def makeCDF(probability, edges):
    probability = nrm.normalizeCounts(probability, edges)
    widths = (edges[1:] - edges[:-1])
    widths = np.array(widths)
    # Compute the CDF
    CY = np.cumsum(probability * widths)
    return CY
Beispiel #2
0
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Jul 24 10:53:26 2019

@author: Emilio Moya

University of Michigan
"""

import matplotlib.pyplot as plt
import spectraMultiDependence_v2 as spmd
import probDistributionOfToFSum as pdfs
import normalize as nrm

[ctsExperiment, expBins] = spmd.plotExp()
[ctsSimulation, simBins] = pdfs.plotSim()

normExp = nrm.normalizeCounts(ctsExperiment, expBins)
normSim = nrm.normalizeCounts(ctsSimulation, simBins)

centersExp = nrm.edgesToCenters(expBins)
centersSim = nrm.edgesToCenters(simBins)

plt.plot(centersExp, normExp, label = "Experiment")
plt.plot(centersSim, normSim, label = "Null Hypothesis")
plt.ylabel("Normalized Counts")
plt.xlabel("Energy Sum Between Two Neutrons (MeV)")
plt.legend()
plt.show()
Beispiel #3
0
simTimes3 = neutrons[neutrons.PulseHeight > minHeight3].Time

#Creates bins for simulation and experimental data
simBins = np.linspace(5, simTimes.max(), 101)
simBins2 = np.linspace(5, simTimes2.max(), 101)
simBins3 = np.linspace(5, simTimes3.max(), 101)
expBins = np.linspace(5, expTimes.max(), 101)

#Computes the histogram of the experiment and simulation data
[yExp, xExp] = np.histogram(expTimes, expBins)
[ySim, xSim] = np.histogram(simTimes, expBins)
[ySim2, xSim2] = np.histogram(simTimes2, expBins)
[ySim3, xSim3] = np.histogram(simTimes3, expBins)

#Normalizes the experiment and simulation data
normExp = nrm.normalizeCounts(yExp, xExp)
normSim = nrm.normalizeCounts(ySim, xSim)
normSim2 = nrm.normalizeCounts(ySim2, xSim2)
normSim3 = nrm.normalizeCounts(ySim3, xSim3)

#Finds the bins centers of the experiment and simulation bins
centersExp = nrm.edgesToCenters(expBins)
centersSim = nrm.edgesToCenters(expBins)
centersSim2 = nrm.edgesToCenters(expBins)
centersSim3 = nrm.edgesToCenters(expBins)

##Plots the normalized experiment and simulation data, with axises, a title, and a legend
#plt.plot(centersExp, normExp, alpha = 0.5, label = "Experiment")
#plt.plot(centersSim, normSim, alpha = 0.5, label = "Simulation 1 (Min Height = 0.1)")
#plt.plot(centersSim2, normSim2, alpha = 0.5, label = "Simulation 2 (Min Height = 0.5)")
#plt.plot(centersSim3, normSim3, alpha = 0.5, label = "Simulation 3 (Min Height = 1)")