Beispiel #1
0
 def jacobian(params):
     a = params[0]
     i = params[1]
     t = params[2]
     # Get the frequencies, including the negitive ones.
     df = 1.0 / dt / n_time
     f = sp.arange(n_time, dtype=float)
     f[n_time // 2 + 1:] -= f[-1] + 1
     f = abs(f) * df
     # 0th mode is meaningless.  Set to unity to avoid errors.
     f[0] = 1
     # The power law part.
     p_law = (f / f_0)**(-(params[1]**2 + min_index))
     # Memory for the three derivative functions.
     spec = sp.empty((3, n_time), dtype=float)
     # The formula for the following derivatives derived in Kiyo's notes,
     # Nov. 28, 2011.
     # Derivative with respect to the amplitude parameter.
     spec[0, :] = -2.0 * a * p_law
     # Derivative with respect to the index parameter.
     spec[1, :] = (a**2 + T_small**2) * p_law * sp.log(f / f_0) * 2.0 * i
     # Derivative with respect to the thermal parameter.
     spec[2, :] = -2.0 * t
     # Get rid of the mean mode.
     spec[:, 0] = 0
     # Convolve with the window function.
     spec = npow.convolve_power(spec, window[None, :], -1)
     # Prune to the same size as the data.
     spec = npow.prune_power(spec, -1)
     spec = spec[:, 1:].real
     return spec / weights
 def jacobian(params):
     a = params[0]
     i = params[1]
     t = params[2]
     # Get the frequencies, including the negitive ones.
     df = 1.0 / dt / n_time
     f = sp.arange(n_time, dtype=float)
     f[n_time // 2 + 1 :] -= f[-1] + 1
     f = abs(f) * df
     # 0th mode is meaningless.  Set to unity to avoid errors.
     f[0] = 1
     # The power law part.
     p_law = (f / f_0) ** (-(params[1] ** 2 + min_index))
     # Memory for the three derivative functions.
     spec = sp.empty((3, n_time), dtype=float)
     # The formula for the following derivatives derived in Kiyo's notes,
     # Nov. 28, 2011.
     # Derivative with respect to the amplitude parameter.
     spec[0, :] = -2.0 * a * p_law
     # Derivative with respect to the index parameter.
     spec[1, :] = (a ** 2 + T_small ** 2) * p_law * sp.log(f / f_0) * 2.0 * i
     # Derivative with respect to the thermal parameter.
     spec[2, :] = -2.0 * t
     # Get rid of the mean mode.
     spec[:, 0] = 0
     # Convolve with the window function.
     spec = npow.convolve_power(spec, window[None, :], -1)
     # Prune to the same size as the data.
     spec = npow.prune_power(spec, -1)
     spec = spec[:, 1:].real
     return spec / weights
 def test_fit_over_f_plus_const(self):
     dt = 0.13
     n_time = 10000
     amp = 0.67 # K**2/Hz
     index = -1.3
     f_0 = 1.0
     thermal = 2.7 # K**2/Hz
     BW = 1./dt/2
     window = sig.get_window('hanning', n_time)
     n_spec = 10
     p = 0
     for ii in range(n_spec):
         time_stream = noise_power.generate_overf_noise(amp, index, f_0,
                                                             dt, n_time)
         time_stream += rand.normal(size=n_time) * sp.sqrt(thermal * BW * 2)
         time_stream -= sp.mean(time_stream)
         time_stream *= window
         p += noise_power.calculate_power(time_stream)
     p /= n_spec
     p = noise_power.make_power_physical_units(p, dt)
     w = noise_power.calculate_power(window)
     w_norm = sp.mean(w).real
     #w /= w_norm
     p = noise_power.prune_power(p).real
     #p /= w_norm
     f = noise_power.ps_freq_axis(dt, n_time)
     p = p[1:]
     f = f[1:]
     amp_m, index_m, f0_m, thermal_m = mn.fit_overf_const(p, w, f)
     self.assertTrue(sp.allclose(amp_m, amp, atol=0.2))
     self.assertTrue(sp.allclose(index_m, index, atol=0.1))
     self.assertTrue(sp.allclose(thermal_m, thermal, atol=0.1))
Beispiel #4
0
 def test_statistical_different_windows(self):
     n_trials = 1000
     n_points = 200
     window1 = sp.ones(n_points, dtype=float)
     window1 += sp.sin(sp.arange(n_points) / 10.0)
     window2 = 2 * sp.ones(n_points, dtype=float)
     window2 += 2 * sp.sin(sp.arange(n_points) / 22.0)
     window2[window2 < 0.5] = 0
     window1[window1 < 0.5] = 0
     power = sp.zeros(n_points // 2)
     for ii in range(n_trials):
         wave = self.amp1 * random.randn(n_points)
         p = npow.windowed_power(wave * window1, window1, wave * window2,
                                 window2)
         power += npow.prune_power(p).real
     power /= n_trials
     self.assertTrue(
         sp.allclose(power / self.amp1**2,
                     1.0,
                     atol=6.0 * (2.0 / sp.sqrt(n_trials))))
