Beispiel #1
0
    def test1(self):
        typingctx = typing.Context()
        targetctx = cpu.CPUContext(typingctx)
        test_ir = compiler.run_frontend(test_will_propagate)
        with cpu_target.nested_context(typingctx, targetctx):
            typingctx.refresh()
            targetctx.refresh()
            args = (types.int64, types.int64, types.int64)
            typemap, return_type, calltypes = type_inference_stage(
                typingctx, test_ir, args, None)
            type_annotation = type_annotations.TypeAnnotation(
                func_ir=test_ir,
                typemap=typemap,
                calltypes=calltypes,
                lifted=(),
                lifted_from=None,
                args=args,
                return_type=return_type,
                html_output=config.HTML)
            remove_dels(test_ir.blocks)
            in_cps, out_cps = copy_propagate(test_ir.blocks, typemap)
            apply_copy_propagate(test_ir.blocks, in_cps,
                                 get_name_var_table(test_ir.blocks), typemap,
                                 calltypes)

            remove_dead(test_ir.blocks, test_ir.arg_names, test_ir)
            self.assertFalse(findLhsAssign(test_ir, "x"))
Beispiel #2
0
    def run_pass(self, state):
        """
        Back-end: Generate LLVM IR from Numba IR, compile to machine code
        """

        lowered = state["cr"]
        signature = typing.signature(state.return_type, *state.args)

        from numba.core.compiler import compile_result

        state.cr = compile_result(
            typing_context=state.typingctx,
            target_context=state.targetctx,
            entry_point=lowered.cfunc,
            typing_error=state.status.fail_reason,
            type_annotation=state.type_annotation,
            library=state.library,
            call_helper=lowered.call_helper,
            signature=signature,
            objectmode=False,
            lifted=state.lifted,
            fndesc=lowered.fndesc,
            environment=lowered.env,
            metadata=state.metadata,
            reload_init=state.reload_init,
        )

        remove_dels(state.func_ir.blocks)

        return True
Beispiel #3
0
 def run_pass(self, state):
     parfor_pass = numba.parfors.parfor.ParforPass(
         state.func_ir,
         state.type_annotation.typemap,
         state.type_annotation.calltypes,
         state.return_type,
         state.typingctx,
         state.flags.auto_parallel,
         state.flags,
         state.parfor_diagnostics,
     )
     remove_dels(state.func_ir.blocks)
     parfor_pass.array_analysis.run(state.func_ir.blocks)
     parfor_pass._convert_loop(state.func_ir.blocks)
     remove_dead(
         state.func_ir.blocks,
         state.func_ir.arg_names,
         state.func_ir,
         state.type_annotation.typemap,
     )
     numba.parfors.parfor.get_parfor_params(
         state.func_ir.blocks,
         parfor_pass.options.fusion,
         parfor_pass.nested_fusion_info,
     )
     return True
    def run_pass(self, state):
        """
        Convert data-parallel computations into Parfor nodes
        """
        # Ensure we have an IR and type information.
        assert state.func_ir
        parfor_pass = _parfor_ParforPass(
            state.func_ir,
            state.type_annotation.typemap,
            state.type_annotation.calltypes,
            state.return_type,
            state.typingctx,
            state.flags.auto_parallel,
            state.flags,
            state.parfor_diagnostics,
        )
        parfor_pass.run()

        remove_dels(state.func_ir.blocks)

        # check the parfor pass worked and warn if it didn't
        has_parfor = False
        for blk in state.func_ir.blocks.values():
            for stmnt in blk.body:
                if isinstance(stmnt, Parfor):
                    has_parfor = True
                    break
            else:
                continue
            break

        if not has_parfor:
            # parfor calls the compiler chain again with a string
            if not (
                config.DISABLE_PERFORMANCE_WARNINGS
                or state.func_ir.loc.filename == "<string>"
            ):
                url = (
                    "http://numba.pydata.org/numba-doc/latest/user/"
                    "parallel.html#diagnostics"
                )
                msg = (
                    "\nThe keyword argument 'parallel=True' was specified "
                    "but no transformation for parallel execution was "
                    "possible.\n\nTo find out why, try turning on parallel "
                    "diagnostics, see %s for help."
                    % url
                )
                warnings.warn(errors.NumbaPerformanceWarning(msg, state.func_ir.loc))

