Beispiel #1
0
    def get_return_type(self, argtys):
        if config.DEBUG_ARRAY_OPT == 1:
            print("get_return_type", argtys)
            ir_utils.dump_blocks(self.kernel_ir.blocks)

        if not isinstance(argtys[0], types.npytypes.Array):
            raise ValueError("The first argument to a stencil kernel must "
                             "be the primary input array.")

        typemap, return_type, calltypes = compiler.type_inference_stage(
            self._typingctx, self.kernel_ir, argtys, None, {})
        if isinstance(return_type, types.npytypes.Array):
            raise ValueError(
                "Stencil kernel must return a scalar and not a numpy array.")

        real_ret = types.npytypes.Array(return_type, argtys[0].ndim,
                                        argtys[0].layout)
        return (real_ret, typemap, calltypes)
Beispiel #2
0
    def get_return_type(self, argtys):
        if config.DEBUG_ARRAY_OPT == 1:
            print("get_return_type", argtys)
            ir_utils.dump_blocks(self.kernel_ir.blocks)

        if not isinstance(argtys[0], types.npytypes.Array):
            raise ValueError("The first argument to a stencil kernel must "
                             "be the primary input array.")

        typemap, return_type, calltypes = compiler.type_inference_stage(
                self._typingctx,
                self.kernel_ir,
                argtys,
                None,
                {})
        if isinstance(return_type, types.npytypes.Array):
            raise ValueError(
                "Stencil kernel must return a scalar and not a numpy array.")

        real_ret = types.npytypes.Array(return_type, argtys[0].ndim,
                                                     argtys[0].layout)
        return (real_ret, typemap, calltypes)
Beispiel #3
0
    def _stencil_wrapper(self, result, sigret, return_type, typemap, calltypes,
                         *args):
        # Overall approach:
        # 1) Construct a string containing a function definition for the stencil function
        #    that will execute the stencil kernel.  This function definition includes a
        #    unique stencil function name, the parameters to the stencil kernel, loop
        #    nests across the dimenions of the input array.  Those loop nests use the
        #    computed stencil kernel size so as not to try to compute elements where
        #    elements outside the bounds of the input array would be needed.
        # 2) The but of the loop nest in this new function is a special sentinel
        #    assignment.
        # 3) Get the IR of this new function.
        # 4) Split the block containing the sentinel assignment and remove the sentinel
        #    assignment.  Insert the stencil kernel IR into the stencil function IR
        #    after label and variable renaming of the stencil kernel IR to prevent
        #    conflicts with the stencil function IR.
        # 5) Compile the combined stencil function IR + stencil kernel IR into existence.

        # Copy the kernel so that our changes for this callsite
        # won't effect other callsites.
        (kernel_copy,
         copy_calltypes) = self.copy_ir_with_calltypes(self.kernel_ir,
                                                       calltypes)
        # The stencil kernel body becomes the body of a loop, for which args aren't needed.
        ir_utils.remove_args(kernel_copy.blocks)
        first_arg = kernel_copy.arg_names[0]

        in_cps, out_cps = ir_utils.copy_propagate(kernel_copy.blocks, typemap)
        name_var_table = ir_utils.get_name_var_table(kernel_copy.blocks)
        ir_utils.apply_copy_propagate(kernel_copy.blocks, in_cps,
                                      name_var_table, typemap, copy_calltypes)

        if "out" in name_var_table:
            raise ValueError(
                "Cannot use the reserved word 'out' in stencil kernels.")

        sentinel_name = ir_utils.get_unused_var_name("__sentinel__",
                                                     name_var_table)
        if config.DEBUG_ARRAY_OPT == 1:
            print("name_var_table", name_var_table, sentinel_name)

        the_array = args[0]

        if config.DEBUG_ARRAY_OPT == 1:
            print("_stencil_wrapper", return_type, return_type.dtype,
                  type(return_type.dtype), args)
            ir_utils.dump_blocks(kernel_copy.blocks)

        # We generate a Numba function to execute this stencil and here
        # create the unique name of this function.
        stencil_func_name = "__numba_stencil_%s_%s" % (hex(
            id(the_array)).replace("-", "_"), self.id)

        # We will put a loop nest in the generated function for each
        # dimension in the input array.  Here we create the name for
        # the index variable for each dimension.  index0, index1, ...
        index_vars = []
        for i in range(the_array.ndim):
            index_var_name = ir_utils.get_unused_var_name(
                "index" + str(i), name_var_table)
            index_vars += [index_var_name]

        # Create extra signature for out and neighborhood.
        out_name = ir_utils.get_unused_var_name("out", name_var_table)
        neighborhood_name = ir_utils.get_unused_var_name(
            "neighborhood", name_var_table)
        sig_extra = ""
        if result is not None:
            sig_extra += ", {}=None".format(out_name)
        if "neighborhood" in dict(self.kws):
            sig_extra += ", {}=None".format(neighborhood_name)

        # Get a list of the standard indexed array names.
        standard_indexed = self.options.get("standard_indexing", [])

        if first_arg in standard_indexed:
            raise ValueError("The first argument to a stencil kernel must "
                             "use relative indexing, not standard indexing.")

        if len(set(standard_indexed) - set(kernel_copy.arg_names)) != 0:
            raise ValueError("Standard indexing requested for an array name "
                             "not present in the stencil kernel definition.")