     # Expect this to fail ~1/100 times.
     self.assertFalse(
         sp.allclose(power / self.amp1**2,
                     1.0,
                     atol=0.01 * (2.0 / sp.sqrt(n_trials))))
Beispiel #5
0
 def test_fit_over_f_plus_const(self):
     dt = 0.13
     n_time = 10000
     amp = 0.67  # K**2/Hz
     index = -1.3
     f_0 = 1.0
     thermal = 2.7  # K**2/Hz
     BW = 1. / dt / 2
     window = sig.get_window('hanning', n_time)
     n_spec = 10
     p = 0
     for ii in range(n_spec):
         time_stream = noise_power.generate_overf_noise(
             amp, index, f_0, dt, n_time)
         time_stream += rand.normal(size=n_time) * sp.sqrt(thermal * BW * 2)
         time_stream -= sp.mean(time_stream)
         time_stream *= window
         p += noise_power.calculate_power(time_stream)
     p /= n_spec
     p = noise_power.make_power_physical_units(p, dt)
     w = noise_power.calculate_power(window)
     w_norm = sp.mean(w).real
     #w /= w_norm
     p = noise_power.prune_power(p).real
     #p /= w_norm
     f = noise_power.ps_freq_axis(dt, n_time)
     p = p[1:]
     f = f[1:]
     amp_m, index_m, f0_m, thermal_m = mn.fit_overf_const(p, w, f)
     self.assertTrue(sp.allclose(amp_m, amp, atol=0.2))
     self.assertTrue(sp.allclose(index_m, index, atol=0.1))
     self.assertTrue(sp.allclose(thermal_m, thermal, atol=0.1))
 def model(params):
     a = params[0] ** 2 + T_small ** 2
     i = -(params[1] ** 2 + min_index)
     t = params[2] ** 2 + T_small ** 2
     spec = npow.overf_power_spectrum(a, i, f_0, dt, n_time)
     spec += t
     spec = npow.convolve_power(spec, window)
     spec = npow.prune_power(spec)
     spec = spec[1:].real
     return spec
Beispiel #7
0
 def model(params):
     a = params[0]**2 + T_small**2
     i = -(params[1]**2 + min_index)
     t = params[2]**2 + T_small**2
     spec = npow.overf_power_spectrum(a, i, f_0, dt, n_time)
     spec += t
     spec = npow.convolve_power(spec, window)
     spec = npow.prune_power(spec)
     spec = spec[1:].real
     return spec
 def test_window_with_zeros(self) :
     window = sp.ones_like(self.wave1)
     window += sp.sin(sp.arange(self.n)/50.0)
     self.wave1 *= window
     power = npow.windowed_power(self.wave1, window)
     power = npow.prune_power(power)
     self.assertAlmostEqual(power[self.mode1]/self.amp1**2/self.n*4, 1.0, 3)
     self.assertTrue(sp.allclose(power[:self.mode1], 0, 
                                 atol=self.amp1**2*self.n/1e3))
     self.assertTrue(sp.allclose(power[self.mode1+1:], 0, 
                                 atol=self.amp1**2*self.n/1e3))
 def test_no_window(self) :
     window = sp.ones_like(self.wave1)
     power = npow.windowed_power(self.wave1, window)
     power = npow.prune_power(power)
     self.assertAlmostEqual(power[self.mode1]/self.amp1**2/self.n*4, 1)
     self.assertTrue(sp.allclose(power[:self.mode1], 0, 
                                 atol=self.amp1**2*self.n/1e15))
     self.assertTrue(sp.allclose(power[self.mode1+1:], 0, 
                                 atol=self.amp1**2*self.n/1e15))
     # With no window, we have a quick way to the answer
     quick_power = npow.calculate_power(self.wave1)
     self.assertTrue(sp.allclose(power, quick_power[:self.n//2]))
 def test_statistical_no_window(self) :
     n_trials = 1000
     n_points = 200
     window = sp.ones(n_points, dtype=float)
     power = sp.zeros(n_points//2)
     for ii in range(n_trials) :
         wave = self.amp1*random.randn(n_points)
         p = npow.windowed_power(wave, window)
         power += npow.prune_power(p).real
     power /= n_trials
     self.assertTrue(sp.allclose(power/self.amp1**2, 1.0,
                                 atol=4.0*(2.0/sp.sqrt(n_trials))))
