Beispiel #1
0
def main():
    ou = OrnsteinUhlenbeck(mu=torch.zeros(1), sigma=0.05 * torch.ones(1))

    xs = list(range(100000))
    ys = []
    for x in xs:
        y = ou()
        ys.append(y.data)

    plt.plot(xs, ys)
    plt.show()
Beispiel #2
0
    def __init__(self, state_size, action_size, fc1_units, fc2_units,
                 num_agents):
        """Initialize an Agent object.
        
        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            random_seed (int): random seed
        """
        self.state_size = state_size
        self.action_size = action_size
        self.seed = torch.manual_seed(SEED)
        self.num_agents = num_agents
        # Actor Network (w/ Target Network)
        self.actor_local = Actor(state_size, action_size, fc1_units,
                                 fc2_units).to(device)
        self.actor_target = Actor(state_size, action_size, fc1_units,
                                  fc2_units).to(device)
        self.actor_optimizer = optim.Adam(self.actor_local.parameters(),
                                          lr=LR_ACTOR)

        # Critic Network (w/ Target Network)
        self.critic_local = Critic(state_size, action_size, fc1_units,
                                   fc2_units).to(device)
        self.critic_target = Critic(state_size, action_size, fc1_units,
                                    fc2_units).to(device)
        self.critic_optimizer = optim.Adam(self.critic_local.parameters(),
                                           lr=LR_CRITIC,
                                           weight_decay=WEIGHT_DECAY)

        # Noise process
        self.noise = OrnsteinUhlenbeck((num_agents, action_size), SEED)

        # Replay memory
        self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, SEED,
                                   device)
Beispiel #3
0
    def __init__(self,
                 env,
                 log_dir,
                 gamma=0.99,
                 batch_size=64,
                 sigma=0.2,
                 batch_norm=True,
                 merge_layer=2,
                 buffer_size=int(1e6),
                 buffer_min=int(1e4),
                 tau=1e-3,
                 Q_wd=1e-2,
                 num_episodes=1000):

        self.s_dim = env.reset().shape[0]
        # self.a_dim = env.action_space.shape[0]
        self.a_dim = env.action_space2.shape[0]
        # self.a_dim = 1

        self.env = env
        # self.mu = Actor(self.s_dim, self.a_dim, env.action_space, batch_norm=batch_norm)
        self.mu = Actor(self.s_dim,
                        self.a_dim,
                        env.action_space2,
                        batch_norm=batch_norm)
        self.Q = Critic(self.s_dim,
                        self.a_dim,
                        batch_norm=batch_norm,
                        merge_layer=merge_layer)
        self.targ_mu = copy.deepcopy(self.mu).eval()
        self.targ_Q = copy.deepcopy(self.Q).eval()
        self.noise = OrnsteinUhlenbeck(mu=torch.zeros(self.a_dim),
                                       sigma=sigma * torch.ones(self.a_dim))
        self.buffer = Buffer(buffer_size, self.s_dim, self.a_dim)
        self.buffer_min = buffer_min
        self.mse_fn = torch.nn.MSELoss()
        self.mu_optimizer = torch.optim.Adam(self.mu.parameters(), lr=1e-4)
        self.Q_optimizer = torch.optim.Adam(self.Q.parameters(),
                                            lr=1e-3,
                                            weight_decay=Q_wd)

        self.gamma = gamma
        self.batch_size = batch_size
        self.num_episodes = num_episodes
        self.tau = tau
        self.log_dir = log_dir

        self.fill_buffer()
Beispiel #4
0
class Agent():
    """ Interacts with and learns from the environment. """
    def __init__(self, state_size, action_size, fc1_units, fc2_units,
                 num_agents):
        """Initialize an Agent object.
        
        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            random_seed (int): random seed
        """
        self.state_size = state_size
        self.action_size = action_size
        self.seed = torch.manual_seed(SEED)
        self.num_agents = num_agents
        # Actor Network (w/ Target Network)
        self.actor_local = Actor(state_size, action_size, fc1_units,
                                 fc2_units).to(device)
        self.actor_target = Actor(state_size, action_size, fc1_units,
                                  fc2_units).to(device)
        self.actor_optimizer = optim.Adam(self.actor_local.parameters(),
                                          lr=LR_ACTOR)

