def __init__(self,mux=0,sigmax=1,muy=0,sigmay=1,n=100):
        self.mux=mux
        self.sigmax=sigmax
        self.muy=muy
        self.sigmay=sigmay
        self.n=n
        p=list(map(lambda t:(t+.5)/self.n,range(self.n)))

        normx=norm(self.mux,self.sigmax)
        normy=norm(self.muy,self.sigmay)

        EquiProbx=array(normx.isf(p))
        EquiProby=array(normy.isf(p))
        EquiProb=EquiProbx.reshape(n,1)*EquiProby
        self.EquiProb=EquiProb.reshape(1,n*n)[0]
Beispiel #2
0
    def __init__(self, mux=0, sigmax=1, muy=0, sigmay=1, n=100):
        self.mux = mux
        self.sigmax = sigmax
        self.muy = muy
        self.sigmay = sigmay
        self.n = n
        p = list(map(lambda t: (t + .5) / self.n, range(self.n)))

        normx = norm(self.mux, self.sigmax)
        normy = norm(self.muy, self.sigmay)

        EquiProbx = array(normx.isf(p))
        EquiProby = array(normy.isf(p))
        EquiProb = EquiProbx.reshape(n, 1) * EquiProby
        self.EquiProb = EquiProb.reshape(1, n * n)[0]
Beispiel #3
0
def marquardt(x0, m, eps, f):
    k = 0
    lam = 100000.0
    x = x0.copy()
    new_grad = True
    while k < m:
        if new_grad:
            grad = gradient(f, x, eps)
            new_grad = False
        if norm(grad) < eps:
            break
        h = hesse(f, x, eps)
        for i in range(len(h)):
            h[i][i] += lam
        h = inverse_matrix(h)
        x1 = x.copy()
        for i in range(len(x1)):
            for j in range(len(h)):
                x1[i] -= h[i][j]*grad[j]
        if f(x1) < f(x):
            lam /= 2
            k += 1
            new_grad = True
            x = x1.copy()
        else:
            lam *= 2
    return x, f(x)
  def __new__(self,ODB, CurRec,nfield,DensDatByDenCat,DDBR,QuantileUse,n=100,p=None):
    self.n=n
    self.p=p
    if self.p==None:self.p=list(map(lambda t:(t+.5)/self.n,range(self.n)))
    CurValue={}
    #Values directly from Database
    for i in range(nfield):CurValue[ODB.Fname[i]]=CurRec[i]
            
    #Incorporate estimated abundance and confidence bounds into the dictionary
    SiteMean=CurValue['BedArea']*10000 #Convert bed-area from hectares to square metres
    SiteStDev=CurValue['BedAreaSE']*10000
    WeightMean=CurValue['MeanWt']/2.204622622 #Convert mean weight from pounds to kilos
    WeightStEr=CurValue['MeanWtSE']/2.204622622

    DistWeight=norm(         WeightMean,WeightStEr)
    DistArea  =LowHalfNormal(SiteMean  ,SiteStDev)
    DistWeightByArea=ProdDistributions(DistWeight,DistArea,p=self.p)


    BiomassDC=ProdDistributions(DistWeightByArea,DensDatByDenCat,p=self.p)#Based upon Density-class and region
    BiomassQR=ProdDistributions(DistWeightByArea,DDBR,p=self.p)#Based on Region only

    CurValue['CBBiomassDC']=BiomassDC.isf(QuantileUse)
    CurValue['CBBiomassQR']=BiomassQR.isf(QuantileUse)
    CurValue['n_DenCat']=len(DensDatByDenCat)
    CurValue['n_Region']=len(DDBR)
    return(CurValue)
Beispiel #5
0
 def GetMeanTranLen(self):
     TranLen = list(map(lambda t: t.GetTranLength(), self.ListTransects))
     n = len(TranLen)
     if n < 1: return (norm(-sys.maxsize, -sys.maxsize))
     try:
         mu = average(TranLen)
     except:
         mu = average(TranLen)
     if n > 1:
         sigma = std(TranLen, ddof=1)
         sterr = sigma / sqrt(n)
     else:
         sigma = -sys.maxsize
         sterr = -sys.maxsize
     result = norm(mu, sterr)
     return (result)
Beispiel #6
0
    def get_radii(self,positions):
        """This function sets self.radii_matrix and self.distances_matrix
        to the appropraite values to be used in the equation of mation
        """