     # Expect this to fail ~1/100 times.
     self.assertFalse(sp.allclose(power/self.amp1**2, 1.0,
                                 atol=0.01*(2.0/sp.sqrt(n_trials))))
 def test_different_windows(self) :
     window1 = sp.ones_like(self.wave1)
     window1 += sp.sin(sp.arange(self.n)/40.0)
     window2 = 2*sp.ones_like(self.wave1)
     window2 += 2*sp.sin(sp.arange(self.n)/62.0)
     window2[window2<0.5] = 0
     wave1 = self.wave1*window1
     wave2 = self.wave1*window2
     power = npow.windowed_power(wave1, window1, wave2, window2)
     power = npow.prune_power(power)
     self.assertAlmostEqual(power[self.mode1]/self.amp1**2/self.n*4, 1.0, 3)
     self.assertTrue(sp.allclose(power[:self.mode1], 0, 
                                 atol=self.amp1**2*self.n/1e3))
     self.assertTrue(sp.allclose(power[self.mode1+1:], 0, 
                                 atol=self.amp1**2*self.n/1e3))
Beispiel #12
0
 def test_window_with_zeros(self):
     window = sp.ones_like(self.wave1)
     window += sp.sin(sp.arange(self.n) / 50.0)
     self.wave1 *= window
     power = npow.windowed_power(self.wave1, window)
     power = npow.prune_power(power)
     self.assertAlmostEqual(power[self.mode1] / self.amp1**2 / self.n * 4,
                            1.0, 3)
     self.assertTrue(
         sp.allclose(power[:self.mode1],
                     0,
                     atol=self.amp1**2 * self.n / 1e3))
     self.assertTrue(
         sp.allclose(power[self.mode1 + 1:],
                     0,
                     atol=self.amp1**2 * self.n / 1e3))
Beispiel #13
0
 def test_no_window(self):
     window = sp.ones_like(self.wave1)
     power = npow.windowed_power(self.wave1, window)
     power = npow.prune_power(power)
     self.assertAlmostEqual(power[self.mode1] / self.amp1**2 / self.n * 4,
                            1)
     self.assertTrue(
         sp.allclose(power[:self.mode1],
                     0,
                     atol=self.amp1**2 * self.n / 1e15))
     self.assertTrue(
         sp.allclose(power[self.mode1 + 1:],
                     0,
                     atol=self.amp1**2 * self.n / 1e15))
     # With no window, we have a quick way to the answer
     quick_power = npow.calculate_power(self.wave1)
     self.assertTrue(sp.allclose(power, quick_power[:self.n // 2]))
 def test_statistical_physical_units(self) :
     n_trials = 1000
     n_points = 200
     dt = 0.001
     window = sp.ones(n_points, dtype=float)
     power = sp.zeros(n_points//2)
     for ii in range(n_trials) :
         wave = self.amp1*random.randn(n_points)
         power += npow.prune_power(npow.calculate_power(wave)).real
     power /= n_trials
     power = npow.make_power_physical_units(power, dt)
     freqs = npow.ps_freq_axis(dt, n_points)
     df = abs(sp.mean(sp.diff(freqs)))
     # The integral of the power spectrum should be the variance. Factor of
     # 2 get the negitive frequencies.
     integrated_power = sp.sum(power) * df * 2
     self.assertTrue(sp.allclose(integrated_power/self.amp1**2, 1.0,
                                 atol=4.0*(2.0/sp.sqrt(n_trials*n_points))))
Beispiel #15
0
 def test_statistical_no_window(self):
     n_trials = 1000
     n_points = 200
     window = sp.ones(n_points, dtype=float)
     power = sp.zeros(n_points // 2)
     for ii in range(n_trials):
         wave = self.amp1 * random.randn(n_points)
         p = npow.windowed_power(wave, window)
         power += npow.prune_power(p).real
     power /= n_trials
     self.assertTrue(
         sp.allclose(power / self.amp1**2,
                     1.0,
                     atol=4.0 * (2.0 / sp.sqrt(n_trials))))
     # Expect this to fail ~1/100 times.
     self.assertFalse(
         sp.allclose(power / self.amp1**2,
                     1.0,
                     atol=0.01 * (2.0 / sp.sqrt(n_trials))))
Beispiel #16
0
 def test_statistical_physical_units(self):
     n_trials = 1000
     n_points = 200
     dt = 0.001
     window = sp.ones(n_points, dtype=float)
     power = sp.zeros(n_points // 2)
     for ii in range(n_trials):
         wave = self.amp1 * random.randn(n_points)
         power += npow.prune_power(npow.calculate_power(wave)).real
     power /= n_trials
     power = npow.make_power_physical_units(power, dt)
     freqs = npow.ps_freq_axis(dt, n_points)
     df = abs(sp.mean(sp.diff(freqs)))
     # The integral of the power spectrum should be the variance. Factor of
     # 2 get the negitive frequencies.
     integrated_power = sp.sum(power) * df * 2
     self.assertTrue(
         sp.allclose(integrated_power / self.amp1**2,
                     1.0,
                     atol=4.0 * (2.0 / sp.sqrt(n_trials * n_points))))
Beispiel #17
0
 def test_different_windows(self):
     window1 = sp.ones_like(self.wave1)
     window1 += sp.sin(sp.arange(self.n) / 40.0)
     window2 = 2 * sp.ones_like(self.wave1)
     window2 += 2 * sp.sin(sp.arange(self.n) / 62.0)
     window2[window2 < 0.5] = 0
     wave1 = self.wave1 * window1
     wave2 = self.wave1 * window2
     power = npow.windowed_power(wave1, window1, wave2, window2)
     power = npow.prune_power(power)
     self.assertAlmostEqual(power[self.mode1] / self.amp1**2 / self.n * 4,
                            1.0, 3)
     self.assertTrue(
         sp.allclose(power[:self.mode1],
                     0,
                     atol=self.amp1**2 * self.n / 1e3))
     self.assertTrue(
         sp.allclose(power[self.mode1 + 1:],
                     0,
                     atol=self.amp1**2 * self.n / 1e3))
 def test_statistical_different_windows(self) :
     n_trials = 1000
     n_points = 200
     window1 = sp.ones(n_points, dtype=float)
     window1 += sp.sin(sp.arange(n_points)/10.0)
     window2 = 2*sp.ones(n_points, dtype=float)
     window2 += 2*sp.sin(sp.arange(n_points)/22.0)
     window2[window2<0.5] = 0
     window1[window1<0.5] = 0
     power = sp.zeros(n_points//2)
     for ii in range(n_trials) :
         wave = self.amp1*random.randn(n_points)
         p = npow.windowed_power(wave*window1, window1, wave*window2,
                                    window2)
         power += npow.prune_power(p).real
     power /= n_trials
     self.assertTrue(sp.allclose(power/self.amp1**2, 1.0,
                                 atol=6.0*(2.0/sp.sqrt(n_trials))))
     # Expect this to fail ~1/100 times.
     self.assertFalse(sp.allclose(power/self.amp1**2, 1.0,
                                 atol=0.01*(2.0/sp.sqrt(n_trials))))
Beispiel #19
0
def get_freq_modes_over_f(power_mat,
                          window_function,
                          frequency,
                          n_modes,
                          plots=False):
    """Fines the most correlated frequency modes and fits thier noise."""