        # Critic Network (w/ Target Network)
        self.critic_local = Critic(state_size, action_size, fc1_units,
                                   fc2_units).to(device)
        self.critic_target = Critic(state_size, action_size, fc1_units,
                                    fc2_units).to(device)
        self.critic_optimizer = optim.Adam(self.critic_local.parameters(),
                                           lr=LR_CRITIC,
                                           weight_decay=WEIGHT_DECAY)

        # Noise process
        self.noise = OrnsteinUhlenbeck((num_agents, action_size), SEED)

        # Replay memory
        self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, SEED,
                                   device)

    def step(self, step, state, action, reward, next_state, done,
             agent_number):
        """Save experience in replay memory, and use random sample from buffer to learn."""
        # Save experience / reward
        self.memory.add(state, action, reward, next_state, done)

        # Learn, if enough samples are available in memory and if step > 10
        if (len(self.memory) > BATCH_SIZE) and (step % N_TIME_STEPS == 0):
            for n in range(N_LEARN_UPDATES):
                experiences = self.memory.sample()
                self.learn(experiences, GAMMA, agent_number)

    def act(self, states, add_noise=True):
        """Returns actions for both agents as per current policy, given their respective states."""
        states = torch.from_numpy(states).float().to(device)
        actions = np.zeros((self.num_agents, self.action_size))
        self.actor_local.eval()
        with torch.no_grad():
            # get action for each agent and concatenate them
            for agent_num, state in enumerate(states):
                action = self.actor_local(state).cpu().data.numpy()
                actions[agent_num, :] = action
        self.actor_local.train()
        if add_noise:
            actions += self.noise.sample()
        return np.clip(actions, -1, 1)

    def reset(self):
        self.noise.reset()

    def learn(self, experiences, gamma, agent_number):
        """Update policy and value parameters using given batch of experience tuples.
        Q_targets = r + γ * critic_target(next_state, actor_target(next_state))
        where:
            actor_target(state) -> action
            critic_target(state, action) -> Q-value
        Params
        ======
            experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples 
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones = experiences

        # ---------------------------- update critic ---------------------------- #
        # Get predicted next-state actions and Q values from target models
        actions_next = self.actor_target(next_states)

        # Construct next actions vector relative to the agent
        if agent_number == 0:
            actions_next = torch.cat((actions_next, actions[:, 2:]), dim=1)
        else:
            actions_next = torch.cat((actions[:, :2], actions_next), dim=1)
        # Compute Q targets for current states (y_i)
        Q_targets_next = self.critic_target(next_states, actions_next)
        # Compute Q targets for current states (y_i)
        Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))
        # Compute critic loss
        Q_expected = self.critic_local(states, actions)
        critic_loss = F.mse_loss(Q_expected, Q_targets)
        # Minimize the loss
        self.critic_optimizer.zero_grad()
        critic_loss.backward()
        torch.nn.utils.clip_grad_norm_(self.critic_local.parameters(), 1)
        self.critic_optimizer.step()

        # ---------------------------- update actor ---------------------------- #
        # Compute actor loss
        actions_pred = self.actor_local(states)

        if agent_number == 0:
            actions_pred = torch.cat((actions_pred, actions[:, 2:]), dim=1)
        else:
            actions_pred = torch.cat((actions[:, :2], actions_pred), dim=1)
        actor_loss = -self.critic_local(states, actions_pred).mean()
        # Minimize the loss
        self.actor_optimizer.zero_grad()
        actor_loss.backward()
        self.actor_optimizer.step()

        # ----------------------- update target networks ----------------------- #
        self.soft_update(self.critic_local, self.critic_target, TAU)
        self.soft_update(self.actor_local, self.actor_target, TAU)

    def soft_update(self, local_model, target_model, tau):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target
        Params
        ======
            local_model: PyTorch model (weights will be copied from)
            target_model: PyTorch model (weights will be copied to)
            tau (float): interpolation parameter 
        """
        for target_param, local_param in zip(target_model.parameters(),
                                             local_model.parameters()):
            target_param.data.copy_(tau * local_param.data +
                                    (1.0 - tau) * target_param.data)
Beispiel #5
0
class Agent():
    """ Interacts with and learns from the environment. """
    def __init__(self, state_size, action_size, fc1_units, fc2_units):
        """Initialize an Agent object.

