y2 = F.reshape(y2, shape, inplace=False) * 2

    nn.forward_all([y12, y2], clear_buffer=True)
    assert_allclose(p_x11.d, p_x2.d)
    assert_allclose(y12.d, y2.d)
Beispiel #21
0
def animate(args):

    # get context
    ctx = get_extension_context(args.context)
    nn.set_default_context(ctx)
    logger.setLevel(logging.ERROR)  # to supress minor messages

    if not args.config:
        assert not args.params, "pretrained weights file is given, but corresponding config file is not. Please give both."
        download_provided_file(
            "https://nnabla.org/pretrained-models/nnabla-examples/GANs/first-order-model/voxceleb_trained_info.yaml"
        )
        args.config = 'voxceleb_trained_info.yaml'

        download_provided_file(
            "https://nnabla.org/pretrained-models/nnabla-examples/GANs/first-order-model/pretrained_fomm_params.h5"
        )

    config = read_yaml(args.config)

    dataset_params = config.dataset_params
    model_params = config.model_params

    if args.detailed:
        vis_params = config.visualizer_params
        visualizer = Visualizer(**vis_params)

    if not args.params:
        assert "log_dir" in config, "no log_dir found in config. therefore failed to locate pretrained parameters."
        param_file = os.path.join(config.log_dir, config.saved_parameters)
    else:
        param_file = args.params
    print(f"Loading {param_file} for image animation...")
    nn.load_parameters(param_file)

    bs, h, w, c = [1] + dataset_params.frame_shape
    source = nn.Variable((bs, c, h, w))
    driving_initial = nn.Variable((bs, c, h, w))
    driving = nn.Variable((bs, c, h, w))

    filename = args.driving

    # process repeated until all the test data is used
    driving_video = read_video(
        filename, dataset_params.frame_shape)  # (#frames, h, w, 3)
    driving_video = np.transpose(driving_video,
                                 (0, 3, 1, 2))  # (#frames, 3, h, w)

    source_img = imread(args.source, channel_first=True,
                        size=(256, 256)) / 255.
    source_img = source_img[:3]

    source.d = np.expand_dims(source_img, 0)
    driving_initial.d = driving_video[0][:3, ]

    with nn.parameter_scope("kp_detector"):
        kp_source = detect_keypoint(source,
                                    **model_params.kp_detector_params,
                                    **model_params.common_params,
                                    test=True,
                                    comm=False)
        persistent_all(kp_source)

    with nn.parameter_scope("kp_detector"):
        kp_driving_initial = detect_keypoint(driving_initial,
                                             **model_params.kp_detector_params,
                                             **model_params.common_params,
                                             test=True,
                                             comm=False)
        persistent_all(kp_driving_initial)

    with nn.parameter_scope("kp_detector"):
        kp_driving = detect_keypoint(driving,
                                     **model_params.kp_detector_params,
                                     **model_params.common_params,
                                     test=True,
                                     comm=False)
        persistent_all(kp_driving)

    if args.adapt_movement_scale:
        nn.forward_all([
            kp_source["value"], kp_source["jacobian"],
            kp_driving_initial["value"], kp_driving_initial["jacobian"]
        ])
        source_area = ConvexHull(kp_source['value'].d[0]).volume
        driving_area = ConvexHull(kp_driving_initial['value'].d[0]).volume
        adapt_movement_scale = np.sqrt(source_area) / np.sqrt(driving_area)
    else:
        adapt_movement_scale = 1

    kp_norm = adjust_kp(kp_source=unlink_all(kp_source),
                        kp_driving=kp_driving,
                        kp_driving_initial=unlink_all(kp_driving_initial),
                        adapt_movement_scale=adapt_movement_scale,
                        use_relative_movement=args.unuse_relative_movement,
                        use_relative_jacobian=args.unuse_relative_jacobian)
    persistent_all(kp_norm)

    with nn.parameter_scope("generator"):
        generated = occlusion_aware_generator(source,
                                              kp_source=unlink_all(kp_source),
                                              kp_driving=kp_norm,
                                              **model_params.generator_params,
                                              **model_params.common_params,
                                              test=True,
                                              comm=False)

    if not args.full and 'sparse_deformed' in generated:
        del generated['sparse_deformed']  # remove needless info

    persistent_all(generated)

    generated['kp_driving'] = kp_driving
    generated['kp_source'] = kp_source
    generated['kp_norm'] = kp_norm

