Beispiel #1
0
def printMatrix():
    name = input(
        'Input matrix\'s name to be printed. (Read from ".mtrx" file)\n>>>')
    raw = IO.RAWReader()
    raw.open(p.DATA_PATH + name + '.mtrx')
    matrix = IO.getAMatrix(raw)
    IO.printprettyMatrix(matrix)
Beispiel #2
0
def feedNeuralNetworkbymtrx(MyNeuralNetwork):
    name = input('Input .mtrx\'s file name.\n')
    rawreader = IO.RAWReader()
    rawreader.open(p.DATA_PATH + name + '.mtrx')
    M = IO.getAMatrix(rawreader)
    np.set_printoptions(threshold=np.nan)
    np.set_printoptions(precision=3)
    np.set_printoptions(suppress=False)
    IO.printprettyMatrix(MyNeuralNetwork.feed(M))
    pass
def feedNeuralNetwork(MyNeuralNetwork):
    # string = input('input "row(number of data amount)", "column(number of input layer\'s neuron size)"\n')
    # string = string + ' ' + input('And then input "elements" row after row.\n')
    string= '1 '+str(MyNeuralNetwork.LayerNeuronsCount[0])+' '
    # Single set of data 1 * input size
    string = string+input('Input single data set.(split by space and press enter)\n')
    rawreader = IO.RAWReader()
    rawreader.openString(string)
    M = IO.getAMatrix(rawreader)
    IO.printprettyMatrix(MyNeuralNetwork.feed(M))
Beispiel #4
0
 def loadfromFile(self, Filename):
     try:
         MyRAWReader = IO.RAWReader()
         MyRAWReader.open(p.SAVED_PATH + Filename + '.node')
         self.Name = Filename
         self.LayersCount = int(MyRAWReader.pop())
         self.LayerNeuronsCount = []
         self.Weight = []
         self.Bias = []
         # Get the LayersCount first and Initlalize LayerNeuronsCount, Weight and Bias
         for layer in range(0, self.LayersCount):
             self.LayerNeuronsCount.append(int(MyRAWReader.pop()))
         # Get each layer's neurons count one by one
         for layer in range(0, self.LayersCount - 1):
             self.Weight.append(IO.getAMatrix(MyRAWReader))
         # Get each layer's weight one by one
         for layer in range(0, self.LayersCount - 1):
             self.Bias.append(IO.getAMatrix(MyRAWReader))
         # Get each layer's bias one by one
     except:
         print('warning: Loading ' + Filename + '.node error!')