class SALOME(object): def __init__(self, config, family='S', nTF=16, obj='L'): self.nTF = nTF self.config = config datadir = trim_dir('../../Data') file = 'salome_input' # config # +'_{}{}{}'.format(family,nTF,obj) self.filename = datadir + '/' + file + '.json' self.profile = Profile(config['TF'], family=family, load=True, part='TF', nTF=nTF, obj=obj, npoints=250) setup = Setup(config['eq']) self.sf = SF(setup.filename) self.tf = TF(self.profile, sf=self.sf) self.pf = PF(self.sf.eqdsk) self.PF_support() # calculate PF support seats self.CS_support() # calculate CS support seats self.Gravity_support() self.cage = coil_cage(nTF=nTF, rc=self.tf.rc, ny=3, plasma={'config': config['eq']}, coil=self.tf.x['cl']) self.eq = EQ(self.sf, self.pf, dCoil=0.5, sigma=0, boundary=self.sf.get_sep(expand=0.5), n=1e3) self.eq.plasma() self.ff = force_feild(self.pf.index, self.pf.coil, self.eq.coil, self.eq.plasma_coil) def write(self): print('writing', self.filename, self.nTF) color = sns.color_palette('Set2', 12) data = { 'p': self.profile.loop.p, 'section': self.tf.section, 'pf': self.pf.coil, 'nTF': self.nTF, 'color': color, 'PFsupport': self.PFsupport, 'CSsupport': self.CSsupport, 'Gsupport': self.Gsupport, 'OISsupport': self.OISsupport } with open(self.filename, 'w') as f: json.dump(data, f, indent=4) def CS_support(self): depth = self.tf.section['winding_pack']['depth'] side = self.tf.section['case']['side'] width = self.tf.section['winding_pack']['width'] inboard = self.tf.section['case']['inboard'] nose = self.tf.section['case']['nose'] segment = self.profile.loop.p[0] ro, zo = segment['p0']['r'], segment['p0']['z'] theta = np.pi / self.nTF rsep = (depth / 2 + side) / np.tan(theta) rnose = ro - (width + inboard + nose) rwp = ro - (width + inboard) if rsep <= rnose: ynose = depth / 2 + side else: ynose = rnose * np.tan(theta) if rsep <= rwp: ywp = depth / 2 + side else: ywp = rwp * np.tan(theta) self.tf.loop_interpolators(offset=0) # construct TF interpolators TFloop = self.tf.fun['out'] L = minimize_scalar(SALOME.cs_top, method='bounded', args=(rwp, TFloop), bounds=[0.5, 1]).x ztop = float(TFloop['z'](L)) self.CSsupport = { 'rnose': rnose, 'ynose': ynose, 'rwp': rwp, 'ywp': ywp, 'ztop': ztop, 'zo': zo, 'dt': side } def cs_top(L, rwp, TFloop): err = abs(TFloop['r'](L) - rwp) return err def support_arm(L, coil, TFloop): dl = np.sqrt((coil['r'] - TFloop['r'](L))**2 + (coil['z'] - TFloop['z'](L))**2) return dl def intersect(x, xc, nhat, TFloop): L, s = x # unpack rTF, zTF = TFloop['r'](L), TFloop['z'](L) rs, zs = s * nhat + xc err = np.sqrt((rTF - rs)**2 + (zTF - zs)**2) return err def connect(self, coil, loop, edge=0.15, hover=0.1, argmin=60): L = minimize_scalar(SALOME.support_arm, method='bounded', args=(coil, loop), bounds=[0, 1]).x rTF, zTF = loop['r'](L), loop['z'](L) nhat = np.array([rTF - coil['r'], zTF - coil['z']]) ndir = 180 / np.pi * np.arctan(abs(nhat[1] / nhat[0])) # angle, deg if ndir < argmin: # limit absolute support angle nhat = np.array([ np.sign(nhat[0]), np.tan(argmin * np.pi / 180) * np.sign(nhat[1]) ]) nhat /= np.linalg.norm(nhat) above = np.sign(np.dot(nhat, [0, 1])) zc = coil['z'] + above * (coil['dz'] / 2 + hover) nodes = [[] for _ in range(4)] for i, sign in enumerate([-1, 1]): # inboard / outboard rc = coil['r'] + sign * (coil['dr'] / 2 + edge) nodes[i] = [rc, zc] xc = np.array([rc, zc]) xo = np.array([L, 0.5]) res = minimize(SALOME.intersect, xo, method='L-BFGS-B', bounds=([0, 1], [0, 15]), args=(xc, nhat, loop)) rs, zs = res.x[1] * nhat + xc nodes[3 - i] = [rs, zs] return nodes def PF_support(self): self.tf.loop_interpolators(offset=-0.15) # construct TF interpolators TFloop = self.tf.fun['out'] self.PFsupport = {} for name in self.pf.index['PF']['name']: coil = self.pf.coil[name] nodes = self.connect(coil, TFloop, edge=0.15, hover=0.1, argmin=60) self.PFsupport[name] = nodes def GS_placement(L, radius, TFloop): return abs(radius - TFloop['r'](L)) def Gravity_support(self, radius=13, width=0.75): self.tf.loop_interpolators(offset=-0.15) # construct TF interpolators TFloop = self.tf.fun['out'] self.tf.loop_interpolators(offset=0) Sloop = self.tf.fun['out'] L = minimize_scalar(SALOME.GS_placement, method='bounded', args=(radius - width / 2, Sloop), bounds=[0, 0.5]).x coil = { 'r': Sloop['r'](L) + width / 2, 'z': Sloop['z'](L) - width / 2, 'dr': width, 'dz': width } nodes = self.connect(coil, TFloop, edge=0, hover=0, argmin=90) self.Gsupport = {'base': nodes} z = [[self.pf.coil[name]['z']-self.pf.coil[name]['dz']/2]\ for name in self.pf.coil] floor = np.min(z) - 1 self.Gsupport['zbase'] = float(Sloop['z'](L)) self.Gsupport['zfloor'] = floor self.Gsupport['radius'] = radius self.Gsupport['width'] = width def OIS_placment(L, TFloop, point): err = (point[0] - TFloop['r'](L))**2 + (point[1] - TFloop['z'](L))**2 return err def draw_OIS(self, L, width, thickness, TFloop): dl = width / TFloop['L'] rcl = np.array([TFloop['r'](L - dl / 2), TFloop['r'](L + dl / 2)]) zcl = np.array([TFloop['z'](L - dl / 2), TFloop['z'](L + dl / 2)]) ro, zo = np.mean(rcl), np.mean(zcl) L = minimize_scalar(SALOME.OIS_placment, method='bounded', args=(TFloop, (ro, zo)), bounds=[0, 1]).x dr, dz = TFloop['r'](L) - ro, TFloop['z'](L) - zo rcl += dr / 2 zcl += dz / 2 dt = np.array([rcl[1] - rcl[0], 0, zcl[1] - zcl[0]]) dt /= np.linalg.norm(dt) dn = np.cross(dt, np.array([0, 1, 0])) rcl = np.append(rcl + dn[0] * thickness / 2, rcl[::-1] - dn[0] * thickness / 2) zcl = np.append(zcl + dn[2] * thickness / 2, zcl[::-1] - dn[2] * thickness / 2) nodes = [[rcl[i], zcl[i]] for i in range(4)] return nodes def OIS(self, width=3.5, thickness=0.15, rmin=10): self.tf.loop_interpolators(offset=0) # construct TF interpolators TFloop = self.tf.fun['cl'] self.OISsupport = {} for i, (L, width) in enumerate(zip([0.4, 0.64], [4.5, 2.5])): nodes = self.draw_OIS(L, width, thickness, TFloop) self.OISsupport['OIS{:d}'.format(i)] = nodes def plot(self): self.tf.fill() self.pf.plot(coils=self.pf.coil, label=True, current=True) self.pf.plot(coils=self.eq.coil, plasma=True) for name in self.PFsupport: nodes = np.array(self.PFsupport[name]) geom.polyfill(nodes[:, 0], nodes[:, 1], color=0.4 * np.ones(3)) nodes = np.array(self.Gsupport['base']) geom.polyfill(nodes[:, 0], nodes[:, 1], color=0.4 * np.ones(3)) pl.plot(self.Gsupport['radius'] * np.ones(2), [self.Gsupport['zbase'], self.Gsupport['zfloor']], 'o-', color=0.4 * np.ones(3), lw=4) for name in self.OISsupport: nodes = np.array(self.OISsupport[name]) geom.polyfill(nodes[:, 0], nodes[:, 1], color=0.4 * np.ones(3)) rnose = self.CSsupport['rnose'] rwp = self.CSsupport['rwp'] zo = self.CSsupport['zo'] ztop = self.CSsupport['ztop'] rCS = [rnose, rwp, rwp, rnose] zCS = [zo, zo, ztop, ztop] geom.polyfill(rCS, zCS, color=0.4 * np.ones(3)) def ansys(self, plot=False, nl=250, nr=5, ny=5): filename = '../../Data/TFload_{:d}'.format(self.nTF) ans = table(filename) ans.f.write('! loading tables for {:d}TF coil concept\n'.format( self.nTF)) ans.f.write('! loop