Beispiel #1
0
class SALOME(object):
    def __init__(self, config, family='S', nTF=16, obj='L'):
        self.nTF = nTF
        self.config = config
        datadir = trim_dir('../../Data')
        file = 'salome_input'  #  config #  +'_{}{}{}'.format(family,nTF,obj)
        self.filename = datadir + '/' + file + '.json'
        self.profile = Profile(config['TF'],
                               family=family,
                               load=True,
                               part='TF',
                               nTF=nTF,
                               obj=obj,
                               npoints=250)
        setup = Setup(config['eq'])
        self.sf = SF(setup.filename)
        self.tf = TF(self.profile, sf=self.sf)
        self.pf = PF(self.sf.eqdsk)
        self.PF_support()  # calculate PF support seats
        self.CS_support()  # calculate CS support seats
        self.Gravity_support()
        self.cage = coil_cage(nTF=nTF,
                              rc=self.tf.rc,
                              ny=3,
                              plasma={'config': config['eq']},
                              coil=self.tf.x['cl'])
        self.eq = EQ(self.sf,
                     self.pf,
                     dCoil=0.5,
                     sigma=0,
                     boundary=self.sf.get_sep(expand=0.5),
                     n=1e3)
        self.eq.plasma()
        self.ff = force_feild(self.pf.index, self.pf.coil, self.eq.coil,
                              self.eq.plasma_coil)

    def write(self):
        print('writing', self.filename, self.nTF)
        color = sns.color_palette('Set2', 12)
        data = {
            'p': self.profile.loop.p,
            'section': self.tf.section,
            'pf': self.pf.coil,
            'nTF': self.nTF,
            'color': color,
            'PFsupport': self.PFsupport,
            'CSsupport': self.CSsupport,
            'Gsupport': self.Gsupport,
            'OISsupport': self.OISsupport
        }

        with open(self.filename, 'w') as f:
            json.dump(data, f, indent=4)

    def CS_support(self):
        depth = self.tf.section['winding_pack']['depth']
        side = self.tf.section['case']['side']
        width = self.tf.section['winding_pack']['width']
        inboard = self.tf.section['case']['inboard']
        nose = self.tf.section['case']['nose']
        segment = self.profile.loop.p[0]
        ro, zo = segment['p0']['r'], segment['p0']['z']
        theta = np.pi / self.nTF
        rsep = (depth / 2 + side) / np.tan(theta)
        rnose = ro - (width + inboard + nose)
        rwp = ro - (width + inboard)
        if rsep <= rnose:
            ynose = depth / 2 + side
        else:
            ynose = rnose * np.tan(theta)
        if rsep <= rwp:
            ywp = depth / 2 + side
        else:
            ywp = rwp * np.tan(theta)

        self.tf.loop_interpolators(offset=0)  # construct TF interpolators
        TFloop = self.tf.fun['out']
        L = minimize_scalar(SALOME.cs_top,
                            method='bounded',
                            args=(rwp, TFloop),
                            bounds=[0.5, 1]).x
        ztop = float(TFloop['z'](L))
        self.CSsupport = {
            'rnose': rnose,
            'ynose': ynose,
            'rwp': rwp,
            'ywp': ywp,
            'ztop': ztop,
            'zo': zo,
            'dt': side
        }

    def cs_top(L, rwp, TFloop):
        err = abs(TFloop['r'](L) - rwp)
        return err

    def support_arm(L, coil, TFloop):
        dl = np.sqrt((coil['r'] - TFloop['r'](L))**2 +
                     (coil['z'] - TFloop['z'](L))**2)
        return dl

    def intersect(x, xc, nhat, TFloop):
        L, s = x  # unpack
        rTF, zTF = TFloop['r'](L), TFloop['z'](L)
        rs, zs = s * nhat + xc
        err = np.sqrt((rTF - rs)**2 + (zTF - zs)**2)
        return err