    n_f = len(frequency)
    d_f = sp.mean(sp.diff(frequency))
    dt = 1. / 2. / frequency[-1]
    n_chan = power_mat.shape[-1]
    n_time = window_function.shape[0]
    # The threshold for assuming there isn't enough data to measure anything.
    no_data_thres = 10. / n_time
    # Initialize the dictionary that will hold all the parameters.
    output_params = {}
    # First take the low frequency part of the spetrum matrix and average over
    # enough bins to get a well conditioned matrix.
    low_f_mat = sp.mean(power_mat[:4 * n_chan, :, :].real, 0)
    # Factor the matrix to get the most correlated modes.
    e, v = linalg.eigh(low_f_mat)
    # Make sure they are sorted.
    if not sp.alltrue(sp.diff(e) >= 0):
        raise RuntimeError("Eigenvalues not sorted")
    # Power matrix striped of the biggest modes.
    reduced_power = sp.copy(power_mat)
    mode_list = []
    # Solve for the spectra of these modes.
    for ii in range(n_modes):
        this_mode_params = {}
        # Get power spectrum and window function for this mode.
        mode = v[:, -1 - ii]
        mode_power = sp.sum(mode * power_mat.real, -1)
        mode_power = sp.sum(mode * mode_power, -1)
        mode_window = sp.sum(mode[:, None]**2 * window_function, 1)
        mode_window = sp.sum(mode_window * mode[None, :]**2, 1)
        # Protect against no data.
        if sp.mean(mode_window).real < no_data_thres:
            this_mode_params['amplitude'] = 0.
            this_mode_params['index'] = 0.
            this_mode_params['f_0'] = 1.
            this_mode_params['thermal'] = T_infinity**2 * dt
        else:
            # Fit the spectrum.
            p = fit_overf_const(mode_power, mode_window, frequency)
            # Put all the parameters we measured into the output.
            this_mode_params['amplitude'] = p[0]
            this_mode_params['index'] = p[1]
            this_mode_params['f_0'] = p[2]
            this_mode_params['thermal'] = p[3]
        this_mode_params['mode'] = mode
        output_params['over_f_mode_' + str(ii)] = this_mode_params
        # Remove the mode from the power matrix.
        tmp_amp = sp.sum(reduced_power * mode, -1)
        tmp_amp2 = sp.sum(reduced_power * mode[:, None], -2)
        tmp_amp3 = sp.sum(tmp_amp2 * mode, -1)
        reduced_power -= tmp_amp[:, :, None] * mode
        reduced_power -= tmp_amp2[:, None, :] * mode[:, None]
        reduced_power += tmp_amp3[:, None, None] * mode[:, None] * mode
        mode_list.append(mode)
    # Initialize the compensation matrix, that will be used to restore thermal
    # noise that gets subtracted out.  See Jan 29, Feb 17th, 2012 of Kiyo's
    # notes.
    compensation = sp.eye(n_chan, dtype=float)
    for mode1 in mode_list:
        compensation.flat[::n_chan + 1] -= 2 * mode1**2
        for mode2 in mode_list:
            mode_prod = mode1 * mode2
            compensation += mode_prod[:, None] * mode_prod[None, :]
    # Now that we've striped the noisiest modes, measure the auto power
    # spectrum, averaged over channels.
    auto_spec_mean = reduced_power.view()
    auto_spec_mean.shape = (n_f, n_chan**2)
    auto_spec_mean = auto_spec_mean[:, ::n_chan + 1].real
    auto_spec_mean = sp.mean(auto_spec_mean, -1)
    diag_window = window_function.view()
    diag_window.shape = (n_time, n_chan**2)
    diag_window = diag_window[:, ::n_chan + 1]
    auto_spec_window = sp.mean(diag_window, -1)
    if sp.mean(auto_spec_window).real < no_data_thres:
        auto_cross_over = 0.
        auto_index = 0.
        auto_thermal = 0
    else:
        auto_spec_params = fit_overf_const(auto_spec_mean, auto_spec_window,
                                           frequency)
        auto_thermal = auto_spec_params[3]
        if (auto_spec_params[0] <= 0 or auto_spec_params[3] <= 0
                or auto_spec_params[1] > -0.599):
            auto_cross_over = 0.
            auto_index = 0.
        else:
            auto_index = auto_spec_params[1]
            auto_cross_over = auto_spec_params[2] * (
                auto_spec_params[0] / auto_spec_params[3])**(-1. / auto_index)
            #if auto_cross_over < d_f:
            #    auto_index = 0.
            #    auto_cross_over = 0.
    # Plot the mean auto spectrum if desired.
    if plots:
        h = plt.gcf()
        a = h.add_subplot(*h.current_subplot)
        norm = sp.mean(auto_spec_window).real
        auto_plot = auto_spec_mean / norm
        plotable = auto_plot > 0
        lines = a.loglog(frequency[plotable], auto_plot[plotable])
        c = lines[-1].get_color()
        # And plot the fit in a light color.
        if auto_cross_over > d_f / 4.:
            spec = npow.overf_power_spectrum(auto_thermal, auto_index,
                                             auto_cross_over, dt, n_time)
        else:
            spec = sp.zeros(n_time, dtype=float)
        spec += auto_thermal
        spec[0] = 0
        spec = npow.convolve_power(spec, auto_spec_window)
        spec = npow.prune_power(spec)
        spec = spec[1:].real
        if norm > no_data_thres:
            spec /= norm
        plotable = spec > 0
        a.loglog(frequency[plotable],
                 spec[plotable],
                 c=c,
                 alpha=0.4,
                 linestyle=':')
    output_params['all_channel_index'] = auto_index
    output_params['all_channel_corner_f'] = auto_cross_over
    # Finally measure the thermal part of the noise in each channel.
    cross_over_ind = sp.digitize([auto_cross_over * 4], frequency)[0]
    cross_over_ind = max(cross_over_ind, n_f // 2)
    cross_over_ind = min(cross_over_ind, int(9. * n_f / 10.))