        # The radius matrix's dimensions are
        # [self.how_many,self.how_many,2]. This is because each radius
        # is actually a vector of length 2. The distance matrix's
        # dimensions are [self.how_many,self.how_many] because it is
        # an array of scalars.
        rad_mat = np.zeros([self.how_many,self.how_many,2])
        dist_mat = np.zeros([self.how_many,self.how_many])
        for i in range(self.how_many):
            for j in range(self.how_many):
                # To avoid having to do excess calculations, if
                # the row number is larger than the column number,
                # the new radius and distance is set to the negative
                # of the one with the opposite index
                if (i > j):
                    rad_mat[i,j] = -rad_mat[j,i]
                    dist_mat[i,j] = dist_mat[j,i]
                elif (i == j):
                    rad_mat[i,j] = np.zeros([2])
                    dist_mat[i,j] = float(0)                
                elif (i != j):
                    rad_mat[i,j] = \
                                 positions[j] - \
                                 positions[i]
                    dist_mat[i,j] = norm(rad_mat[i,j])
                                  
        return rad_mat,dist_mat
Beispiel #7
0
 def CalcDigitizedArea(self):
     self.FromSiteAnalysisData()
     if self.DigitizedArea != None:
         return
     self.FromSiteSummary()
     if self.DigitizedArea != None:
         return
     self.DigitizedArea = norm(MinInt, 0.)
     return
Beispiel #8
0
    def FromSiteAnalysisData(self):
        '''Try to calculate site-area from data in the AnalysisData table'''
        query = 'SELECT DISTINCT SiteAnalysisData.DigitizedArea '
        query += 'FROM SiteAnalysisData '
        query += 'WHERE (((SiteAnalysisData.SurveyTitle)="'
        query += self.survey
        query += '") AND ((SiteAnalysisData.Year)= '
        query += str(self.year)
        query += ') AND ((SiteAnalysisData.SurveySite)= '
        query += str(self.site)
        query += '));'

        try:
            self.ODB.execute(query)
            area = self.ODB.GetVariable(
                'DigitizedArea')[0] * 10000  #convert hectares to square metres
            self.DigitizedArea = norm(area, area / 10.)
            if area < 0:
                self.DigitizedArea = norm(MinInt * 10000, 0.)
        except:
            self.DigitizedArea = norm(MinInt * 10000, 0.)
Beispiel #9
0
    def AreaFromLOBF(self):
        self.GetLOBF()
        if self.LOBF == None:
            self.LOBFarea = norm(MinInt, 0.)
            return
        MTL = self.GetMeanTranLen()
        try:
            if (len(self.ListTransects) > 1):
                self.LOBFarea = norm(MTL.mu * self.LOBF, MTL.sigma * self.LOBF)
                return
        except:
            print('SiteSize 117')
            print('MTL', MTL)
            print('len(self.ListTransects) ', len(self.ListTransects))
            if (len(self.ListTransects) > 1):
                self.LOBFarea = norm(MTL[0] * self.LOBF, MTL[1] * self.LOBF)
                return

        if (len(self.ListTransects) > 0):
            self.LOBFarea = norm(MTL.mu * self.LOBF, 0.)
            return

        self.LOBFarea = norm(MinInt, 0.)
    def __init__(self,mux=0,sigmax=1,muh=0,sigmah=1,n=100):
        self.mux=mux
        self.sigmax=sigmax
        self.muh=muh
        self.sigmah=sigmah
        self.n=n
        p=list(map(lambda t:(t+.5)/self.n,range(self.n)))

        normx=norm(self.mux,self.sigmax)
        normh=LowHalfNormal(self.muh,self.sigmah)

