def testToNoteSequenceMultipleChunksWithChords(self):
     sequence = copy.deepcopy(self.sequence)
     testing_lib.add_track_to_sequence(sequence, 0, [
         (64, 100, 0, 2),
         (60, 100, 0, 4),
         (67, 100, 2, 4),
         (62, 100, 4, 6),
         (59, 100, 4, 8),
         (67, 100, 6, 8),
     ])
     testing_lib.add_track_to_sequence(sequence,
                                       1, [
                                           (40, 100, 0, 0.125),
                                           (50, 100, 0, 0.125),
                                           (50, 100, 2, 2.125),
                                           (40, 100, 4, 4.125),
                                           (50, 100, 4, 4.125),
                                           (50, 100, 6, 6.125),
                                       ],
                                       is_drum=True)
     testing_lib.add_chords_to_sequence(sequence, [('C', 0), ('G', 4)])
     converter = data_hierarchical.MultiInstrumentPerformanceConverter(
         hop_size_bars=4,
         chunk_size_bars=2,
         chord_encoding=note_seq.MajorMinorChordOneHotEncoding())
     tensors = converter.to_tensors(sequence)
     self.assertEqual(1, len(tensors.outputs))
     sequences = converter.from_tensors(tensors.outputs, tensors.controls)
     self.assertEqual(1, len(sequences))
     self.assertProtoEquals(sequence, sequences[0])
 def setUp(self):
     super().setUp()
     self.config = improv_rnn_model.ImprovRnnConfig(
         None,
         note_seq.ConditionalEventSequenceEncoderDecoder(
             note_seq.OneHotEventSequenceEncoderDecoder(
                 note_seq.MajorMinorChordOneHotEncoding()),
             note_seq.OneHotEventSequenceEncoderDecoder(
                 note_seq.MelodyOneHotEncoding(0, 127))),
         contrib_training.HParams(),
         min_note=0,
         max_note=127,
         transpose_to_key=0)
    def testMelodyRNNPipeline(self):
        note_sequence = magenta.common.testing_lib.parse_test_proto(
            note_seq.NoteSequence, """
        time_signatures: {
          numerator: 4
          denominator: 4}
        tempos: {
          qpm: 120}""")
        note_seq.testing_lib.add_track_to_sequence(note_sequence, 0,
                                                   [(12, 100, 0.00, 2.0),
                                                    (11, 55, 2.1, 5.0),
                                                    (40, 45, 5.1, 8.0),
                                                    (55, 120, 8.1, 11.0),
                                                    (53, 99, 11.1, 14.1)])
        note_seq.testing_lib.add_chords_to_sequence(note_sequence,
                                                    [('N.C.', 0.0),
                                                     ('Am9', 5.0),
                                                     ('D7', 10.0)])

        quantizer = note_sequence_pipelines.Quantizer(steps_per_quarter=4)
        lead_sheet_extractor = lead_sheet_pipelines.LeadSheetExtractor(
            min_bars=7,
            min_unique_pitches=5,
            gap_bars=1.0,
            ignore_polyphonic_notes=False,
            all_transpositions=False)
        conditional_encoding = note_seq.ConditionalEventSequenceEncoderDecoder(
            note_seq.OneHotEventSequenceEncoderDecoder(
                note_seq.MajorMinorChordOneHotEncoding()),
            note_seq.OneHotEventSequenceEncoderDecoder(
                note_seq.MelodyOneHotEncoding(self.config.min_note,
                                              self.config.max_note)))
        quantized = quantizer.transform(note_sequence)[0]
        lead_sheet = lead_sheet_extractor.transform(quantized)[0]
        lead_sheet.squash(self.config.min_note, self.config.max_note,
                          self.config.transpose_to_key)
        encoded = pipelines_common.make_sequence_example(
            *conditional_encoding.encode(lead_sheet.chords, lead_sheet.melody))
        expected_result = {
            'training_lead_sheets': [encoded],
            'eval_lead_sheets': []
        }

        pipeline_inst = improv_rnn_pipeline.get_pipeline(self.config,
                                                         eval_ratio=0.0)
        result = pipeline_inst.transform(note_sequence)
        self.assertEqual(expected_result, result)