    def connect(self, coil, loop, edge=0.15, hover=0.1, argmin=60):
        L = minimize_scalar(SALOME.support_arm,
                            method='bounded',
                            args=(coil, loop),
                            bounds=[0, 1]).x
        rTF, zTF = loop['r'](L), loop['z'](L)
        nhat = np.array([rTF - coil['r'], zTF - coil['z']])
        ndir = 180 / np.pi * np.arctan(abs(nhat[1] / nhat[0]))  # angle, deg
        if ndir < argmin:  # limit absolute support angle
            nhat = np.array([
                np.sign(nhat[0]),
                np.tan(argmin * np.pi / 180) * np.sign(nhat[1])
            ])
        nhat /= np.linalg.norm(nhat)
        above = np.sign(np.dot(nhat, [0, 1]))
        zc = coil['z'] + above * (coil['dz'] / 2 + hover)
        nodes = [[] for _ in range(4)]
        for i, sign in enumerate([-1, 1]):  #  inboard / outboard
            rc = coil['r'] + sign * (coil['dr'] / 2 + edge)
            nodes[i] = [rc, zc]
            xc = np.array([rc, zc])
            xo = np.array([L, 0.5])
            res = minimize(SALOME.intersect,
                           xo,
                           method='L-BFGS-B',
                           bounds=([0, 1], [0, 15]),
                           args=(xc, nhat, loop))
            rs, zs = res.x[1] * nhat + xc
            nodes[3 - i] = [rs, zs]
        return nodes

    def PF_support(self):
        self.tf.loop_interpolators(offset=-0.15)  # construct TF interpolators
        TFloop = self.tf.fun['out']
        self.PFsupport = {}
        for name in self.pf.index['PF']['name']:
            coil = self.pf.coil[name]
            nodes = self.connect(coil, TFloop, edge=0.15, hover=0.1, argmin=60)
            self.PFsupport[name] = nodes

    def GS_placement(L, radius, TFloop):
        return abs(radius - TFloop['r'](L))

    def Gravity_support(self, radius=13, width=0.75):
        self.tf.loop_interpolators(offset=-0.15)  # construct TF interpolators
        TFloop = self.tf.fun['out']
        self.tf.loop_interpolators(offset=0)
        Sloop = self.tf.fun['out']
        L = minimize_scalar(SALOME.GS_placement,
                            method='bounded',
                            args=(radius - width / 2, Sloop),
                            bounds=[0, 0.5]).x
        coil = {
            'r': Sloop['r'](L) + width / 2,
            'z': Sloop['z'](L) - width / 2,
            'dr': width,
            'dz': width
        }
        nodes = self.connect(coil, TFloop, edge=0, hover=0, argmin=90)
        self.Gsupport = {'base': nodes}
        z = [[self.pf.coil[name]['z']-self.pf.coil[name]['dz']/2]\
             for name in self.pf.coil]
        floor = np.min(z) - 1
        self.Gsupport['zbase'] = float(Sloop['z'](L))
        self.Gsupport['zfloor'] = floor
        self.Gsupport['radius'] = radius
        self.Gsupport['width'] = width

    def OIS_placment(L, TFloop, point):
        err = (point[0] - TFloop['r'](L))**2 + (point[1] - TFloop['z'](L))**2
        return err

    def draw_OIS(self, L, width, thickness, TFloop):
        dl = width / TFloop['L']
        rcl = np.array([TFloop['r'](L - dl / 2), TFloop['r'](L + dl / 2)])
        zcl = np.array([TFloop['z'](L - dl / 2), TFloop['z'](L + dl / 2)])
        ro, zo = np.mean(rcl), np.mean(zcl)
        L = minimize_scalar(SALOME.OIS_placment,
                            method='bounded',
                            args=(TFloop, (ro, zo)),
                            bounds=[0, 1]).x
        dr, dz = TFloop['r'](L) - ro, TFloop['z'](L) - zo
        rcl += dr / 2
        zcl += dz / 2
        dt = np.array([rcl[1] - rcl[0], 0, zcl[1] - zcl[0]])
        dt /= np.linalg.norm(dt)
        dn = np.cross(dt, np.array([0, 1, 0]))

        rcl = np.append(rcl + dn[0] * thickness / 2,
                        rcl[::-1] - dn[0] * thickness / 2)
        zcl = np.append(zcl + dn[2] * thickness / 2,
                        zcl[::-1] - dn[2] * thickness / 2)
        nodes = [[rcl[i], zcl[i]] for i in range(4)]
        return nodes