    # generated contains these values;
    # 'mask': <Variable((bs, num_kp+1, h/4, w/4)) when scale_factor=0.25
    # 'sparse_deformed': <Variable((bs, num_kp+1, num_channel, h/4, w/4))  # (bs, num_kp + 1, c, h, w)
    # 'occlusion_map': <Variable((bs, 1, h/4, w/4))
    # 'deformed': <Variable((bs, c, h, w))
    # 'prediction': <Variable((bs, c, h, w))

    mode = "arbitrary"
    if "log_dir" in config:
        result_dir = os.path.join(args.out_dir,
                                  os.path.basename(config.log_dir), f"{mode}")
    else:
        result_dir = os.path.join(args.out_dir, "test_result", f"{mode}")

    # create an empty directory to save generated results
    _ = nm.Monitor(result_dir)

    # load the header images.
    header = imread("imgs/header_combined.png", channel_first=True)
    generated_images = list()

    # compute these in advance and reuse
    nn.forward_all([kp_source["value"], kp_source["jacobian"]],
                   clear_buffer=True)
    nn.forward_all(
        [kp_driving_initial["value"], kp_driving_initial["jacobian"]],
        clear_buffer=True)

    num_of_driving_frames = driving_video.shape[0]

    for frame_idx in tqdm(range(num_of_driving_frames)):
        driving.d = driving_video[frame_idx][:3, ]
        nn.forward_all([generated["prediction"], generated["deformed"]],
                       clear_buffer=True)

        if args.detailed:
            # visualize source w/kp, driving w/kp, deformed source, generated w/kp, generated image, occlusion map
            visualization = visualizer.visualize(source=source.d,
                                                 driving=driving.d,
                                                 out=generated)
            if args.full:
                visualization = reshape_result(visualization)  # (H, W, C)
            combined_image = visualization.transpose(2, 0, 1)  # (C, H, W)

        elif args.only_generated:
            combined_image = np.clip(generated["prediction"].d[0], 0.0, 1.0)
            combined_image = (255 * combined_image).astype(
                np.uint8)  # (C, H, W)

        else:
            # visualize source, driving, and generated image
            driving_fake = np.concatenate([
                np.clip(driving.d[0], 0.0, 1.0),
                np.clip(generated["prediction"].d[0], 0.0, 1.0)
            ],
                                          axis=2)
            header_source = np.concatenate([
                np.clip(header / 255., 0.0, 1.0),
                np.clip(source.d[0], 0.0, 1.0)
            ],
                                           axis=2)
            combined_image = np.concatenate([header_source, driving_fake],
                                            axis=1)
            combined_image = (255 * combined_image).astype(np.uint8)

        generated_images.append(combined_image)

    # once each video is generated, save it.
    output_filename = f"{os.path.splitext(os.path.basename(filename))[0]}.mp4"
    output_filename = f"{os.path.basename(args.source)}_by_{output_filename}"
    output_filename = output_filename.replace("#", "_")
    if args.output_png:
        monitor_vis = nm.MonitorImage(output_filename,
                                      nm.Monitor(result_dir),
                                      interval=1,
                                      num_images=1,
                                      normalize_method=lambda x: x)
        for frame_idx, img in enumerate(generated_images):
            monitor_vis.add(frame_idx, img)
    else:
        generated_images = [_.transpose(1, 2, 0) for _ in generated_images]
        # you might need to change ffmpeg_params according to your environment.
        mimsave(f'{os.path.join(result_dir, output_filename)}',
                generated_images,
                fps=args.fps,
                ffmpeg_params=[
                    "-pix_fmt", "yuv420p", "-vcodec", "libx264", "-f", "mp4",
                    "-q", "0"
                ])

    return
Beispiel #22
0
def CNN_run(args, model):

    data_iterator_train, data_iterator_valid, num_class = \
                get_data_iterator_and_num_class(args)

    channels, image_height, image_width = 3, args.height, args.width
    batch_size = args.batch_size
    initial_model_lr = args.model_lr

    one_epoch = data_iterator_train.size // batch_size
    max_iter = args.epoch * one_epoch
    val_iter = data_iterator_valid.size // batch_size