length parameterized from 0-1\n') ans.f.write('! loop starts at the inboard midplane\n') ans.f.write('! loop progresses in the anti-clockwise direction\n') ans.f.write('! tables defined with cylindrical coordinate system\n') ans.f.write( '! body applied to nodes of winding-pack in cartisean system x,y,z\n' ) ans.f.write( '! winding-pack must be labled as named-selection \'wp\'\n') ans.f.write('\nlocal,11,1,{:1.9f},0,{:1.9f},0,90,0'\ .format(self.sf.mo[0],self.sf.mo[1])) ans.f.write(' ! define local cylindrical coordinate system\n') ans.f.write('csys,0 ! restore to cartesian\n') ans.f.write('\n! per-TF PF coil forces (Fr,Fz) [N]\n') ans.f.write('! order as numbered in plots\n') F = self.ff.get_force()['F'] ans.load('F_coil', F / self.nTF) ans.write_array() ans.f.write('\n/nopr ! suppress large table output\n') self.tf.loop_interpolators(offset=0, full=True) # construct TF interpolators TFloop = self.tf.fun['cl'] ngrid = {'nr': 20, 'nt': 150} # coordinate interpolation grid ndata = { 'nl': nl, 'nr': nr, 'ny': ny } # coordinate interpolation grid l = np.linspace(0, 1, 250) # calculate grid extent xin, zin = self.tf.fun['in']['r'](l), self.tf.fun['in']['z'](l) rin = np.sqrt((xin - self.sf.mo[0])**2 + (zin - self.sf.mo[1])**2) rmin = np.min(rin) # minimum radius xout, zout = self.tf.fun['out']['r'](l), self.tf.fun['out']['z'](l) rout = np.sqrt((xout - self.sf.mo[0])**2, (zout - self.sf.mo[1])**2) rmax = np.max(rout) # maximum radius radius = np.linspace(rmin, rmax, ngrid['nr']) theta = np.linspace(-np.pi, np.pi, ngrid['nt']) l_map = np.zeros((ngrid['nr'], ngrid['nt'])) dr_map = np.zeros((ngrid['nr'], ngrid['nt'])) for i in range(ngrid['nr']): for j in range(ngrid['nt']): x = self.sf.mo[0] + radius[i] * np.cos(theta[j]) z = self.sf.mo[1] + radius[i] * np.sin(theta[j]) L = minimize_scalar(SALOME.OIS_placment, method='bounded', args=(TFloop, (x, z)), bounds=[0, 1]).x xl, zl = TFloop['r'](L), TFloop['z'](L) l_map[i, j] = L dr_map[i,j] = np.sqrt((x-xl)**2+(z-zl)**2)*\ np.sign(np.dot([x-xl,z-zl],[x-self.sf.mo[0],z-self.sf.mo[1]])) width = self.tf.section['winding_pack']['width'] depth = self.tf.section['winding_pack']['depth'] cross_section = width * depth l_data = np.linspace(0, 1, ndata['nl']) if ndata['nr'] > 1: dr_data = np.linspace(-width / 2, width / 2, ndata['nr']) else: dr_data = np.array([0]) if ndata['ny'] > 1: dy_data = np.linspace(-depth / 2, depth / 2, ndata['ny']) else: dy_data = np.array([0]) Fbody = {} for var in ['x', 'y', 'z']: Fbody[var] = np.zeros((ndata['nl'], ndata['nr'], ndata['ny'])) self.tf.loop_interpolators(offset=0, full=True) # centreline Jturn = self.cage.Iturn / cross_section for i, l in enumerate(l_data): iter_str = '\rcalculating TF body force:' iter_str += 'segment {:d} of {:d}'.format(i, ndata['nl']) sys.stdout.write(iter_str) sys.stdout.flush() xo = self.tf.fun['cl']['r'](l) zo = self.tf.fun['cl']['z'](l) dxo = self.tf.fun['cl']['dr'](l) dzo = self.tf.fun['cl']['dz'](l) that = np.array([dxo, 0, dzo]) that /= np.linalg.norm(that) J = Jturn * that # current density vector nhat = np.array([that[2], 0, -that[0]]) for j, dr in enumerate(dr_data): for k, dy in enumerate(dy_data): point = np.array([xo, dy, zo]) + dr * nhat Fb = self.ff.topple(point, J, self.cage, self.eq.Bpoint, method='BS') # body force for m, var in enumerate(['x', 'y', 'z']): # store Fbody[var][i, j, k] = Fb[m] if plot: Fvec = Fb / np.linalg.norm(Fb) Fvec = that pl.arrow(point[0], point[2], Fvec[0], Fvec[2], head_width=0.15, head_length=0.3) print('\n', np.sum(Fbody['x'][:-1, :, :]) * 