        # Add reload function to initialize the parallel backend.
        state.reload_init.append(_reload_parfors)
        return True
    def test1(self):
        typingctx = typing.Context()
        targetctx = cpu.CPUContext(typingctx)
        test_ir = compiler.run_frontend(test_will_propagate)
        with cpu_target.nested_context(typingctx, targetctx):
            typingctx.refresh()
            targetctx.refresh()
            args = (types.int64, types.int64, types.int64)
            typemap, _, calltypes, _ = type_inference_stage(
                typingctx, targetctx, test_ir, args, None)
            remove_dels(test_ir.blocks)
            in_cps, out_cps = copy_propagate(test_ir.blocks, typemap)
            apply_copy_propagate(test_ir.blocks, in_cps,
                                 get_name_var_table(test_ir.blocks), typemap,
                                 calltypes)

            remove_dead(test_ir.blocks, test_ir.arg_names, test_ir)
            self.assertFalse(findLhsAssign(test_ir, "x"))
Beispiel #6
0
    def _stencil_wrapper(self, result, sigret, return_type, typemap, calltypes,
                         *args):
        # Overall approach:
        # 1) Construct a string containing a function definition for the stencil function
        #    that will execute the stencil kernel.  This function definition includes a
        #    unique stencil function name, the parameters to the stencil kernel, loop
        #    nests across the dimensions of the input array.  Those loop nests use the
        #    computed stencil kernel size so as not to try to compute elements where
        #    elements outside the bounds of the input array would be needed.
        # 2) The but of the loop nest in this new function is a special sentinel
        #    assignment.
        # 3) Get the IR of this new function.
        # 4) Split the block containing the sentinel assignment and remove the sentinel
        #    assignment.  Insert the stencil kernel IR into the stencil function IR
        #    after label and variable renaming of the stencil kernel IR to prevent
        #    conflicts with the stencil function IR.
        # 5) Compile the combined stencil function IR + stencil kernel IR into existence.

        # Copy the kernel so that our changes for this callsite
        # won't effect other callsites.
        (kernel_copy,
         copy_calltypes) = self.copy_ir_with_calltypes(self.kernel_ir,
                                                       calltypes)
        # The stencil kernel body becomes the body of a loop, for which args aren't needed.
        ir_utils.remove_args(kernel_copy.blocks)
        first_arg = kernel_copy.arg_names[0]

        in_cps, out_cps = ir_utils.copy_propagate(kernel_copy.blocks, typemap)
        name_var_table = ir_utils.get_name_var_table(kernel_copy.blocks)
        ir_utils.apply_copy_propagate(kernel_copy.blocks, in_cps,
                                      name_var_table, typemap, copy_calltypes)

        if "out" in name_var_table:
            raise ValueError(
                "Cannot use the reserved word 'out' in stencil kernels.")

        sentinel_name = ir_utils.get_unused_var_name("__sentinel__",
                                                     name_var_table)
        if config.DEBUG_ARRAY_OPT >= 1:
            print("name_var_table", name_var_table, sentinel_name)

        the_array = args[0]

        if config.DEBUG_ARRAY_OPT >= 1:
            print("_stencil_wrapper", return_type, return_type.dtype,
                  type(return_type.dtype), args)
            ir_utils.dump_blocks(kernel_copy.blocks)

        # We generate a Numba function to execute this stencil and here
        # create the unique name of this function.
        stencil_func_name = "__numba_stencil_%s_%s" % (hex(
            id(the_array)).replace("-", "_"), self.id)

        # We will put a loop nest in the generated function for each
        # dimension in the input array.  Here we create the name for
        # the index variable for each dimension.  index0, index1, ...
        index_vars = []
        for i in range(the_array.ndim):
            index_var_name = ir_utils.get_unused_var_name(
                "index" + str(i), name_var_table)
            index_vars += [index_var_name]

        # Create extra signature for out and neighborhood.
        out_name = ir_utils.get_unused_var_name("out", name_var_table)
        neighborhood_name = ir_utils.get_unused_var_name(
            "neighborhood", name_var_table)
        sig_extra = ""
        if result is not None:
            sig_extra += ", {}=None".format(out_name)
        if "neighborhood" in dict(self.kws):
            sig_extra += ", {}=None".format(neighborhood_name)

        # Get a list of the standard indexed array names.
        standard_indexed = self.options.get("standard_indexing", [])

        if first_arg in standard_indexed:
            raise ValueError("The first argument to a stencil kernel must "
                             "use relative indexing, not standard indexing.")

        if len(set(standard_indexed) - set(kernel_copy.arg_names)) != 0:
            raise ValueError("Standard indexing requested for an array name "
                             "not present in the stencil kernel definition.")