        EquiProbx=array(normx.isf(p))
        EquiProbh=array(normh.isf(p))
        EquiProb=EquiProbx.reshape(n,1)*EquiProbh
        self.EquiProb=EquiProb.reshape(1,n*n)[0]
    def __new__(self,
                ODB,
                CurRec,
                nfield,
                DensDatByDenCat,
                DDBR,
                DDBR_pr,
                QuantileUse,
                n=100,
                p=None):
        self.n = n
        self.p = p
        if self.p == None:
            self.p = list(map(lambda t: (t + .5) / self.n, range(self.n)))
        CurValue = {}
        #Values directly from Database
        for i in range(nfield):
            CurValue[ODB.Fname[i]] = CurRec[i]

        #Incorporate estimated abundance and confidence bounds into the dictionary
        SiteMean = CurValue[
            'BedArea'] * 10000  #Convert bed-area from hectares to square metres
        SiteStDev = CurValue['BedAreaSE'] * 10000
        WeightMean = CurValue[
            'MeanWt'] / 2.204622622  #Convert mean weight from pounds to kilos
        WeightStEr = CurValue['MeanWtSE'] / 2.204622622

        DistWeight = norm(WeightMean, WeightStEr)
        DistArea = LowHalfNormal(SiteMean, SiteStDev)
        DistWeightByArea = ProdDistributions(DistWeight, DistArea, p=self.p)

        BiomassDC = ProdDistributions(
            DistWeightByArea, DensDatByDenCat,
            p=self.p)  #Based upon Density-class and region
        BiomassQR = ProdDistributions(DistWeightByArea, DDBR,
                                      p=self.p)  #Based on Region only

        #Biomass_pr_DC=ProdDistributions(DistWeightByArea,DensDatByDenCat_pr,p=self.p)#Based upon Density-class and region
        Biomass_pr_QR = ProdDistributions(DistWeightByArea, DDBR_pr,
                                          p=self.p)  #Based on Region only

        CurValue['CBBiomassDC'] = BiomassDC.isf(QuantileUse)
        CurValue['CBBiomassQR'] = BiomassQR.isf(QuantileUse)
        #CurValue['CBBiomass_prDC']=Biomass_pr_DC.isf(QuantileUse)
        CurValue['CBBiomass_prQR'] = Biomass_pr_QR.isf(QuantileUse)
        CurValue['n_DenCat'] = len(DensDatByDenCat)
        CurValue['n_Region'] = len(DDBR)
        return (CurValue)
Beispiel #12
0
    def FromSiteSummary(self):
        '''Try to calculate site-area from data in the SiteSummary table'''
        query = 'SELECT DISTINCT SiteSummary.Survey '
        query += 'FROM SiteSummary '
        query += 'WHERE (((SiteSummary.SurveyTitle)="'
        query += self.survey
        query += '") AND ((SiteSummary.Year)= '
        query += str(self.year)
        query += ') AND ((SiteSummary.SurveySite)= '
        query += str(self.site)
        query += '));'

        try:
            self.ODB.execute(query)
            area = ODB.GetVariable('SurveySiteArea')
            self.DigitizedArea = norm(sum(area), 0.)
        except:
            self.DigitizedArea = None
Beispiel #13
0
def quad_form(x, P):
    """ Alias for :math:`x^T P x`.

    """
    x, P = map(Expression.cast_to_const, (x,P))
    # Check dimensions.
    n = P.size[0]
    if P.size[1] != n or x.size != (n,1):
        raise Exception("Invalid dimensions for arguments.")
    if x.is_constant():
        return x.T * P * x
    elif P.is_constant():
        np_intf = intf.get_matrix_interface(np.ndarray)
        P = np_intf.const_to_matrix(P.value)
        sgn, scale, M = _decomp_quad(P)
        return sgn * scale * square(norm(Constant(M.T) * x))
    else:
        raise Exception("At least one argument to quad_form must be constant.")
    def __init__(self,ODB,SurveyTitle,Year,SurveySite=None):
        '''ADOWeightVal(ODB,HeaderValues)
           * ODB is an open geoduck bio-database'''
        