    # Create monitor.
    monitor = Monitor(args.monitor_path)
    monitor_loss = MonitorSeries("Training loss", monitor, interval=100)
    monitor_err = MonitorSeries("Training error", monitor, interval=100)
    monitor_vloss = MonitorSeries("Test loss", monitor, interval=100)
    monitor_verr = MonitorSeries("Test error", monitor, interval=100)

    # prepare variables and graph used for test
    image_valid = nn.Variable(
        (batch_size, channels, image_height, image_width))
    label_valid = nn.Variable((batch_size, 1))
    input_image_valid = {"image": image_valid, "label": label_valid}

    pred_valid = construct_networks(args,
                                    image_valid,
                                    model,
                                    num_class,
                                    test=True)
    pred_valid.persistent = True
    loss_valid = loss_function(pred_valid, label_valid)
    top_1e_valid = F.mean(F.top_n_error(pred_valid, label_valid))

    # prepare variables and graph used for training
    image_train = nn.Variable(
        (batch_size, channels, image_height, image_width))
    label_train = nn.Variable((batch_size, 1))
    input_image_train = {"image": image_train, "label": label_train}

    pred_train = construct_networks(args,
                                    image_train,
                                    model,
                                    num_class,
                                    test=False)
    loss_train = loss_function(pred_train, label_train)
    top_1e_train = F.mean(F.top_n_error(pred_train, label_train))

    # prepare solvers
    solver = S.Momentum(initial_model_lr)
    solver.set_parameters(nn.get_parameters())

    # Training-loop
    for i in range(max_iter):
        image, label = data_iterator_train.next()
        input_image_train["image"].d = image
        input_image_train["label"].d = label
        nn.forward_all([loss_train, top_1e_train], clear_no_need_grad=True)

        monitor_loss.add(i, loss_train.d.copy())
        monitor_err.add(i, top_1e_train.d.copy())

        if args.lr_control_model:
            new_lr = learning_rate_scheduler(i, max_iter, initial_model_lr, 0)
            solver.set_learning_rate(new_lr)

        solver.zero_grad()
        loss_train.backward(clear_buffer=True)

        if args.with_grad_clip_model:
            for k, v in nn.get_parameters().items():
                v.grad.copy_from(
                    F.clip_by_norm(v.grad, args.grad_clip_value_model))

        # update parameters
        solver.weight_decay(args.weight_decay_model)
        solver.update()

        if i % args.model_save_interval == 0:
            # Validation during training.
            ve = 0.
            vloss = 0.
            for j in range(val_iter):
                v_image, v_label = data_iterator_valid.next()
                input_image_valid["image"].d = v_image
                input_image_valid["label"].d = v_label
                nn.forward_all([loss_valid, top_1e_valid], clear_buffer=True)
                vloss += loss_valid.d.copy()
                ve += top_1e_valid.d.copy()

            ve /= val_iter
            vloss /= val_iter
            monitor_vloss.add(i, vloss)
            monitor_verr.add(i, ve)

            nn.save_parameters(
                os.path.join(args.model_save_path, 'params_{}.h5'.format(i)))

    ve = 0.
    vloss = 0.
    for j in range(val_iter):
        v_image, v_label = data_iterator_valid.next()
        input_image_valid["image"].d = v_image
        input_image_valid["label"].d = v_label
        nn.forward_all([loss_valid, top_1e_valid], clear_buffer=True)
        vloss += loss_valid.d.copy()
        ve += top_1e_valid.d.copy()

    ve /= val_iter
    vloss /= val_iter
    monitor_vloss.add(i, vloss)
    monitor_verr.add(i, ve)

    nn.save_parameters(
        os.path.join(args.model_save_path, 'params_{}.h5'.format(i)))

    return