        # Add index variables to getitems in the IR to transition the accesses
        # in the kernel from relative to regular Python indexing.  Returns the
        # computed size of the stencil kernel and a list of the relatively indexed
        # arrays.
        kernel_size, relatively_indexed = self.add_indices_to_kernel(
            kernel_copy, index_vars, the_array.ndim, self.neighborhood,
            standard_indexed, typemap, copy_calltypes)
        if self.neighborhood is None:
            self.neighborhood = kernel_size

        if config.DEBUG_ARRAY_OPT >= 1:
            print("After add_indices_to_kernel")
            ir_utils.dump_blocks(kernel_copy.blocks)

        # The return in the stencil kernel becomes a setitem for that
        # particular point in the iteration space.
        ret_blocks = self.replace_return_with_setitem(kernel_copy.blocks,
                                                      index_vars, out_name)

        if config.DEBUG_ARRAY_OPT >= 1:
            print("After replace_return_with_setitem", ret_blocks)
            ir_utils.dump_blocks(kernel_copy.blocks)

        # Start to form the new function to execute the stencil kernel.
        func_text = "def {}({}{}):\n".format(stencil_func_name,
                                             ",".join(kernel_copy.arg_names),
                                             sig_extra)

        # Get loop ranges for each dimension, which could be either int
        # or variable. In the latter case we'll use the extra neighborhood
        # argument to the function.
        ranges = []
        for i in range(the_array.ndim):
            if isinstance(kernel_size[i][0], int):
                lo = kernel_size[i][0]
                hi = kernel_size[i][1]
            else:
                lo = "{}[{}][0]".format(neighborhood_name, i)
                hi = "{}[{}][1]".format(neighborhood_name, i)
            ranges.append((lo, hi))

        # If there are more than one relatively indexed arrays, add a call to
        # a function that will raise an error if any of the relatively indexed
        # arrays are of different size than the first input array.
        if len(relatively_indexed) > 1:
            func_text += "    raise_if_incompatible_array_sizes(" + first_arg
            for other_array in relatively_indexed:
                if other_array != first_arg:
                    func_text += "," + other_array
            func_text += ")\n"

        # Get the shape of the first input array.
        shape_name = ir_utils.get_unused_var_name("full_shape", name_var_table)
        func_text += "    {} = {}.shape\n".format(shape_name, first_arg)

        # If we have to allocate the output array (the out argument was not used)
        # then us numpy.full if the user specified a cval stencil decorator option
        # or np.zeros if they didn't to allocate the array.
        if result is None:
            return_type_name = numpy_support.as_dtype(
                return_type.dtype).type.__name__
            if "cval" in self.options:
                cval = self.options["cval"]
                if return_type.dtype != typing.typeof.typeof(cval):
                    raise ValueError(
                        "cval type does not match stencil return type.")
                out_init = "{} = np.full({}, {}, dtype=np.{})\n".format(
                    out_name, shape_name, cval, return_type_name)
            else:
                out_init = "{} = np.zeros({}, dtype=np.{})\n".format(
                    out_name, shape_name, return_type_name)
            func_text += "    " + out_init
        else:  # result is present, if cval is set then use it
            if "cval" in self.options:
                cval = self.options["cval"]
                cval_ty = typing.typeof.typeof(cval)
                if not self._typingctx.can_convert(cval_ty, return_type.dtype):
                    msg = "cval type does not match stencil return type."
                    raise ValueError(msg)
                out_init = "{}[:] = {}\n".format(out_name, cval)
                func_text += "    " + out_init

        offset = 1
        # Add the loop nests to the new function.
        for i in range(the_array.ndim):
            for j in range(offset):
                func_text += "    "
            # ranges[i][0] is the minimum index used in the i'th dimension
            # but minimum's greater than 0 don't preclude any entry in the array.
            # So, take the minimum of 0 and the minimum index found in the kernel
            # and this will be a negative number (potentially -0).  Then, we do
            # unary - on that to get the positive offset in this dimension whose
            # use is precluded.
            # ranges[i][1] is the maximum of 0 and the observed maximum index
            # in this dimension because negative maximums would not cause us to
            # preclude any entry in the array from being used.
            func_text += ("for {} in range(-min(0,{}),"
                          "{}[{}]-max(0,{})):\n").format(
                              index_vars[i], ranges[i][0], shape_name, i,
                              ranges[i][1])
            offset += 1

        for j in range(offset):
            func_text += "    "
        # Put a sentinel in the code so we can locate it in the IR.  We will
        # remove this sentinel assignment and replace it with the IR for the
        # stencil kernel body.
        func_text += "{} = 0\n".format(sentinel_name)
        func_text += "    return {}\n".format(out_name)

        if config.DEBUG_ARRAY_OPT >= 1:
            print("new stencil func text")
            print(func_text)