        self.ODB=ODB

        query ="select "
        query+="SiteAnalysisData.MeanWeight as EstMeanWeight, SiteAnalysisData.MeanWeightSE, SiteAnalysisData.MeanWeightSource  from SiteAnalysisData "
        query+=self.WhereQuery(SurveyTitle,Year,SurveySite)
        query+=";"
        ODB.execute(query)
        self.EstMeanWeight    =ODB.GetVariable('EstMeanWeight')
        self.MeanWeightSE     =ODB.GetVariable('MeanWeightSE')
        self.MeanWeightSource =ODB.GetVariable('MeanWeightSource')
        if isinstance(self.EstMeanWeight,(list,ndarray)):self.EstMeanWeight=self.EstMeanWeight[0]
        if isinstance(self.MeanWeightSE ,(list,ndarray)):self.MeanWeightSE =self.MeanWeightSE[0]
        if isinstance(self.MeanWeightSource ,(list,ndarray)):self.MeanWeightSource =self.MeanWeightSource[0]
        if self.EstMeanWeight==None:self.EstMeanWeight=-1.
        if self.MeanWeightSE==None:self.MeanWeightSE=0.
        if self.MeanWeightSource==None:self.MeanWeightSource='Unknown'
        if self.MeanWeightSource=='':self.MeanWeightSource='Unknown'
        self.RandSource=norm(self.EstMeanWeight,self.MeanWeightSE)
Beispiel #15
0
# Importing Modules
import norm as nm
import smooth as sm
import readfits as rdf
import plot as pt
import write_moog as wtm
import write as wt

#Open and read the fits file
wavelength, flux = rdf.readfits()

#Normalizing
norm_flux = nm.norm(flux)

#Smoothing
smooth_wavelength, smooth_flux = sm.smooth(wavelength, norm_flux)

#Plotting the data
pt.plot(wavelength, flux, smooth_wavelength, smooth_flux)

#Writing to Text file (For moog)
star_name, number_of_variables = wtm.write_moog(smooth_wavelength, smooth_flux)

#Writing to a plain text file (with header)
wt.write_txt(smooth_wavelength, smooth_flux, star_name, number_of_variables,
             wavelength, flux)
Beispiel #16
0
# Creates matrix of given data. Matrix dimension is LEN-N x N
def create_input_matrix(sunspot, n):
    training_in = []
    i = 0
    while i < len(sunspot) - n:
        line = sunspot[i:n+i]
        training_in.append(line)
        i += 1
    return np.array(training_in)

# readed data from file
data = read_data(FILE_PATH)
years, spots = split_data(data)

# normalise data
norm_spots = norm(spots, 0, 1)

# split for training and validation
train_spots = norm_spots[:200]
valid_spots = norm_spots[200:]

# converted data to matrices - ready to work with it
training_out = np.array(train_spots[N:]).reshape(-1, 1)
training_in = create_input_matrix(train_spots, N)

# learn
neur_net = NeuralNetwork(N)
neur_net.train(training_in, training_out, 100000, 0.0001)
print("Weights after training:")
print(neur_net.synaptic_weights)
            self.value=mquantiles(equiProb,self.p)
        except:
            self.value=list(map(lambda x:-1,self.p))


    def isf(self,p=None,n=None):
        if p==None:
            if n==None:
                return(self.value)
            else:
                p=list(map(lambda t: (t+.5)/n,range(n)))
        if self.value==[]:return(list(map(lambda x:-1,p)))
        result=mquantiles(self.value,p)
        return(result)

    

if __name__ == "__main__":
    from norm import norm
    from LowHalfNormal import LowHalfNormal
    p=[.0005,.005,.05,.15,.25,.35,.45,.55,.65,.75,.85,.95,.995,.9995]
    test1=LowHalfNormal(10,1)
    test2=norm(20,2)
    test3=array(range(10))

    test4=ProdDistributions(test1,test2)
    print( 'test4.isf(n=3) ', test4.isf(n=10))

    test5=ProdDistributions(test4,test3)
    print( 'test5.isf(n=10) ', test5.isf(n=10))
        except:
            self.value = list(map(lambda x: -1, self.p))