    def OIS(self, width=3.5, thickness=0.15, rmin=10):
        self.tf.loop_interpolators(offset=0)  # construct TF interpolators
        TFloop = self.tf.fun['cl']
        self.OISsupport = {}
        for i, (L, width) in enumerate(zip([0.4, 0.64], [4.5, 2.5])):
            nodes = self.draw_OIS(L, width, thickness, TFloop)
            self.OISsupport['OIS{:d}'.format(i)] = nodes

    def plot(self):
        self.tf.fill()
        self.pf.plot(coils=self.pf.coil, label=True, current=True)
        self.pf.plot(coils=self.eq.coil, plasma=True)
        for name in self.PFsupport:
            nodes = np.array(self.PFsupport[name])
            geom.polyfill(nodes[:, 0], nodes[:, 1], color=0.4 * np.ones(3))
        nodes = np.array(self.Gsupport['base'])
        geom.polyfill(nodes[:, 0], nodes[:, 1], color=0.4 * np.ones(3))
        pl.plot(self.Gsupport['radius'] * np.ones(2),
                [self.Gsupport['zbase'], self.Gsupport['zfloor']],
                'o-',
                color=0.4 * np.ones(3),
                lw=4)
        for name in self.OISsupport:
            nodes = np.array(self.OISsupport[name])
            geom.polyfill(nodes[:, 0], nodes[:, 1], color=0.4 * np.ones(3))
        rnose = self.CSsupport['rnose']
        rwp = self.CSsupport['rwp']
        zo = self.CSsupport['zo']
        ztop = self.CSsupport['ztop']
        rCS = [rnose, rwp, rwp, rnose]
        zCS = [zo, zo, ztop, ztop]
        geom.polyfill(rCS, zCS, color=0.4 * np.ones(3))

    def ansys(self, plot=False, nl=250, nr=5, ny=5):
        filename = '../../Data/TFload_{:d}'.format(self.nTF)
        ans = table(filename)
        ans.f.write('! loading tables for {:d}TF coil concept\n'.format(
            self.nTF))
        ans.f.write('! loop length parameterized from 0-1\n')
        ans.f.write('! loop starts at the inboard midplane\n')
        ans.f.write('! loop progresses in the anti-clockwise direction\n')
        ans.f.write('! tables defined with cylindrical coordinate system\n')
        ans.f.write(
            '! body applied to nodes of winding-pack in cartisean system x,y,z\n'
        )
        ans.f.write(
            '! winding-pack must be labled as named-selection \'wp\'\n')
        ans.f.write('\nlocal,11,1,{:1.9f},0,{:1.9f},0,90,0'\
                    .format(self.sf.mo[0],self.sf.mo[1]))
        ans.f.write('  ! define local cylindrical coordinate system\n')
        ans.f.write('csys,0  ! restore to cartesian\n')

        ans.f.write('\n! per-TF PF coil forces (Fr,Fz) [N]\n')
        ans.f.write('! order as numbered in plots\n')
        F = self.ff.get_force()['F']
        ans.load('F_coil', F / self.nTF)
        ans.write_array()
        ans.f.write('\n/nopr  ! suppress large table output\n')

        self.tf.loop_interpolators(offset=0,
                                   full=True)  # construct TF interpolators
        TFloop = self.tf.fun['cl']

        ngrid = {'nr': 20, 'nt': 150}  #  coordinate interpolation grid
        ndata = {
            'nl': nl,
            'nr': nr,
            'ny': ny
        }  #  coordinate interpolation grid
        l = np.linspace(0, 1, 250)  # calculate grid extent
        xin, zin = self.tf.fun['in']['r'](l), self.tf.fun['in']['z'](l)
        rin = np.sqrt((xin - self.sf.mo[0])**2 + (zin - self.sf.mo[1])**2)
        rmin = np.min(rin)  # minimum radius
        xout, zout = self.tf.fun['out']['r'](l), self.tf.fun['out']['z'](l)
        rout = np.sqrt((xout - self.sf.mo[0])**2, (zout - self.sf.mo[1])**2)
        rmax = np.max(rout)  # maximum radius

