def _read_channel_data(self, channel, offset=0, length=None): if offset < 0: raise ValueError("offset must be non-negative") if length is not None and length < 0: raise ValueError("length must be non-negative") reader = self._get_reader() with Timer(log, "Allocate space for channel"): # Allocate space for data if length is None: num_values = len(channel) - offset else: num_values = min(length, len(channel) - offset) num_values = max(0, num_values) channel_data = get_data_receiver(channel, num_values, self._memmap_dir) with Timer(log, "Read data for channel"): # Now actually read all the data for chunk in reader.read_raw_data_for_channel( channel.path, offset, length): if chunk.data is not None: channel_data.append_data(chunk.data) if chunk.scaler_data is not None: for scaler_id, scaler_data in chunk.scaler_data.items(): channel_data.append_scaler_data(scaler_id, scaler_data) return channel_data
def _read_segments(self, f): with Timer(log, "Read metadata"): # Read metadata first to work out how much space we need previous_segment = None while True: try: segment = _TdmsSegment(f, self) except EOFError: # We've finished reading the file break segment.read_metadata(f, self.objects, previous_segment) self.segments.append(segment) previous_segment = segment if segment.next_segment_pos is None: break else: f.seek(segment.next_segment_pos) with Timer(log, "Allocate space"): # Allocate space for data for object in self.objects.values(): object._initialise_data(memmap_dir=self.memmap_dir) with Timer(log, "Read data"): # Now actually read all the data for segment in self.segments: segment.read_raw_data(f)
def _read_data(self, tdms_reader): with Timer(log, "Allocate space"): # Allocate space for data for group in self.groups(): for channel in group.channels(): self._channel_data[channel.path] = get_data_receiver( channel, len(channel), self._memmap_dir) with Timer(log, "Read data"): # Now actually read all the data for chunk in tdms_reader.read_raw_data(): for (path, data) in chunk.channel_data.items(): channel_data = self._channel_data[path] if data.data is not None: channel_data.append_data(data.data) elif data.scaler_data is not None: for scaler_id, scaler_data in data.scaler_data.items(): channel_data.append_scaler_data( scaler_id, scaler_data) for group in self.groups(): for channel in group.channels(): channel_data = self._channel_data[channel.path] if channel_data is not None: channel._set_raw_data(channel_data) self.data_read = True
def read_channel_chunk_for_index(self, channel_path, index): """ Read the chunk containing the given index :returns: Tuple of raw channel data chunk and the integer offset to the beginning of the chunk :rtype: (RawChannelDataChunk, int) """ self._ensure_open() if self._segments is None: raise RuntimeError( "Cannot read data unless metadata has first been read") if self._segment_channel_offsets is None: with Timer(log, "Build data index"): self._build_index() segment_offsets = self._segment_channel_offsets[channel_path] # Binary search to find the segment to read segment_index = np.searchsorted(segment_offsets, index, side='right') segment = self._segments[segment_index] chunk_size = self._segment_chunk_sizes[channel_path][segment_index] segment_start_index = segment_offsets[segment_index - 1] if segment_index > 0 else 0 index_in_segment = index - segment_start_index chunk_index = index_in_segment // chunk_size self._verify_segment_start(segment) chunk_data = next( segment.read_raw_data_for_channel(self._file, channel_path, chunk_index, 1)) chunk_offset = segment_start_index + chunk_index * chunk_size return chunk_data, chunk_offset
def _read_segments(self, tdms_file): with Timer(log, "Read metadata"): # Read metadata first to work out how much space we need previous_segment = None while True: try: segment = _TdmsSegment(tdms_file) # Save the metadata except EOFError: # We've finished reading the file break segment.read_metadata(tdms_file, self.objects, previous_segment) self.segments.append(segment) previous_segment = segment if segment.next_segment_pos is None: break else: tdms_file.seek(segment.next_segment_pos) with Timer(log, "Allocate space"): # Allocate space for data if self.read_data: for object in self.objects.values(): object._initialise_data(memmap_dir=self.memmap_dir) with Timer(log, "Read data"): # Now actually read all the data if self.read_data: for segment in self.segments: segment.read_raw_data(tdms_file) props_of_interest = { "niRF_acquisition_timestamp", "niRF_gain", "name", "niRF_IQ_sample_rate", "niRF_RF_center_frequency" } for segment in self.segments: for obj in segment.get_ordered_objects(): #print "Prop " , obj.get_properties() pr = obj.get_properties() for p in props_of_interest: if pr.has_key(p): self.props[p] = str(pr[p])