    def isf(self, p=None, n=None):
        if p == None:
            if n == None:
                return (self.value)
            else:
                p = list(map(lambda t: (t + .5) / n, range(n)))
        if self.value == []: return (list(map(lambda x: -1, p)))
        result = mquantiles(self.value, p)
        return (result)


if __name__ == "__main__":
    from norm import norm
    from LowHalfNormal import LowHalfNormal
    p = [
        .0005, .005, .05, .15, .25, .35, .45, .55, .65, .75, .85, .95, .995,
        .9995
    ]
    test1 = LowHalfNormal(10, 1)
    test2 = norm(20, 2)
    test3 = array(range(10))

    test4 = ProdDistributions(test1, test2)
    print('test4.isf(n=3) ', test4.isf(n=10))

    test5 = ProdDistributions(test4, test3)
    print('test5.isf(n=10) ', test5.isf(n=10))
Beispiel #19
0
 def eom(W):
     w = W.reshape([self.how_many,2])
     radii_matrix, distances_matrix = self.get_radii(w)
     dist_max2 = simulation_values.attract_upper
     dist_min2 = simulation_values.attract_lower
     
     for i in range(self.how_many):
         rx = 0.
         ry = 0.
         r0 = bool(0)
         if (self.mol_all[i].t == mol_type.OKT3):
             r0 = bool(1)
         else:
             for k in range(self.how_many):
                 if (i == k):
                     pass
                 elif (distances_matrix[i,k] > dist_max2):
                     pass
                 # For when there's only one OKT3
                 elif ((simulation_values.ok_count == 1) and \
                       (self.mol_all[i].t == mol_type.ACTIN) and \
                       (self.mol_all[k].t == mol_type.OKT3) and \
                       (distances_matrix[i,k] > simulation_values.cortex_rad)):
                    r0 = bool(1)
                    self.mol_all[i].age = self.mol_all[i].age*.1
                    break
                 elif (((self.mol_all[i].t == mol_type.ACTIN) and \
                        (self.mol_all[k].t == mol_type.ACTIN)) and \
                       (distances_matrix[i,k] < simulation_values.repulsion_radius_act)):
                     dm = distances_matrix[i,k] 
                     rx += -radii_matrix[i,k][0]/(dm/simulation_values.repuls_factor)
                     ry += -radii_matrix[i,k][1]/(dm/simulation_values.repuls_factor)
                 elif (((self.mol_all[i].t == mol_type.MYOSIN) and \
                        (self.mol_all[k].t == mol_type.MYOSIN)) and \
                       (distances_matrix[i,k] < simulation_values.repulsion_radius_myo)):
                     dm = distances_matrix[i,k]                            
                     rx += -radii_matrix[i,k][0]/(dm/simulation_values.repuls_factor)
                     ry += -radii_matrix[i,k][1]/(dm/simulation_values.repuls_factor)
                 elif (distances_matrix[i,k] < dist_min2):
                     pass
                 elif ((self.mol_all[i].t == mol_type.MYOSIN) and \
                       (self.mol_all[k].t == mol_type.ACTIN)):
                     dm = distances_matrix[i,k]
                     rx += radii_matrix[i,k][0]/dm
                     ry += radii_matrix[i,k][1]/dm
                 elif ((self.mol_all[i].t == mol_type.ACTIN) and \
                       (self.mol_all[k].t == mol_type.MYOSIN)):
                     dm = distances_matrix[i,k]
                     rx += radii_matrix[i,k][0]/dm
                     ry += radii_matrix[i,k][1]/dm
             if ((rx != 0) or (ry != 0)):
                 rm = norm(np.array([rx,ry]))
                 if (rm > 1.):
                     rx = rx/math.sqrt(rm)
                     ry = ry/math.sqrt(rm)
         if r0:
             vx = 0.
             vy = 0.
         if (self.mol_all[i].t == mol_type.ACTIN):
             vx = rx*dv_act
             vy = ry*dv_act
         if (self.mol_all[i].t == mol_type.MYOSIN):
             vx = rx*dv_myo
             vy = ry*dv_myo                
         self.mol_all[i].set_position([self.mol_all[i].pos[0]+vx, \
                                       self.mol_all[i].pos[1]+vy])