    thermal = reduced_power[cross_over_ind:, :, :].real
    n_high_f = thermal.shape[0]
    thermal.shape = (n_high_f, n_chan**2)
    thermal = sp.mean(thermal[:, ::n_chan + 1], 0)
    thermal_norms = sp.mean(diag_window, 0).real
    bad_inds = thermal_norms < no_data_thres
    thermal_norms[bad_inds] = 1.
    # Compensate for power lost in mode subtraction.
    compensation[:, bad_inds] = 0
    compensation[bad_inds, :] = 0
    for ii in xrange(n_chan):
        if bad_inds[ii]:
            compensation[ii, ii] = 1.
    thermal = linalg.solve(compensation, thermal)
    # Normalize
    thermal /= thermal_norms
    thermal[bad_inds] = T_infinity**2 * dt
    # Occationally the compensation fails horribly on a few channels.
    # When this happens, zero out the offending indices.
    thermal[thermal < 0] = 0
    output_params['thermal'] = thermal
    # Now that we know what thermal is, we can subtract it out of the modes we
    # already measured.
    for ii in range(n_modes):
        mode_params = output_params['over_f_mode_' + str(ii)]
        thermal_contribution = sp.sum(mode_params['mode']**2 * thermal)
        # Subtract a maximum of 90% of the white noise to keep things positive
        # definate.
        new_white = max(mode_params['thermal'] - thermal_contribution,
                        0.1 * mode_params['thermal'])
        if mode_params['thermal'] < 0.5 * T_infinity**2 * dt:
            mode_params['thermal'] = new_white
    return output_params
Beispiel #20
0
def measure_noise_parameters(Blocks, parameters, split_scans=False, plots=False):
    """Given a set of data blocks, measure noise parameters.

    Measurement done for all polarizations but only the first cal state.
    """

    # Initialize the output.
    out_parameters = {}
    if set(parameters) == {"channel_var"}:
        # Calculate the full correlated power spectrum.
        power_mat, window_function, dt, channel_means = npow.full_power_diag(
            Blocks,
            window="hanning",
            deconvolve=False,
            n_time=-1.05,
            normalize=False,
            split_scans=split_scans,
            subtract_slope=True,
        )
        # This shouldn't be nessisary, since I've tried to keep things finite in
        # the above function.  However, leave it in for now just in case.
        if not sp.alltrue(sp.isfinite(power_mat)):
            msg = "Non finite power spectrum calculated.  Offending data in " "file starting with scan %d." % (
                Blocks[0].field["SCAN"]
            )
            raise ce.DataError(msg)
        # Get frequency axis and do unit conversions.
        n_time = power_mat.shape[0]
        n_chan = power_mat.shape[-1]
        frequency = npow.ps_freq_axis(dt, n_time)
        power_mat = npow.prune_power(power_mat, 0)
        power_mat = npow.make_power_physical_units(power_mat, dt)
        # Discard the mean mode.
        frequency = frequency[1:]
        power_mat = power_mat[1:, ...]
        n_f = len(frequency)
        # Loop over polarizations.
        cal_ind = 0
        n_pols = power_mat.shape[1]
        for ii in range(n_pols):
            this_pol_power = power_mat[:, ii, cal_ind, :]
            this_pol_window = window_function[:, ii, cal_ind, :]
            this_pol = Blocks[0].field["CRVAL4"][ii]
            this_pol_parameters = {}
            # If we are plotting, activate the subplot for this polarization and
            # this band.
            if plots:
                h = plt.gcf()
                # The last subplot should be hidden in the figure object.
                current_subplot = h.current_subplot
                current_subplot = current_subplot[:2] + (current_subplot[2] + 1,)
                h.current_subplot = current_subplot
            # Now figure out what we want to measure and measure it.
            if "channel_var" in parameters:
                power_diag = this_pol_power.view()
                window_function_diag = this_pol_window.view()
                # Integral of the power spectrum from -BW to BW.
                channel_var = sp.mean(power_diag, 0) / dt
                # Normalize for the window.
                norms = sp.mean(window_function_diag, 0).real
                bad_inds = norms < 10.0 / n_time
                norms[bad_inds] = 1
                channel_var /= norms
                # If a channel is completly masked Deweight it by giving a high
                # variance
                channel_var[bad_inds] = T_infinity ** 2
                this_pol_parameters["channel_var"] = channel_var
            out_parameters[this_pol] = this_pol_parameters
        return out_parameters
    else:
        # Calculate the full correlated power spectrum.
        power_mat, window_function, dt, channel_means = npow.full_power_mat(
            Blocks,
            window="hanning",
            deconvolve=False,
            n_time=-1.05,
            normalize=False,
            split_scans=split_scans,
            subtract_slope=True,
        )
        # This shouldn't be nessisary, since I've tried to keep things finite in
        # the above function.  However, leave it in for now just in case.
        if not sp.alltrue(sp.isfinite(power_mat)):
            msg = "Non finite power spectrum calculated.  Offending data in " "file starting with scan %d." % (
                Blocks[0].field["SCAN"]
            )
            raise ce.DataError(msg)
        # Get frequency axis and do unit conversions.
        n_time = power_mat.shape[0]
        n_chan = power_mat.shape[-1]
        frequency = npow.ps_freq_axis(dt, n_time)
        power_mat = npow.prune_power(power_mat, 0)
        power_mat = npow.make_power_physical_units(power_mat, dt)
        # Discard the mean mode.
        frequency = frequency[1:]
        power_mat = power_mat[1:, ...]