def read_metadata(self): """ Read all metadata and structure information from a TdmsFile """ self._ensure_open() if self._index_file_path is not None: reading_index_file = True file = open(self._index_file_path, 'rb') else: reading_index_file = False file = self._file self._segments = [] segment_position = 0 try: with Timer(log, "Read metadata"): # Read metadata first to work out how much space we need previous_segment = None while True: start_position = file.tell() try: segment = self._read_segment_metadata( file, segment_position, previous_segment, reading_index_file) except EOFError: # We've finished reading the file break self._update_object_metadata(segment) self._update_object_properties(segment) self._segments.append(segment) previous_segment = segment segment_position = segment.next_segment_pos if reading_index_file: lead_size = 7 * 4 file.seek( start_position + lead_size + segment.raw_data_offset, os.SEEK_SET) else: file.seek(segment.next_segment_pos, os.SEEK_SET) finally: if reading_index_file: file.close()
def read_raw_data_for_channel(self, channel_path, offset=0, length=None): """ Read raw data for a single channel, chunk by chunk :param channel_path: The path of the channel object to read data for :param offset: Initial position to read data from. :param length: Number of values to attempt to read. If None, then all values starting from the offset will be read. Fewer values will be returned if attempting to read beyond the end of the available data. :returns: A generator that yields RawChannelDataChunk objects """ self._ensure_open() if self._segments is None: raise RuntimeError( "Cannot read data unless metadata has first been read") if self._segment_channel_offsets is None: with Timer(log, "Build data index"): self._build_index() segment_offsets = self._segment_channel_offsets[channel_path] chunk_sizes = self._segment_chunk_sizes[channel_path] object_metadata = self.object_metadata[channel_path] if length is None: length = object_metadata.num_values - offset end_index = offset + length # Binary search to find first and last segments to read start_segment = np.searchsorted(segment_offsets, offset, side='right') end_segment = np.searchsorted(segment_offsets, end_index, side='left') segment_index = start_segment for segment in self._segments[start_segment:end_segment + 1]: self._verify_segment_start(segment) # By default, read all chunks in a segment chunk_offset = 0 num_chunks = segment.num_chunks chunk_size = chunk_sizes[segment_index] segment_start_index = 0 if segment_index == 0 else segment_offsets[ segment_index - 1] remaining_values_to_skip = 0 remaining_values_to_trim = 0 # For the first and last segments, we may not need to read all chunks, # and may need to trim some data from the beginning or end of the chunk. if segment_index == start_segment: num_values_to_skip = offset - segment_start_index chunk_offset = num_values_to_skip // chunk_size remaining_values_to_skip = num_values_to_skip % chunk_size num_chunks -= chunk_offset if segment_index == end_segment: # Note: segment_index may be both start and end segment_end_index = segment_offsets[segment_index] num_values_to_trim = segment_end_index - end_index # Account for segments where the final chunk is truncated final_chunk_size = (segment_end_index - segment_start_index) % chunk_size final_chunk_size = chunk_size if final_chunk_size == 0 else final_chunk_size if num_values_to_trim >= final_chunk_size: num_chunks -= 1 num_values_to_trim -= final_chunk_size num_chunks -= num_values_to_trim // chunk_size remaining_values_to_trim = num_values_to_trim % chunk_size for i, chunk in enumerate( segment.read_raw_data_for_channel(self._file, channel_path, chunk_offset, num_chunks)): skip = remaining_values_to_skip if i == 0 else 0 trim = remaining_values_to_trim if i == (num_chunks - 1) else 0 yield _trim_channel_chunk(chunk, skip, trim) segment_index += 1