def get_train_set(dataset_path: str, image_size: ImageSize):
    num_joints = 15
    left_indexes: List[int] = [3, 4, 5, 9, 10, 11]
    right_indexes: List[int] = [6, 7, 8, 12, 13, 14]

    datasets: List[EhpiDataset] = [
        # Set 1
        EhpiDataset(os.path.join(dataset_path, "ofp_record_2019_03_11_HSRT_30FPS"),
                    transform=transforms.Compose([
                        RemoveJointsOutsideImgEhpi(image_size),
                        ScaleEhpi(image_size),
                        TranslateEhpi(image_size),
                        FlipEhpi(left_indexes=left_indexes, right_indexes=right_indexes),
                        NormalizeEhpi(image_size)
                    ]), num_joints=num_joints, dataset_part=DatasetPart.TEST),
        # Set 2
        EhpiDataset(os.path.join(dataset_path, "2019_03_13_Freilichtmuseum_30FPS"),
                    transform=transforms.Compose([
                        RemoveJointsOutsideImgEhpi(image_size),
                        ScaleEhpi(image_size),
                        TranslateEhpi(image_size),
                        FlipEhpi(left_indexes=left_indexes, right_indexes=right_indexes),
                        NormalizeEhpi(image_size)
                    ]), num_joints=num_joints, dataset_part=DatasetPart.TRAIN),
    ]
    for dataset in datasets:
        dataset.print_label_statistics()

    return ConcatDataset(datasets)
Beispiel #2
0
def get_test_set(image_size: ImageSize):
    num_joints = 15
    return EhpiDataset("/media/disks/beta/datasets/ehpi/2019_03_13_Freilichtmuseum_30FPS",
                       transform=transforms.Compose([
                           RemoveJointsOutsideImgEhpi(image_size),
                           NormalizeEhpi(image_size)
                       ]), dataset_part=DatasetPart.TEST, num_joints=num_joints)
def get_test_set(dataset_path: str, image_size: ImageSize):
    num_joints = 15
    return EhpiDataset(os.path.join(dataset_path, "2019_03_13_Freilichtmuseum_30FPS"),
                       transform=transforms.Compose([
                           RemoveJointsOutsideImgEhpi(image_size),
                           NormalizeEhpi(image_size)
                       ]), dataset_part=DatasetPart.TEST, num_joints=num_joints)
def get_test_set(dataset_path: str, image_size: ImageSize):
    num_joints = 15
    return EhpiDataset(dataset_path,
                       transform=transforms.Compose([
                           RemoveJointsOutsideImgEhpi(image_size),
                           NormalizeEhpi(image_size)
                       ]),
                       dataset_part=DatasetPart.TEST,
                       num_joints=num_joints)
def get_sim_pose_algo_only(dataset_path: str, image_size: ImageSize):
    num_joints = 15
    left_indexes: List[int] = [3, 4, 5, 9, 10, 11]
    right_indexes: List[int] = [6, 7, 8, 12, 13, 14]

    datasets: List[EhpiDataset] = [
        EhpiDataset(os.path.join(dataset_path,
                                 "ofp_sim_pose_algo_equal_30fps"),
                    transform=transforms.Compose([
                        RemoveJointsOutsideImgEhpi(image_size),
                        RemoveJointsEhpi(indexes_to_remove=foot_indexes,
                                         indexes_to_remove_2=knee_indexes,
                                         probability=0.25),
                        ScaleEhpi(image_size),
                        TranslateEhpi(image_size),
                        FlipEhpi(left_indexes=left_indexes,
                                 right_indexes=right_indexes),
                        NormalizeEhpi(image_size)
                    ]),
                    num_joints=num_joints),
        EhpiDataset(os.path.join(dataset_path,
                                 "ofp_from_mocap_pose_algo_30fps"),
                    transform=transforms.Compose([
                        RemoveJointsOutsideImgEhpi(image_size),
                        RemoveJointsEhpi(indexes_to_remove=foot_indexes,
                                         indexes_to_remove_2=knee_indexes,
                                         probability=0.25),
                        ScaleEhpi(image_size),
                        TranslateEhpi(image_size),
                        FlipEhpi(left_indexes=left_indexes,
                                 right_indexes=right_indexes),
                        NormalizeEhpi(image_size)
                    ]),
                    num_joints=num_joints),
    ]
    for dataset in datasets:
        dataset.print_label_statistics()

    return ConcatDataset(datasets)
def get_training_set(dataset_path: str, image_size: ImageSize):
    num_joints = 15
    left_indexes: List[int] = [3, 4, 5, 9, 10, 11]
    right_indexes: List[int] = [6, 7, 8, 12, 13, 14]
    return EhpiDataset(os.path.join(dataset_path, "JHMDB_ITSC-1/"),
                       transform=transforms.Compose([
                           RemoveJointsOutsideImgEhpi(image_size),
                           RemoveJointsEhpi(indexes_to_remove=foot_indexes, indexes_to_remove_2=knee_indexes,
                                            probability=0.25),
                           ScaleEhpi(image_size),
                           TranslateEhpi(image_size),
                           FlipEhpi(left_indexes=left_indexes, right_indexes=right_indexes),
                           NormalizeEhpi(image_size)
                       ]), num_joints=num_joints)
def get_full(dataset_path: str, image_size: ImageSize):
    num_joints = 15
    left_indexes: List[int] = [3, 4, 5, 9, 10, 11]
    right_indexes: List[int] = [6, 7, 8, 12, 13, 14]