        n_f = len(frequency)
        # Loop over polarizations.
        cal_ind = 0
        n_pols = power_mat.shape[1]
        for ii in range(n_pols):
            this_pol_power = power_mat[:, ii, cal_ind, :, :]
            this_pol_window = window_function[:, ii, cal_ind, :, :]
            this_pol = Blocks[0].field["CRVAL4"][ii]
            this_pol_parameters = {}
            # If we are plotting, activate the subplot for this polarization and
            # this band.
            if plots:
                h = plt.gcf()
                # The last subplot should be hidden in the figure object.
                current_subplot = h.current_subplot
                current_subplot = current_subplot[:2] + (current_subplot[2] + 1,)
                h.current_subplot = current_subplot
            # Now figure out what we want to measure and measure it.
            if "channel_var" in parameters:
                power_diag = this_pol_power.view()
                power_diag.shape = (n_f, n_chan ** 2)
                power_diag = power_diag[:, :: n_chan + 1].real
                window_function_diag = this_pol_window.view()
                window_function_diag.shape = (n_time, n_chan ** 2)
                window_function_diag = window_function_diag[:, :: n_chan + 1]
                # Integral of the power spectrum from -BW to BW.
                channel_var = sp.mean(power_diag, 0) / dt
                # Normalize for the window.
                norms = sp.mean(window_function_diag, 0).real
                bad_inds = norms < 10.0 / n_time
                norms[bad_inds] = 1
                channel_var /= norms
                # If a channel is completly masked Deweight it by giving a high
                # variance
                channel_var[bad_inds] = T_infinity ** 2
                this_pol_parameters["channel_var"] = channel_var
            for noise_model in parameters:
                if noise_model[:18] == "freq_modes_over_f_":
                    n_modes = int(noise_model[18:])
                    this_pol_parameters[noise_model] = get_freq_modes_over_f(
                        this_pol_power, this_pol_window, frequency, n_modes, plots=plots
                    )
            out_parameters[this_pol] = this_pol_parameters
        return out_parameters
Beispiel #21
0
def get_freq_modes_over_f(power_mat, window_function, frequency, n_modes, plots=False):
    """Fines the most correlated frequency modes and fits thier noise."""

    n_f = len(frequency)
    d_f = sp.mean(sp.diff(frequency))
    dt = 1.0 / 2.0 / frequency[-1]
    n_chan = power_mat.shape[-1]
    n_time = window_function.shape[0]
    # The threshold for assuming there isn't enough data to measure anything.
    no_data_thres = 10.0 / n_time
    # Initialize the dictionary that will hold all the parameters.
    output_params = {}
    # First take the low frequency part of the spetrum matrix and average over
    # enough bins to get a well conditioned matrix.
    low_f_mat = sp.mean(power_mat[: 4 * n_chan, :, :].real, 0)
    # Factor the matrix to get the most correlated modes.
    e, v = linalg.eigh(low_f_mat)
    # Make sure they are sorted.
    if not sp.alltrue(sp.diff(e) >= 0):
        raise RuntimeError("Eigenvalues not sorted")
    # Power matrix striped of the biggest modes.
    reduced_power = sp.copy(power_mat)
    mode_list = []
    # Solve for the spectra of these modes.
    for ii in range(n_modes):
        this_mode_params = {}
        # Get power spectrum and window function for this mode.
        mode = v[:, -1 - ii]
        mode_power = sp.sum(mode * power_mat.real, -1)
        mode_power = sp.sum(mode * mode_power, -1)
        mode_window = sp.sum(mode[:, None] ** 2 * window_function, 1)
        mode_window = sp.sum(mode_window * mode[None, :] ** 2, 1)
        # Protect against no data.
        if sp.mean(mode_window).real < no_data_thres:
            this_mode_params["amplitude"] = 0.0
            this_mode_params["index"] = 0.0
            this_mode_params["f_0"] = 1.0
            this_mode_params["thermal"] = T_infinity ** 2 * dt
        else:
            # Fit the spectrum.
            p = fit_overf_const(mode_power, mode_window, frequency)
            # Put all the parameters we measured into the output.
            this_mode_params["amplitude"] = p[0]
            this_mode_params["index"] = p[1]
            this_mode_params["f_0"] = p[2]
            this_mode_params["thermal"] = p[3]
        this_mode_params["mode"] = mode
        output_params["over_f_mode_" + str(ii)] = this_mode_params
        # Remove the mode from the power matrix.
        tmp_amp = sp.sum(reduced_power * mode, -1)
        tmp_amp2 = sp.sum(reduced_power * mode[:, None], -2)
        tmp_amp3 = sp.sum(tmp_amp2 * mode, -1)
        reduced_power -= tmp_amp[:, :, None] * mode
        reduced_power -= tmp_amp2[:, None, :] * mode[:, None]
        reduced_power += tmp_amp3[:, None, None] * mode[:, None] * mode
        mode_list.append(mode)