        Params
        ======
        state_size (int): dimension of each state
        action_size (int): dimension of each action
        random_seed (int): random seed
        """
        self.state_size = state_size
        self.action_size = action_size
        self.seed = torch.manual_seed(SEED)

        # Actor Network (w/ Target Network)
        self.actor_local = Actor(state_size, action_size, fc1_units,
                                 fc2_units).to(device)
        self.actor_target = Actor(state_size, action_size, fc1_units,
                                  fc2_units).to(device)
        self.actor_optimizer = optim.Adam(self.actor_local.parameters(),
                                          lr=LR_ACTOR)

        # Critic Network (w/ Target Network)
        self.critic_local = Critic(state_size, action_size, fc1_units,
                                   fc2_units).to(device)
        self.critic_target = Critic(state_size, action_size, fc1_units,
                                    fc2_units).to(device)
        self.critic_optimizer = optim.Adam(self.critic_local.parameters(),
                                           lr=LR_CRITIC,
                                           weight_decay=WEIGHT_DECAY)

        # Noise process
        self.noise = OrnsteinUhlenbeck(action_size, SEED)

        # Replay memory
        self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, SEED,
                                   device)

    def step(self, time_step, state, action, reward, next_state, done):
        """Save experience in replay memory, and use random sample from buffer to learn."""
        self.memory.add(state, action, reward, next_state, done)

        # Learn only every N_TIME_STEPS
        if time_step % N_TIME_STEPS != 0:
            return

        # Learn if enough samples are available in replay buffer
        if len(self.memory) > BATCH_SIZE:
            for i in range(N_LEARN_UPDATES):
                experiences = self.memory.sample()
                self.learn(experiences, GAMMA)

    def act(self, state, add_noise=True):
        """ Returns actions for given state as per current policy. """
        state = torch.from_numpy(state).float().to(device)
        self.actor_local.eval()
        with torch.no_grad():
            action = self.actor_local(state).cpu().data.numpy()
        self.actor_local.train()
        if add_noise:
            action += self.noise.sample()
        return np.clip(action, -1, 1)

    def reset(self):
        self.noise.reset()

    def learn(self, experiences, gamma):
        """Update policy and value parameters using given batch of experience tuples.
        Q_targets = r + γ * critic_target(next_state, actor_target(next_state))
        where:
            actor_target(state) -> action
            critic_target(state, action) -> Q-value
        Params
        ======
            experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones = experiences

        # ---------------------------- update critic ---------------------------- #
        # Get predicted next-state actions and Q values from target models
        actions_next = self.actor_target(next_states)
        Q_targets_next = self.critic_target(next_states, actions_next)
        # Compute Q targets from current states (y_i)
        Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))
        # Compute critic loss
        Q_expected = self.critic_local(states, actions)
        critic_loss = F.mse_loss(Q_expected, Q_targets)
        # Minimize the loss
        self.critic_optimizer.zero_grad()
        critic_loss.backward()
        torch.nn.utils.clip_grad_norm_(self.critic_local.parameters(), 1)
        self.critic_optimizer.step()

        # ---------------------------- update actor ---------------------------- #
        # Compute actor loss
        actions_pred = self.actor_local(states)
        actor_loss = -self.critic_local(states, actions_pred).mean()
        # Minimize the loss
        self.actor_optimizer.zero_grad()
        actor_loss.backward()
        self.actor_optimizer.step()

        # ----------------------- update target networks ----------------------- #
        self.soft_update(self.critic_local, self.critic_target, TAU)
        self.soft_update(self.actor_local, self.actor_target, TAU)

    def soft_update(self, local_model, target_model, tau):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target
        Params
        ======
        local_model: PyTorch model (weights will be copied from)
        target_model: PyTorch model (weights will be copied to)
        tau (float): interpolation parameter
        """
        for target_param, local_param in zip(target_model.parameters(),
                                             local_model.parameters()):
            target_param.data.copy_(tau * local_param.data +
                                    (1.0 - tau) * target_param.data)

    def store(self):
        torch.save(self.actor_local.state_dict(), 'checkpoint_actor.pth')
        torch.save(self.critic_local.state_dict(), 'checkpoint_critic.pth')

    def load(self):
        if os.path.isfile('checkpoint_actor.pth') and os.path.isfile(
                'checkpoint_critic.pth'):
            print("=> loading checkpoints for Actor and Critic... ")
            self.actor_local.load_state_dict('checkpoint_actor')
            self.critic_local.load_state_dict('checkpoint_critic')
            print("done !")
        else:
            print("no checkpoints found for Actor and Critic...")