        # Force the new stencil function into existence.
        exec(func_text) in globals(), locals()
        stencil_func = eval(stencil_func_name)
        if sigret is not None:
            pysig = utils.pysignature(stencil_func)
            sigret.pysig = pysig
        # Get the IR for the newly created stencil function.
        from numba.core import compiler
        stencil_ir = compiler.run_frontend(stencil_func)
        ir_utils.remove_dels(stencil_ir.blocks)

        # rename all variables in stencil_ir afresh
        var_table = ir_utils.get_name_var_table(stencil_ir.blocks)
        new_var_dict = {}
        reserved_names = (
            [sentinel_name, out_name, neighborhood_name, shape_name] +
            kernel_copy.arg_names + index_vars)
        for name, var in var_table.items():
            if not name in reserved_names:
                new_var_dict[name] = ir_utils.mk_unique_var(name)
        ir_utils.replace_var_names(stencil_ir.blocks, new_var_dict)

        stencil_stub_last_label = max(stencil_ir.blocks.keys()) + 1

        # Shift labels in the kernel copy so they are guaranteed unique
        # and don't conflict with any labels in the stencil_ir.
        kernel_copy.blocks = ir_utils.add_offset_to_labels(
            kernel_copy.blocks, stencil_stub_last_label)
        new_label = max(kernel_copy.blocks.keys()) + 1
        # Adjust ret_blocks to account for addition of the offset.
        ret_blocks = [x + stencil_stub_last_label for x in ret_blocks]

        if config.DEBUG_ARRAY_OPT >= 1:
            print("ret_blocks w/ offsets", ret_blocks, stencil_stub_last_label)
            print("before replace sentinel stencil_ir")
            ir_utils.dump_blocks(stencil_ir.blocks)
            print("before replace sentinel kernel_copy")
            ir_utils.dump_blocks(kernel_copy.blocks)

        # Search all the block in the stencil outline for the sentinel.
        for label, block in stencil_ir.blocks.items():
            for i, inst in enumerate(block.body):
                if (isinstance(inst, ir.Assign)
                        and inst.target.name == sentinel_name):
                    # We found the sentinel assignment.
                    loc = inst.loc
                    scope = block.scope
                    # split block across __sentinel__
                    # A new block is allocated for the statements prior to the
                    # sentinel but the new block maintains the current block
                    # label.
                    prev_block = ir.Block(scope, loc)
                    prev_block.body = block.body[:i]
                    # The current block is used for statements after sentinel.
                    block.body = block.body[i + 1:]
                    # But the current block gets a new label.
                    body_first_label = min(kernel_copy.blocks.keys())

                    # The previous block jumps to the minimum labelled block of
                    # the parfor body.
                    prev_block.append(ir.Jump(body_first_label, loc))
                    # Add all the parfor loop body blocks to the gufunc
                    # function's IR.
                    for (l, b) in kernel_copy.blocks.items():
                        stencil_ir.blocks[l] = b

                    stencil_ir.blocks[new_label] = block
                    stencil_ir.blocks[label] = prev_block
                    # Add a jump from all the blocks that previously contained
                    # a return in the stencil kernel to the block
                    # containing statements after the sentinel.
                    for ret_block in ret_blocks:
                        stencil_ir.blocks[ret_block].append(
                            ir.Jump(new_label, loc))
                    break
            else:
                continue
            break

        stencil_ir.blocks = ir_utils.rename_labels(stencil_ir.blocks)
        ir_utils.remove_dels(stencil_ir.blocks)

        assert (isinstance(the_array, types.Type))
        array_types = args

        new_stencil_param_types = list(array_types)

        if config.DEBUG_ARRAY_OPT >= 1:
            print("new_stencil_param_types", new_stencil_param_types)
            ir_utils.dump_blocks(stencil_ir.blocks)

        # Compile the combined stencil function with the replaced loop
        # body in it.
        new_func = compiler.compile_ir(self._typingctx, self._targetctx,
                                       stencil_ir, new_stencil_param_types,
                                       None, compiler.DEFAULT_FLAGS, {})
        return new_func
Beispiel #7
0
 def remove_dels(self):
     """
     Strips the IR of Del nodes
     """
     ir_utils.remove_dels(self.func_ir.blocks)
Beispiel #8
0
def get_stencil_ir(sf, typingctx, args, scope, loc, input_dict, typemap,
                   calltypes):
    """get typed IR from stencil bytecode
    """
    from numba.core.cpu import CPUContext
    from numba.core.registry import cpu_target
    from numba.core.annotations import type_annotations
    from numba.core.typed_passes import type_inference_stage