    # Initialize the compensation matrix, that will be used to restore thermal
    # noise that gets subtracted out.  See Jan 29, Feb 17th, 2012 of Kiyo's
    # notes.
    compensation = sp.eye(n_chan, dtype=float)
    for mode1 in mode_list:
        compensation.flat[:: n_chan + 1] -= 2 * mode1 ** 2
        for mode2 in mode_list:
            mode_prod = mode1 * mode2
            compensation += mode_prod[:, None] * mode_prod[None, :]
    # Now that we've striped the noisiest modes, measure the auto power
    # spectrum, averaged over channels.
    auto_spec_mean = reduced_power.view()
    auto_spec_mean.shape = (n_f, n_chan ** 2)
    auto_spec_mean = auto_spec_mean[:, :: n_chan + 1].real
    auto_spec_mean = sp.mean(auto_spec_mean, -1)
    diag_window = window_function.view()
    diag_window.shape = (n_time, n_chan ** 2)
    diag_window = diag_window[:, :: n_chan + 1]
    auto_spec_window = sp.mean(diag_window, -1)
    if sp.mean(auto_spec_window).real < no_data_thres:
        auto_cross_over = 0.0
        auto_index = 0.0
        auto_thermal = 0
    else:
        auto_spec_params = fit_overf_const(auto_spec_mean, auto_spec_window, frequency)
        auto_thermal = auto_spec_params[3]
        if auto_spec_params[0] <= 0 or auto_spec_params[3] <= 0 or auto_spec_params[1] > -0.599:
            auto_cross_over = 0.0
            auto_index = 0.0
        else:
            auto_index = auto_spec_params[1]
            auto_cross_over = auto_spec_params[2] * (auto_spec_params[0] / auto_spec_params[3]) ** (-1.0 / auto_index)
            # if auto_cross_over < d_f:
            #    auto_index = 0.
            #    auto_cross_over = 0.
    # Plot the mean auto spectrum if desired.
    if plots:
        h = plt.gcf()
        a = h.add_subplot(*h.current_subplot)
        norm = sp.mean(auto_spec_window).real
        auto_plot = auto_spec_mean / norm
        plotable = auto_plot > 0
        lines = a.loglog(frequency[plotable], auto_plot[plotable])
        c = lines[-1].get_color()
        # And plot the fit in a light color.
        if auto_cross_over > d_f / 4.0:
            spec = npow.overf_power_spectrum(auto_thermal, auto_index, auto_cross_over, dt, n_time)
        else:
            spec = sp.zeros(n_time, dtype=float)
        spec += auto_thermal
        spec[0] = 0
        spec = npow.convolve_power(spec, auto_spec_window)
        spec = npow.prune_power(spec)
        spec = spec[1:].real
        if norm > no_data_thres:
            spec /= norm
        plotable = spec > 0
        a.loglog(frequency[plotable], spec[plotable], c=c, alpha=0.4, linestyle=":")
    output_params["all_channel_index"] = auto_index
    output_params["all_channel_corner_f"] = auto_cross_over
    # Finally measure the thermal part of the noise in each channel.
    cross_over_ind = sp.digitize([auto_cross_over * 4], frequency)[0]
    cross_over_ind = max(cross_over_ind, n_f // 2)
    cross_over_ind = min(cross_over_ind, int(9.0 * n_f / 10.0))
    thermal = reduced_power[cross_over_ind:, :, :].real
    n_high_f = thermal.shape[0]
    thermal.shape = (n_high_f, n_chan ** 2)
    thermal = sp.mean(thermal[:, :: n_chan + 1], 0)
    thermal_norms = sp.mean(diag_window, 0).real
    bad_inds = thermal_norms < no_data_thres
    thermal_norms[bad_inds] = 1.0
    # Compensate for power lost in mode subtraction.
    compensation[:, bad_inds] = 0
    compensation[bad_inds, :] = 0
    for ii in xrange(n_chan):
        if bad_inds[ii]:
            compensation[ii, ii] = 1.0
    thermal = linalg.solve(compensation, thermal)
    # Normalize
    thermal /= thermal_norms
    thermal[bad_inds] = T_infinity ** 2 * dt
    # Occationally the compensation fails horribly on a few channels.
    # When this happens, zero out the offending indices.
    thermal[thermal < 0] = 0
    output_params["thermal"] = thermal
    # Now that we know what thermal is, we can subtract it out of the modes we
    # already measured.
    for ii in range(n_modes):
        mode_params = output_params["over_f_mode_" + str(ii)]
        thermal_contribution = sp.sum(mode_params["mode"] ** 2 * thermal)
        # Subtract a maximum of 90% of the white noise to keep things positive
        # definate.
        new_white = max(mode_params["thermal"] - thermal_contribution, 0.1 * mode_params["thermal"])
        if mode_params["thermal"] < 0.5 * T_infinity ** 2 * dt:
            mode_params["thermal"] = new_white
    return output_params
Beispiel #22
0
def measure_noise_parameters(Blocks,
                             parameters,
                             split_scans=False,
                             plots=False):
    """Given a set of data blocks, measure noise parameters.

    Measurement done for all polarizations but only the first cal state.