    datasets: List[EhpiDataset] = [
        # Real
        EhpiDataset(os.path.join(dataset_path, "ofp_webcam"),
                    transform=transforms.Compose([
                        RemoveJointsOutsideImgEhpi(image_size),
                        ScaleEhpi(image_size),
                        TranslateEhpi(image_size),
                        FlipEhpi(left_indexes=left_indexes,
                                 right_indexes=right_indexes),
                        NormalizeEhpi(image_size)
                    ]),
                    num_joints=num_joints),
        EhpiDataset(os.path.join(dataset_path, "ofp_record_2019_03_11_30FPS"),
                    transform=transforms.Compose([
                        RemoveJointsOutsideImgEhpi(image_size),
                        ScaleEhpi(image_size),
                        TranslateEhpi(image_size),
                        FlipEhpi(left_indexes=left_indexes,
                                 right_indexes=right_indexes),
                        NormalizeEhpi(image_size)
                    ]),
                    num_joints=num_joints),
        EhpiDataset(os.path.join(dataset_path,
                                 "ofp_record_2019_03_11_HSRT_30FPS"),
                    transform=transforms.Compose([
                        RemoveJointsOutsideImgEhpi(image_size),
                        ScaleEhpi(image_size),
                        TranslateEhpi(image_size),
                        FlipEhpi(left_indexes=left_indexes,
                                 right_indexes=right_indexes),
                        NormalizeEhpi(image_size)
                    ]),
                    num_joints=num_joints,
                    dataset_part=DatasetPart.TEST),
        EhpiDataset(os.path.join(dataset_path,
                                 "ofp_record_2019_03_11_HELLA_30FPS"),
                    transform=transforms.Compose([
                        RemoveJointsOutsideImgEhpi(image_size),
                        ScaleEhpi(image_size),
                        TranslateEhpi(image_size),
                        FlipEhpi(left_indexes=left_indexes,
                                 right_indexes=right_indexes),
                        NormalizeEhpi(image_size)
                    ]),
                    num_joints=num_joints,
                    dataset_part=DatasetPart.TRAIN),
        # Freilichtmuseum
        EhpiDataset(os.path.join(dataset_path,
                                 "2019_03_13_Freilichtmuseum_30FPS"),
                    transform=transforms.Compose([
                        RemoveJointsOutsideImgEhpi(image_size),
                        ScaleEhpi(image_size),
                        TranslateEhpi(image_size),
                        FlipEhpi(left_indexes=left_indexes,
                                 right_indexes=right_indexes),
                        NormalizeEhpi(image_size)
                    ]),
                    num_joints=num_joints,
                    dataset_part=DatasetPart.TRAIN),
        # Simulated
        EhpiDataset(os.path.join(dataset_path, "ofp_from_mocap_30fps/"),
                    transform=transforms.Compose([
                        RemoveJointsOutsideImgEhpi(image_size),
                        RemoveJointsEhpi(indexes_to_remove=foot_indexes,
                                         indexes_to_remove_2=knee_indexes,
                                         probability=0.25),
                        ScaleEhpi(image_size),
                        TranslateEhpi(image_size),
                        FlipEhpi(left_indexes=left_indexes,
                                 right_indexes=right_indexes),
                        NormalizeEhpi(image_size)
                    ]),
                    num_joints=num_joints),
        EhpiDataset(os.path.join(dataset_path,
                                 "ofp_sim_pose_algo_equal_30fps"),
                    transform=transforms.Compose([
                        RemoveJointsOutsideImgEhpi(image_size),
                        RemoveJointsEhpi(indexes_to_remove=foot_indexes,
                                         indexes_to_remove_2=knee_indexes,
                                         probability=0.25),
                        ScaleEhpi(image_size),
                        TranslateEhpi(image_size),
                        FlipEhpi(left_indexes=left_indexes,
                                 right_indexes=right_indexes),
                        NormalizeEhpi(image_size)
                    ]),
                    num_joints=num_joints),
        EhpiDataset(os.path.join(dataset_path, "ofp_sim_gt_equal_30fps"),
                    transform=transforms.Compose([
                        RemoveJointsOutsideImgEhpi(image_size),
                        RemoveJointsEhpi(indexes_to_remove=foot_indexes,
                                         indexes_to_remove_2=knee_indexes,
                                         probability=0.25),
                        ScaleEhpi(image_size),
                        TranslateEhpi(image_size),
                        FlipEhpi(left_indexes=left_indexes,
                                 right_indexes=right_indexes),
                        NormalizeEhpi(image_size)
                    ]),
                    num_joints=num_joints),
        EhpiDataset(os.path.join(dataset_path, "ofp_from_mocap_gt_30fps"),
                    transform=transforms.Compose([
                        RemoveJointsOutsideImgEhpi(image_size),
                        RemoveJointsEhpi(indexes_to_remove=foot_indexes,
                                         indexes_to_remove_2=knee_indexes,
                                         probability=0.25),
                        ScaleEhpi(image_size),
                        TranslateEhpi(image_size),
                        FlipEhpi(left_indexes=left_indexes,
                                 right_indexes=right_indexes),
                        NormalizeEhpi(image_size)
                    ]),
                    num_joints=num_joints),
    ]
    for dataset in datasets:
        dataset.print_label_statistics()

    return ConcatDataset(datasets)
import cv2
import numpy as np
from nobos_commons.data_structures.constants.dataset_part import DatasetPart

from nobos_torch_lib.datasets.action_recognition_datasets.ehpi_dataset import EhpiDataset

set_to_test = EhpiDataset("/media/disks/beta/datasets/ehpi/JHMDB_ITSC-1-GT/",
                          dataset_part=DatasetPart.TRAIN, num_joints=15)

for ehpi in set_to_test:
    x = ehpi["x"]
    y = ehpi["y"]
    x = np.transpose(x, (1, 2, 0))
    x = cv2.resize(x, (x.shape[0] * 10, x.shape[1] * 10))
    cv2.imshow("preview", x)
    cv2.waitKey(0)