    # get untyped IR
    stencil_func_ir = sf.kernel_ir.copy()
    # copy the IR nodes to avoid changing IR in the StencilFunc object
    stencil_blocks = copy.deepcopy(stencil_func_ir.blocks)
    stencil_func_ir.blocks = stencil_blocks

    name_var_table = ir_utils.get_name_var_table(stencil_func_ir.blocks)
    if "out" in name_var_table:
        raise ValueError(
            "Cannot use the reserved word 'out' in stencil kernels.")

    # get typed IR with a dummy pipeline (similar to test_parfors.py)
    targetctx = CPUContext(typingctx)
    with cpu_target.nested_context(typingctx, targetctx):
        tp = DummyPipeline(typingctx, targetctx, args, stencil_func_ir)

        rewrites.rewrite_registry.apply('before-inference', tp.state)

        tp.state.typemap, tp.state.return_type, tp.state.calltypes = type_inference_stage(
            tp.state.typingctx, tp.state.func_ir, tp.state.args, None)

        type_annotations.TypeAnnotation(func_ir=tp.state.func_ir,
                                        typemap=tp.state.typemap,
                                        calltypes=tp.state.calltypes,
                                        lifted=(),
                                        lifted_from=None,
                                        args=tp.state.args,
                                        return_type=tp.state.return_type,
                                        html_output=config.HTML)

    # make block labels unique
    stencil_blocks = ir_utils.add_offset_to_labels(stencil_blocks,
                                                   ir_utils.next_label())
    min_label = min(stencil_blocks.keys())
    max_label = max(stencil_blocks.keys())
    ir_utils._max_label = max_label

    if config.DEBUG_ARRAY_OPT >= 1:
        print("Initial stencil_blocks")
        ir_utils.dump_blocks(stencil_blocks)

    # rename variables,
    var_dict = {}
    for v, typ in tp.state.typemap.items():
        new_var = ir.Var(scope, mk_unique_var(v), loc)
        var_dict[v] = new_var
        typemap[new_var.name] = typ  # add new var type for overall function
    ir_utils.replace_vars(stencil_blocks, var_dict)

    if config.DEBUG_ARRAY_OPT >= 1:
        print("After replace_vars")
        ir_utils.dump_blocks(stencil_blocks)

    # add call types to overall function
    for call, call_typ in tp.state.calltypes.items():
        calltypes[call] = call_typ

    arg_to_arr_dict = {}
    # replace arg with arr
    for block in stencil_blocks.values():
        for stmt in block.body:
            if isinstance(stmt, ir.Assign) and isinstance(stmt.value, ir.Arg):
                if config.DEBUG_ARRAY_OPT >= 1:
                    print("input_dict", input_dict, stmt.value.index,
                          stmt.value.name, stmt.value.index in input_dict)
                arg_to_arr_dict[stmt.value.name] = input_dict[
                    stmt.value.index].name
                stmt.value = input_dict[stmt.value.index]

    if config.DEBUG_ARRAY_OPT >= 1:
        print("arg_to_arr_dict", arg_to_arr_dict)
        print("After replace arg with arr")
        ir_utils.dump_blocks(stencil_blocks)

    ir_utils.remove_dels(stencil_blocks)
    stencil_func_ir.blocks = stencil_blocks
    return stencil_func_ir, sf.get_return_type(args)[0], arg_to_arr_dict
Beispiel #9
0
def _create_gufunc_for_parfor_body(
    lowerer,
    parfor,
    typemap,
    typingctx,
    targetctx,
    flags,
    loop_ranges,
    locals,
    has_aliases,
    index_var_typ,
    races,
):
    """
    Takes a parfor and creates a gufunc function for its body. There
    are two parts to this function:

        1) Code to iterate across the iteration space as defined by
           the schedule.
        2) The parfor body that does the work for a single point in
           the iteration space.

