Beispiel #1
0
    def update_search_space(self, search_space):
        """
        Get search space

        Parameters
        ----------
        search_space : dict
            Search space
        """
        logger.info('Update search space %s', search_space)
        self.searchspace_json = search_space
        self.space = json2space(self.searchspace_json)

        self.random_state = np.random.RandomState()
        self.population = []
        is_rand = dict()

        for item in self.space:
            is_rand[item] = True

        for i in range(self.population_size):
            hyper_parameters = json2parameter(
                self.searchspace_json, is_rand, self.random_state)
            hyper_parameters = split_index(hyper_parameters)
            checkpoint_dir = os.path.join(self.all_checkpoint_dir, str(i))
            hyper_parameters['load_checkpoint_dir'] = os.path.join(checkpoint_dir, str(self.epoch))
            hyper_parameters['save_checkpoint_dir'] = os.path.join(checkpoint_dir, str(self.epoch))
            self.population.append(TrialInfo(checkpoint_dir=checkpoint_dir, hyper_parameters=hyper_parameters))
Beispiel #2
0
    def _generate_individual(self, parameter_id):
        """
        This function will generate the config for a trial.
        If at the first generation, randomly generates individuals to satisfy self.population_size.
        Otherwise, random choose a pair of individuals and compare their fitnesses.
        The worst of the pair will be removed. Copy the best of the pair and mutate it to generate a new individual.

        Parameters
        ----------

        parameter_id : int

        Returns
        -------
        dict
            A group of candidate parameters that evolution tuner generated.
        """
        pos = -1

        for i in range(len(self.population)):
            if self.population[i].result is None:
                pos = i
                break

        if pos != -1:
            indiv = copy.deepcopy(self.population[pos])
            self.population.pop(pos)
        else:
            random.shuffle(self.population)
            # avoid only 1 individual has result
            if len(
                    self.population
            ) > 1 and self.population[0].result < self.population[1].result:
                self.population[0] = self.population[1]

            # mutation on the worse individual
            space = json2space(self.searchspace_json,
                               self.population[0].config)
            is_rand = dict()
            mutation_pos = space[random.randint(0, len(space) - 1)]

            for i in range(len(self.space)):
                is_rand[self.space[i]] = (self.space[i] == mutation_pos)
            config = json2parameter(self.searchspace_json, is_rand,
                                    self.random_state,
                                    self.population[0].config)

            if len(self.population) > 1:
                self.population.pop(1)

            indiv = Individual(config=config)

        # remove "_index" from config and save params-id
        self.running_trials[parameter_id] = indiv
        config = split_index(indiv.config)
        return config
Beispiel #3
0
    def generate_parameters(self, parameter_id, **kwargs):
        """
        This function will returns a dict of trial (hyper-)parameters, as a serializable object.

        Parameters
        ----------
        parameter_id : int

        Returns
        -------
        dict
            A group of candaidte parameters that evolution tuner generated.
        """
        if not self.population:
            raise RuntimeError('The population is empty')

        pos = -1

        for i in range(len(self.population)):
            if self.population[i].result is None:
                pos = i
                break

        if pos != -1:
            indiv = copy.deepcopy(self.population[pos])
            self.population.pop(pos)
            total_config = indiv.config
        else:
            random.shuffle(self.population)
            if self.population[0].result < self.population[1].result:
                self.population[0] = self.population[1]

            # mutation
            space = json2space(self.searchspace_json,
                               self.population[0].config)
            is_rand = dict()
            mutation_pos = space[random.randint(0, len(space) - 1)]

            for i in range(len(self.space)):
                is_rand[self.space[i]] = (self.space[i] == mutation_pos)
            config = json2parameter(self.searchspace_json, is_rand,
                                    self.random_state,
                                    self.population[0].config)
            self.population.pop(1)
            # remove "_index" from config and save params-id

            total_config = config

        self.total_data[parameter_id] = total_config
        config = split_index(total_config)

        return config
    def update_search_space(self, search_space):
        """
        Update search space.

        Search_space contains the information that user pre-defined.

        Parameters
        ----------
        search_space : dict
        """
        self.searchspace_json = search_space
        self.space = json2space(self.searchspace_json)

        self.random_state = np.random.RandomState()
        self.population = []

        for _ in range(self.population_size):
            self._random_generate_individual()
Beispiel #5
0
    def update_search_space(self, search_space):
        """
        Update search space.

        Search_space contains the information that user pre-defined.

        Parameters
        ----------
        search_space : dict
        """
        self.searchspace_json = search_space
        self.space = json2space(self.searchspace_json)

        self.random_state = np.random.RandomState()
        self.population = []
        is_rand = dict()

        for item in self.space:
            is_rand[item] = True

        for _ in range(self.population_size):
            config = json2parameter(self.searchspace_json, is_rand,
                                    self.random_state)
            self.population.append(Individual(config=config))