1e-9, np.sum(Fbody['y'][:-1, :, :]) * 1e-9, np.sum(Fbody['z'][:-1, :, :]) * 1e-9) ans.f.write('\n! parametric coil length, fn(theta)\n') ans.load('l_map', l_map, [radius, theta]) ans.write(['radus', 'theta']) ans.f.write('\n! parametric coil offset, fn(theta)\n') ans.load('dr_map', dr_map, [radius, theta]) ans.write(['radus', 'theta']) for var in ['x', 'y', 'z']: ans.f.write( '\n! winding-pack body force, Fbody_{} [N/m3]\n'.format(var)) ans.load('Fbody_{}'.format(var), Fbody[var], [l_data, dr_data, dy_data]) ans.write(['l_map', 'dr_map', 'offset']) ans.f.write('/gopr ! enable output\n') apdlstr = ''' pi = 4*atan(1) csys,11 ! switch to cylindrical coordinate system esel,s,elem,,wp ! select winding pack (requires named selection 'wp') *get,nel,elem,0,count *vget,el_sel,elem,,esel ! selection mask *vget,el_id,elem,,elist ! winding pack selection array *vget,el_vol,elem,,geom ! element volume *vget,el_radius,elem,,cent,x ! element radius *vget,el_theta,elem,,cent,y ! element theta *vget,el_offset,elem,,cent,z ! element axial offset *voper,el_theta,el_theta,mult,pi/180 ! convert to radians csys,0 ! return coordinate system ! compress selections *dim,el_v,array,nel *dim,el_r,array,nel *dim,el_t,array,nel *dim,el_o,array,nel *dim,el_l,array,nel *dim,el_dr,array,nel *vmask,el_sel *vfun,el_v,comp,el_vol ! volume *vmask,el_sel *vfun,el_r,comp,el_radius ! radius *vmask,el_sel *vfun,el_t,comp,el_theta ! theta *vmask,el_sel *vfun,el_o,comp,el_offset ! offset *vitrp,el_l,l_map,el_r,el_t ! interpolate l_map table *vitrp,el_dr,dr_map,el_r,el_t ! interpolate dr_map table xyz = 'x','y','z' ! axes fcum,add ! accumulate nodal forces *do,i,1,nel ! apply forces to loads esel,s,elem,,el_id(i) nsle ! select nodes attached to element nsel,r,node,,wp ! ensure all nodes from winding pack *get,nnd,node,0,count ! count nodes *do,j,1,3 ! Fx,Fy,Fz - all nodes attached to element F,all,F%xyz(j)%,Fbody_%xyz(j)%(el_l(i),el_dr(i),el_o(i))*el_v(i)*el_v(i)/nnd *enddo *enddo allsel ''' ans.f.write(apdlstr) ans.close()
print(conf) setup = Setup(conf) sf = SF(setup.filename) pf = PF(sf.eqdsk) rb = RB(setup, sf) rb.firstwall(calc=False, plot=True, debug=False) rb.vessel() pf.plot(coils=pf.coil, label=True, plasma=False, current=False) tf = TF(nTF=18, shape={ 'vessel': rb.loop, 'pf': pf, 'fit': False, 'setup': setup, 'plot': True, 'config': conf, 'coil_type': 'A' }) tf.fill() pl.plot(tf.Rcl, tf.Zcl) coil = {'Rcl': tf.Rcl, 'Zcl': tf.Zcl, 'nTF': tf.nTF, 'Iturn': 1} rp = ripple(plasma={'config': 'SN'}, coil=coil) rp.plot_loops() print(conf, 'ripple', rp.get_ripple()) L = geom.length(tf.Rcl, tf.Zcl, norm=False)[-1] V = loop_vol(tf.Rcl, tf.Zcl) print('L {:1.2f}m, V {:1.0f}m3'.format(L, V)) pl.axis('equal')
demo = DEMO() demo.fill_part('Vessel') demo.fill_part('Blanket') demo.fill_part('TF_Coil') demo.plot_ports() demo.plot_limiter() sf.contour(Nlevel=51,plot_vac=False,lw=0.5) pl.plot(sf.rbdry,sf.zbdry,color=0.75*np.ones(3),lw=1) r,z = demo.parts['Plasma']['out']['r'],demo.parts['Plasma']['out']['z'] rb.Rb,rb.Zb = geom.rzInterp(r,z) rb.trim_sol() tf.fill(alpha=0.8) #cage.plot_contours() pl.axis('equal') pl.axis('off') #pl.savefig('../../Figs/TF_ripple_{:d}.pdf'.format(nTF)) ro = np.max(demo.parts['TF_Coil']['in']['r']) r1 = np.max(demo.parts['TF_Coil']['out']['r']) offset = (r1-ro)/2 rcl,zcl = geom.offset(demo.parts['TF_Coil']['in']['r'], demo.parts['TF_Coil']['in']['z'],offset) print('shape',cage.energy()*1e-9)