    Part 1 is created as Python text for simplicity with a sentinel
    assignment to mark the point in the IR where the parfor body
    should be added. This Python text is 'exec'ed into existence and its
    IR retrieved with run_frontend. The IR is scanned for the sentinel
    assignment where that basic block is split and the IR for the parfor
    body inserted.
    """

    loc = parfor.init_block.loc

    # The parfor body and the main function body share ir.Var nodes.
    # We have to do some replacements of Var names in the parfor body
    # to make them legal parameter names. If we don't copy then the
    # Vars in the main function also would incorrectly change their name.

    loop_body = copy.copy(parfor.loop_body)
    remove_dels(loop_body)

    parfor_dim = len(parfor.loop_nests)
    loop_indices = [l.index_variable.name for l in parfor.loop_nests]

    # Get all the parfor params.
    parfor_params = parfor.params

    for start, stop, step in loop_ranges:
        if isinstance(start, ir.Var):
            parfor_params.add(start.name)
        if isinstance(stop, ir.Var):
            parfor_params.add(stop.name)

    # Get just the outputs of the parfor.
    parfor_outputs = numba.parfors.parfor.get_parfor_outputs(
        parfor, parfor_params)

    # Get all parfor reduction vars, and operators.
    typemap = lowerer.fndesc.typemap

    parfor_redvars, parfor_reddict = numba.parfors.parfor.get_parfor_reductions(
        lowerer.func_ir, parfor, parfor_params, lowerer.fndesc.calltypes)
    has_reduction = False if len(parfor_redvars) == 0 else True

    if has_reduction:
        _create_gufunc_for_reduction_parfor()

    # Compute just the parfor inputs as a set difference.
    parfor_inputs = sorted(list(set(parfor_params) - set(parfor_outputs)))

    for race in races:
        msg = ("Variable %s used in parallel loop may be written "
               "to simultaneously by multiple workers and may result "
               "in non-deterministic or unintended results." % race)
        warnings.warn(NumbaParallelSafetyWarning(msg, loc))
    replace_var_with_array(races, loop_body, typemap, lowerer.fndesc.calltypes)

    if config.DEBUG_ARRAY_OPT >= 1:
        print("parfor_params = ", parfor_params, type(parfor_params))
        print("parfor_outputs = ", parfor_outputs, type(parfor_outputs))
        print("parfor_inputs = ", parfor_inputs, type(parfor_inputs))

    # Reorder all the params so that inputs go first then outputs.
    parfor_params = parfor_inputs + parfor_outputs

    def addrspace_from(params, def_addr):
        addrspaces = []
        for p in params:
            if isinstance(to_scalar_from_0d(typemap[p]), types.npytypes.Array):
                addrspaces.append(def_addr)
            else:
                addrspaces.append(None)
        return addrspaces

    addrspaces = addrspace_from(parfor_params, address_space.GLOBAL)

    if config.DEBUG_ARRAY_OPT >= 1:
        print("parfor_params = ", parfor_params, type(parfor_params))
        print("loop_indices = ", loop_indices, type(loop_indices))
        print("loop_body = ", loop_body, type(loop_body))
        _print_body(loop_body)

    # Some Var are not legal parameter names so create a dict of
    # potentially illegal param name to guaranteed legal name.
    param_dict = legalize_names_with_typemap(parfor_params, typemap)
    if config.DEBUG_ARRAY_OPT >= 1:
        print("param_dict = ", sorted(param_dict.items()), type(param_dict))

    # Some loop_indices are not legal parameter names so create a dict
    # of potentially illegal loop index to guaranteed legal name.
    ind_dict = legalize_names_with_typemap(loop_indices, typemap)
    # Compute a new list of legal loop index names.
    legal_loop_indices = [ind_dict[v] for v in loop_indices]

    if config.DEBUG_ARRAY_OPT >= 1:
        print("ind_dict = ", sorted(ind_dict.items()), type(ind_dict))
        print(
            "legal_loop_indices = ",
            legal_loop_indices,
            type(legal_loop_indices),
        )

        for pd in parfor_params:
            print("pd = ", pd)
            print("pd type = ", typemap[pd], type(typemap[pd]))

    # Get the types of each parameter.
    param_types = [to_scalar_from_0d(typemap[v]) for v in parfor_params]

    param_types_addrspaces = copy.copy(param_types)

    # Calculate types of args passed to gufunc.
    func_arg_types = [typemap[v] for v in (parfor_inputs + parfor_outputs)]
    assert len(param_types_addrspaces) == len(addrspaces)
    for i in range(len(param_types_addrspaces)):
        if addrspaces[i] is not None:
            # Convert Numba's npytype.Array to DPPYArray data type. DPPYArray
            # allows us to specify an address space for the data and other
            # pointer arguments for the array.
            param_types_addrspaces[i] = npytypes_array_to_dppy_array(
                param_types_addrspaces[i], addrspaces[i])

    def print_arg_with_addrspaces(args):
        for a in args:
            print(a, type(a))
            if isinstance(a, types.npytypes.Array):
                print("addrspace:", a.addrspace)

    if config.DEBUG_ARRAY_OPT >= 1:
        print_arg_with_addrspaces(param_types)
        print("func_arg_types = ", func_arg_types, type(func_arg_types))