    """

    # Initialize the output.
    out_parameters = {}
    if set(parameters) == {"channel_var"}:
        # Calculate the full correlated power spectrum.
        power_mat, window_function, dt, channel_means = npow.full_power_diag(
            Blocks,
            window="hanning",
            deconvolve=False,
            n_time=-1.05,
            normalize=False,
            split_scans=split_scans,
            subtract_slope=True)
        # This shouldn't be nessisary, since I've tried to keep things finite in
        # the above function.  However, leave it in for now just in case.
        if not sp.alltrue(sp.isfinite(power_mat)):
            msg = ("Non finite power spectrum calculated.  Offending data in "
                   "file starting with scan %d." % (Blocks[0].field['SCAN']))
            raise ce.DataError(msg)
        # Get frequency axis and do unit conversions.
        n_time = power_mat.shape[0]
        n_chan = power_mat.shape[-1]
        frequency = npow.ps_freq_axis(dt, n_time)
        power_mat = npow.prune_power(power_mat, 0)
        power_mat = npow.make_power_physical_units(power_mat, dt)
        # Discard the mean mode.
        frequency = frequency[1:]
        power_mat = power_mat[1:, ...]
        n_f = len(frequency)
        # Loop over polarizations.
        cal_ind = 0
        n_pols = power_mat.shape[1]
        for ii in range(n_pols):
            this_pol_power = power_mat[:, ii, cal_ind, :]
            this_pol_window = window_function[:, ii, cal_ind, :]
            this_pol = Blocks[0].field['CRVAL4'][ii]
            this_pol_parameters = {}
            # If we are plotting, activate the subplot for this polarization and
            # this band.
            if plots:
                h = plt.gcf()
                # The last subplot should be hidden in the figure object.
                current_subplot = h.current_subplot
                current_subplot = current_subplot[:2] + (current_subplot[2] +
                                                         1, )
                h.current_subplot = current_subplot
            # Now figure out what we want to measure and measure it.
            if "channel_var" in parameters:
                power_diag = this_pol_power.view()
                window_function_diag = this_pol_window.view()
                # Integral of the power spectrum from -BW to BW.
                channel_var = sp.mean(power_diag, 0) / dt
                # Normalize for the window.
                norms = sp.mean(window_function_diag, 0).real
                bad_inds = norms < 10. / n_time
                norms[bad_inds] = 1
                channel_var /= norms
                # If a channel is completly masked Deweight it by giving a high
                # variance
                channel_var[bad_inds] = T_infinity**2
                this_pol_parameters["channel_var"] = channel_var
            out_parameters[this_pol] = this_pol_parameters
        return out_parameters
    else:
        # Calculate the full correlated power spectrum.
        power_mat, window_function, dt, channel_means = npow.full_power_mat(
            Blocks,
            window="hanning",
            deconvolve=False,
            n_time=-1.05,
            normalize=False,
            split_scans=split_scans,
            subtract_slope=True)
        # This shouldn't be nessisary, since I've tried to keep things finite in
        # the above function.  However, leave it in for now just in case.
        if not sp.alltrue(sp.isfinite(power_mat)):
            msg = ("Non finite power spectrum calculated.  Offending data in "
                   "file starting with scan %d." % (Blocks[0].field['SCAN']))
            raise ce.DataError(msg)
        # Get frequency axis and do unit conversions.
        n_time = power_mat.shape[0]
        n_chan = power_mat.shape[-1]
        frequency = npow.ps_freq_axis(dt, n_time)
        power_mat = npow.prune_power(power_mat, 0)
        power_mat = npow.make_power_physical_units(power_mat, dt)
        # Discard the mean mode.
        frequency = frequency[1:]
        power_mat = power_mat[1:, ...]
        n_f = len(frequency)
        # Loop over polarizations.
        cal_ind = 0
        n_pols = power_mat.shape[1]
        for ii in range(n_pols):
            this_pol_power = power_mat[:, ii, cal_ind, :, :]
            this_pol_window = window_function[:, ii, cal_ind, :, :]
            this_pol = Blocks[0].field['CRVAL4'][ii]
            this_pol_parameters = {}
            # If we are plotting, activate the subplot for this polarization and
            # this band.
            if plots:
                h = plt.gcf()
                # The last subplot should be hidden in the figure object.
                current_subplot = h.current_subplot
                current_subplot = current_subplot[:2] + (current_subplot[2] +
                                                         1, )
                h.current_subplot = current_subplot
            # Now figure out what we want to measure and measure it.
            if "channel_var" in parameters:
                power_diag = this_pol_power.view()
                power_diag.shape = (n_f, n_chan**2)
                power_diag = power_diag[:, ::n_chan + 1].real
                window_function_diag = this_pol_window.view()
                window_function_diag.shape = (n_time, n_chan**2)
                window_function_diag = window_function_diag[:, ::n_chan + 1]
                # Integral of the power spectrum from -BW to BW.
                channel_var = sp.mean(power_diag, 0) / dt
                # Normalize for the window.
                norms = sp.mean(window_function_diag, 0).real
                bad_inds = norms < 10. / n_time
                norms[bad_inds] = 1
                channel_var /= norms
                # If a channel is completly masked Deweight it by giving a high
                # variance
                channel_var[bad_inds] = T_infinity**2
                this_pol_parameters["channel_var"] = channel_var
            for noise_model in parameters:
                if noise_model[:18] == "freq_modes_over_f_":
                    n_modes = int(noise_model[18:])
                    this_pol_parameters[noise_model] = \
                            get_freq_modes_over_f(this_pol_power, this_pol_window,
                                                  frequency, n_modes, plots=plots)
            out_parameters[this_pol] = this_pol_parameters
        return out_parameters