        radius = np.linspace(rmin, rmax, ngrid['nr'])
        theta = np.linspace(-np.pi, np.pi, ngrid['nt'])
        l_map = np.zeros((ngrid['nr'], ngrid['nt']))
        dr_map = np.zeros((ngrid['nr'], ngrid['nt']))
        for i in range(ngrid['nr']):
            for j in range(ngrid['nt']):
                x = self.sf.mo[0] + radius[i] * np.cos(theta[j])
                z = self.sf.mo[1] + radius[i] * np.sin(theta[j])
                L = minimize_scalar(SALOME.OIS_placment,
                                    method='bounded',
                                    args=(TFloop, (x, z)),
                                    bounds=[0, 1]).x
                xl, zl = TFloop['r'](L), TFloop['z'](L)
                l_map[i, j] = L
                dr_map[i,j] = np.sqrt((x-xl)**2+(z-zl)**2)*\
                np.sign(np.dot([x-xl,z-zl],[x-self.sf.mo[0],z-self.sf.mo[1]]))

        width = self.tf.section['winding_pack']['width']
        depth = self.tf.section['winding_pack']['depth']
        cross_section = width * depth
        l_data = np.linspace(0, 1, ndata['nl'])
        if ndata['nr'] > 1:
            dr_data = np.linspace(-width / 2, width / 2, ndata['nr'])
        else:
            dr_data = np.array([0])
        if ndata['ny'] > 1:
            dy_data = np.linspace(-depth / 2, depth / 2, ndata['ny'])
        else:
            dy_data = np.array([0])
        Fbody = {}
        for var in ['x', 'y', 'z']:
            Fbody[var] = np.zeros((ndata['nl'], ndata['nr'], ndata['ny']))

        self.tf.loop_interpolators(offset=0, full=True)  # centreline
        Jturn = self.cage.Iturn / cross_section
        for i, l in enumerate(l_data):
            iter_str = '\rcalculating TF body force:'
            iter_str += 'segment {:d} of {:d}'.format(i, ndata['nl'])
            sys.stdout.write(iter_str)
            sys.stdout.flush()
            xo = self.tf.fun['cl']['r'](l)
            zo = self.tf.fun['cl']['z'](l)
            dxo = self.tf.fun['cl']['dr'](l)
            dzo = self.tf.fun['cl']['dz'](l)
            that = np.array([dxo, 0, dzo])
            that /= np.linalg.norm(that)
            J = Jturn * that  # current density vector
            nhat = np.array([that[2], 0, -that[0]])
            for j, dr in enumerate(dr_data):
                for k, dy in enumerate(dy_data):
                    point = np.array([xo, dy, zo]) + dr * nhat
                    Fb = self.ff.topple(point,
                                        J,
                                        self.cage,
                                        self.eq.Bpoint,
                                        method='BS')  # body force
                    for m, var in enumerate(['x', 'y', 'z']):  # store
                        Fbody[var][i, j, k] = Fb[m]
                    if plot:
                        Fvec = Fb / np.linalg.norm(Fb)
                        Fvec = that
                        pl.arrow(point[0],
                                 point[2],
                                 Fvec[0],
                                 Fvec[2],
                                 head_width=0.15,
                                 head_length=0.3)
        print('\n',
              np.sum(Fbody['x'][:-1, :, :]) * 1e-9,
              np.sum(Fbody['y'][:-1, :, :]) * 1e-9,
              np.sum(Fbody['z'][:-1, :, :]) * 1e-9)

        ans.f.write('\n! parametric coil length, fn(theta)\n')
        ans.load('l_map', l_map, [radius, theta])
        ans.write(['radus', 'theta'])
        ans.f.write('\n! parametric coil offset, fn(theta)\n')
        ans.load('dr_map', dr_map, [radius, theta])
        ans.write(['radus', 'theta'])
        for var in ['x', 'y', 'z']:
            ans.f.write(
                '\n! winding-pack body force, Fbody_{} [N/m3]\n'.format(var))
            ans.load('Fbody_{}'.format(var), Fbody[var],
                     [l_data, dr_data, dy_data])
            ans.write(['l_map', 'dr_map', 'offset'])
        ans.f.write('/gopr  ! enable output\n')

        apdlstr = '''
pi = 4*atan(1)
csys,11  ! switch to cylindrical coordinate system
esel,s,elem,,wp  ! select winding pack (requires named selection 'wp')
*get,nel,elem,0,count
*vget,el_sel,elem,,esel  ! selection mask
*vget,el_id,elem,,elist  ! winding pack selection array
*vget,el_vol,elem,,geom  ! element volume
*vget,el_radius,elem,,cent,x  ! element radius
*vget,el_theta,elem,,cent,y  ! element theta
*vget,el_offset,elem,,cent,z  ! element axial offset
*voper,el_theta,el_theta,mult,pi/180  ! convert to radians
csys,0  ! return coordinate system