    # Replace illegal parameter names in the loop body with legal ones.
    replace_var_names(loop_body, param_dict)
    # remember the name before legalizing as the actual arguments
    parfor_args = parfor_params
    # Change parfor_params to be legal names.
    parfor_params = [param_dict[v] for v in parfor_params]
    parfor_params_orig = parfor_params

    parfor_params = []
    ascontig = False
    for pindex in range(len(parfor_params_orig)):
        if (ascontig and pindex < len(parfor_inputs)
                and isinstance(param_types[pindex], types.npytypes.Array)):
            parfor_params.append(parfor_params_orig[pindex] + "param")
        else:
            parfor_params.append(parfor_params_orig[pindex])

    # Change parfor body to replace illegal loop index vars with legal ones.
    replace_var_names(loop_body, ind_dict)
    loop_body_var_table = get_name_var_table(loop_body)
    sentinel_name = get_unused_var_name("__sentinel__", loop_body_var_table)

    if config.DEBUG_ARRAY_OPT >= 1:
        print("legal parfor_params = ", parfor_params, type(parfor_params))

    # Determine the unique names of the scheduling and gufunc functions.
    gufunc_name = "__numba_parfor_gufunc_%s" % (parfor.id)

    if config.DEBUG_ARRAY_OPT:
        # print("sched_func_name ", type(sched_func_name), sched_func_name)
        print("gufunc_name ", type(gufunc_name), gufunc_name)

    gufunc_txt = ""

    # Create the gufunc function.
    gufunc_txt += "def " + gufunc_name
    gufunc_txt += "(" + (", ".join(parfor_params)) + "):\n"

    gufunc_txt += _schedule_loop(parfor_dim, legal_loop_indices, loop_ranges,
                                 param_dict)

    # Add the sentinel assignment so that we can find the loop body position
    # in the IR.
    gufunc_txt += "    "
    gufunc_txt += sentinel_name + " = 0\n"

    # gufunc returns nothing
    gufunc_txt += "    return None\n"

    if config.DEBUG_ARRAY_OPT:
        print("gufunc_txt = ", type(gufunc_txt), "\n", gufunc_txt)
        sys.stdout.flush()
    # Force gufunc outline into existence.
    globls = {"np": np, "numba": numba, "dppy": dppy}
    locls = {}
    exec(gufunc_txt, globls, locls)
    gufunc_func = locls[gufunc_name]

    if config.DEBUG_ARRAY_OPT:
        print("gufunc_func = ", type(gufunc_func), "\n", gufunc_func)
    # Get the IR for the gufunc outline.
    gufunc_ir = compiler.run_frontend(gufunc_func)

    if config.DEBUG_ARRAY_OPT:
        print("gufunc_ir dump ", type(gufunc_ir))
        gufunc_ir.dump()
        print("loop_body dump ", type(loop_body))
        _print_body(loop_body)

    # rename all variables in gufunc_ir afresh
    var_table = get_name_var_table(gufunc_ir.blocks)
    new_var_dict = {}
    reserved_names = ([sentinel_name] + list(param_dict.values()) +
                      legal_loop_indices)
    for name, var in var_table.items():
        if not (name in reserved_names):
            new_var_dict[name] = mk_unique_var(name)
    replace_var_names(gufunc_ir.blocks, new_var_dict)
    if config.DEBUG_ARRAY_OPT:
        print("gufunc_ir dump after renaming ")
        gufunc_ir.dump()

    prs_dict = {}
    pss_dict = {}
    pspmd_dict = {}

    gufunc_param_types = param_types

    if config.DEBUG_ARRAY_OPT:
        print(
            "gufunc_param_types = ",
            type(gufunc_param_types),
            "\n",
            gufunc_param_types,
        )

    gufunc_stub_last_label = max(gufunc_ir.blocks.keys()) + 1

    # Add gufunc stub last label to each parfor.loop_body label to prevent
    # label conflicts.
    loop_body = add_offset_to_labels(loop_body, gufunc_stub_last_label)
    # new label for splitting sentinel block
    new_label = max(loop_body.keys()) + 1

    # If enabled, add a print statement after every assignment.
    if config.DEBUG_ARRAY_OPT_RUNTIME:
        _dbgprint_after_each_array_assignments(lowerer, loop_body, typemap)

    if config.DEBUG_ARRAY_OPT:
        print("parfor loop body")
        _print_body(loop_body)

    wrapped_blocks = wrap_loop_body(loop_body)
    # hoisted, not_hoisted = hoist(parfor_params, loop_body,
    #                             typemap, wrapped_blocks)
    setitems = set()
    find_setitems_body(setitems, loop_body, typemap)

    hoisted = []
    not_hoisted = []

    start_block = gufunc_ir.blocks[min(gufunc_ir.blocks.keys())]
    start_block.body = start_block.body[:-1] + hoisted + [start_block.body[-1]]
    unwrap_loop_body(loop_body)

    # store hoisted into diagnostics
    diagnostics = lowerer.metadata["parfor_diagnostics"]
    diagnostics.hoist_info[parfor.id] = {
        "hoisted": hoisted,
        "not_hoisted": not_hoisted,
    }

    lowerer.metadata["parfor_diagnostics"].extra_info[str(parfor.id)] = str(
        dpctl.get_current_queue().get_sycl_device().name)

    if config.DEBUG_ARRAY_OPT:
        print("After hoisting")
        _print_body(loop_body)

    # Search all the block in the gufunc outline for the sentinel assignment.
    for label, block in gufunc_ir.blocks.items():
        for i, inst in enumerate(block.body):
            if (isinstance(inst, ir.Assign)
                    and inst.target.name == sentinel_name):
                # We found the sentinel assignment.
                loc = inst.loc
                scope = block.scope
                # split block across __sentinel__
                # A new block is allocated for the statements prior to the
                # sentinel but the new block maintains the current block label.
                prev_block = ir.Block(scope, loc)
                prev_block.body = block.body[:i]

                # The current block is used for statements after the sentinel.
                block.body = block.body[i + 1:]
                # But the current block gets a new label.
                body_first_label = min(loop_body.keys())

                # The previous block jumps to the minimum labelled block of the
                # parfor body.
                prev_block.append(ir.Jump(body_first_label, loc))
                # Add all the parfor loop body blocks to the gufunc function's
                # IR.
                for (l, b) in loop_body.items():
                    gufunc_ir.blocks[l] = b
                body_last_label = max(loop_body.keys())
                gufunc_ir.blocks[new_label] = block
                gufunc_ir.blocks[label] = prev_block
                # Add a jump from the last parfor body block to the block
                # containing statements after the sentinel.
                gufunc_ir.blocks[body_last_label].append(
                    ir.Jump(new_label, loc))
                break
        else:
            continue
        break

    if config.DEBUG_ARRAY_OPT:
        print("gufunc_ir last dump before renaming")
        gufunc_ir.dump()

    gufunc_ir.blocks = rename_labels(gufunc_ir.blocks)
    remove_dels(gufunc_ir.blocks)

    if config.DEBUG_ARRAY_OPT:
        sys.stdout.flush()

    if config.DEBUG_ARRAY_OPT:
        print("gufunc_ir last dump")
        gufunc_ir.dump()
        print("flags", flags)
        print("typemap", typemap)

    old_alias = flags.noalias
    if not has_aliases:
        if config.DEBUG_ARRAY_OPT:
            print("No aliases found so adding noalias flag.")
        flags.noalias = True

    remove_dead(gufunc_ir.blocks, gufunc_ir.arg_names, gufunc_ir, typemap)

    if config.DEBUG_ARRAY_OPT:
        print("gufunc_ir after remove dead")
        gufunc_ir.dump()

    kernel_sig = signature(types.none, *gufunc_param_types)

    if config.DEBUG_ARRAY_OPT:
        sys.stdout.flush()

    if config.DEBUG_ARRAY_OPT:
        print("before DUFunc inlining".center(80, "-"))
        gufunc_ir.dump()

    # Inlining all DUFuncs
    dufunc_inliner(
        gufunc_ir,
        lowerer.fndesc.calltypes,
        typemap,
        lowerer.context.typing_context,
        lowerer.context,
    )

    if config.DEBUG_ARRAY_OPT:
        print("after DUFunc inline".center(80, "-"))
        gufunc_ir.dump()

    kernel_func = dppy.compiler.compile_kernel_parfor(
        dpctl.get_current_queue(),
        gufunc_ir,
        gufunc_param_types,
        param_types_addrspaces,
        debug=flags.debuginfo,
    )

    flags.noalias = old_alias

    if config.DEBUG_ARRAY_OPT:
        print("kernel_sig = ", kernel_sig)

    return kernel_func, parfor_args, kernel_sig, func_arg_types, setitems