! compress selections
*dim,el_v,array,nel
*dim,el_r,array,nel
*dim,el_t,array,nel
*dim,el_o,array,nel
*dim,el_l,array,nel
*dim,el_dr,array,nel

*vmask,el_sel
*vfun,el_v,comp,el_vol  ! volume
*vmask,el_sel
*vfun,el_r,comp,el_radius  ! radius
*vmask,el_sel
*vfun,el_t,comp,el_theta  ! theta
*vmask,el_sel
*vfun,el_o,comp,el_offset  ! offset
*vitrp,el_l,l_map,el_r,el_t  ! interpolate l_map table
*vitrp,el_dr,dr_map,el_r,el_t !  interpolate dr_map table

xyz = 'x','y','z'  ! axes
fcum,add  ! accumulate nodal forces
*do,i,1,nel  ! apply forces to loads
  esel,s,elem,,el_id(i)
  nsle  ! select nodes attached to element
  nsel,r,node,,wp  ! ensure all nodes from winding pack
  *get,nnd,node,0,count  ! count nodes
  *do,j,1,3  ! Fx,Fy,Fz - all nodes attached to element
      F,all,F%xyz(j)%,Fbody_%xyz(j)%(el_l(i),el_dr(i),el_o(i))*el_v(i)*el_v(i)/nnd
  *enddo
*enddo
allsel  
        '''
        ans.f.write(apdlstr)
        ans.close()
Beispiel #2
0
    print(conf)
    setup = Setup(conf)
    sf = SF(setup.filename)
    pf = PF(sf.eqdsk)
    rb = RB(setup, sf)
    rb.firstwall(calc=False, plot=True, debug=False)
    rb.vessel()
    pf.plot(coils=pf.coil, label=True, plasma=False, current=False)
    tf = TF(nTF=18,
            shape={
                'vessel': rb.loop,
                'pf': pf,
                'fit': False,
                'setup': setup,
                'plot': True,
                'config': conf,
                'coil_type': 'A'
            })
    tf.fill()

    pl.plot(tf.Rcl, tf.Zcl)
    coil = {'Rcl': tf.Rcl, 'Zcl': tf.Zcl, 'nTF': tf.nTF, 'Iturn': 1}
    rp = ripple(plasma={'config': 'SN'}, coil=coil)
    rp.plot_loops()
    print(conf, 'ripple', rp.get_ripple())
    L = geom.length(tf.Rcl, tf.Zcl, norm=False)[-1]
    V = loop_vol(tf.Rcl, tf.Zcl)
    print('L {:1.2f}m, V {:1.0f}m3'.format(L, V))

pl.axis('equal')
Beispiel #3
0
 
demo = DEMO()
demo.fill_part('Vessel')
demo.fill_part('Blanket')
demo.fill_part('TF_Coil')
demo.plot_ports()
demo.plot_limiter()  

sf.contour(Nlevel=51,plot_vac=False,lw=0.5)
pl.plot(sf.rbdry,sf.zbdry,color=0.75*np.ones(3),lw=1)

r,z = demo.parts['Plasma']['out']['r'],demo.parts['Plasma']['out']['z']
rb.Rb,rb.Zb = geom.rzInterp(r,z)
 
rb.trim_sol()
tf.fill(alpha=0.8)
#cage.plot_contours()


pl.axis('equal')
pl.axis('off')

#pl.savefig('../../Figs/TF_ripple_{:d}.pdf'.format(nTF))

ro = np.max(demo.parts['TF_Coil']['in']['r'])
r1 = np.max(demo.parts['TF_Coil']['out']['r'])
offset = (r1-ro)/2
rcl,zcl = geom.offset(demo.parts['TF_Coil']['in']['r'],
                      demo.parts['TF_Coil']['in']['z'],offset)

print('shape',cage.energy()*1e-9)