        # Add index variables to getitems in the IR to transition the accesses
        # in the kernel from relative to regular Python indexing.  Returns the
        # computed size of the stencil kernel and a list of the relatively indexed
        # arrays.
        kernel_size, relatively_indexed = self.add_indices_to_kernel(
            kernel_copy, index_vars, the_array.ndim, self.neighborhood,
            standard_indexed)
        if self.neighborhood is None:
            self.neighborhood = kernel_size

        if config.DEBUG_ARRAY_OPT == 1:
            print("After add_indices_to_kernel")
            ir_utils.dump_blocks(kernel_copy.blocks)

        # The return in the stencil kernel becomes a setitem for that
        # particular point in the iteration space.
        ret_blocks = self.replace_return_with_setitem(kernel_copy.blocks,
                                                      index_vars, out_name)

        if config.DEBUG_ARRAY_OPT == 1:
            print("After replace_return_with_setitem", ret_blocks)
            ir_utils.dump_blocks(kernel_copy.blocks)

        # Start to form the new function to execute the stencil kernel.
        func_text = "def {}({}{}):\n".format(stencil_func_name,
                                             ",".join(kernel_copy.arg_names),
                                             sig_extra)

        # Get loop ranges for each dimension, which could be either int
        # or variable. In the latter case we'll use the extra neighborhood
        # argument to the function.
        ranges = []
        for i in range(the_array.ndim):
            if isinstance(kernel_size[i][0], int):
                lo = kernel_size[i][0]
                hi = kernel_size[i][1]
            else:
                lo = "{}[{}][0]".format(neighborhood_name, i)
                hi = "{}[{}][1]".format(neighborhood_name, i)
            ranges.append((lo, hi))

        # If there are more than one relatively indexed arrays, add a call to
        # a function that will raise an error if any of the relatively indexed
        # arrays are of different size than the first input array.
        if len(relatively_indexed) > 1:
            func_text += "    raise_if_incompatible_array_sizes(" + first_arg
            for other_array in relatively_indexed:
                if other_array != first_arg:
                    func_text += "," + other_array
            func_text += ")\n"

        # Get the shape of the first input array.
        shape_name = ir_utils.get_unused_var_name("full_shape", name_var_table)
        func_text += "    {} = {}.shape\n".format(shape_name, first_arg)

        # If we have to allocate the output array (the out argument was not used)
        # then us numpy.full if the user specified a cval stencil decorator option
        # or np.zeros if they didn't to allocate the array.
        if result is None:
            return_type_name = numpy_support.as_dtype(
                return_type.dtype).type.__name__
            if "cval" in self.options:
                cval = self.options["cval"]
                if return_type.dtype != typing.typeof.typeof(cval):
                    raise ValueError(
                        "cval type does not match stencil return type.")
                out_init = "{} = np.full({}, {}, dtype=np.{})\n".format(
                    out_name, shape_name, cval, return_type_name)
            else:
                out_init = "{} = np.zeros({}, dtype=np.{})\n".format(
                    out_name, shape_name, return_type_name)
            func_text += "    " + out_init

        offset = 1
        # Add the loop nests to the new function.
        for i in range(the_array.ndim):
            for j in range(offset):
                func_text += "    "
            # ranges[i][0] is the minimum index used in the i'th dimension
            # but minimum's greater than 0 don't preclude any entry in the array.
            # So, take the minimum of 0 and the minimum index found in the kernel
            # and this will be a negative number (potentially -0).  Then, we do
            # unary - on that to get the positive offset in this dimension whose
            # use is precluded.
            # ranges[i][1] is the maximum of 0 and the observed maximum index
            # in this dimension because negative maximums would not cause us to
            # preclude any entry in the array from being used.
            func_text += ("for {} in range(-min(0,{}),"
                          "{}[{}]-max(0,{})):\n").format(
                              index_vars[i], ranges[i][0], shape_name, i,
                              ranges[i][1])
            offset += 1

        for j in range(offset):
            func_text += "    "
        # Put a sentinel in the code so we can locate it in the IR.  We will
        # remove this sentinel assignment and replace it with the IR for the
        # stencil kernel body.
        func_text += "{} = 0\n".format(sentinel_name)
        func_text += "    return {}\n".format(out_name)

        if config.DEBUG_ARRAY_OPT == 1:
            print("new stencil func text")
            print(func_text)

        # Force the new stencil function into existence.
        exec_(func_text) in globals(), locals()
        stencil_func = eval(stencil_func_name)
        if sigret is not None:
            pysig = utils.pysignature(stencil_func)
            sigret.pysig = pysig
        # Get the IR for the newly created stencil function.
        stencil_ir = compiler.run_frontend(stencil_func)
        ir_utils.remove_dels(stencil_ir.blocks)

        # rename all variables in stencil_ir afresh
        var_table = ir_utils.get_name_var_table(stencil_ir.blocks)
        new_var_dict = {}
        reserved_names = (
            [sentinel_name, out_name, neighborhood_name, shape_name] +
            kernel_copy.arg_names + index_vars)
        for name, var in var_table.items():
            if not name in reserved_names:
                new_var_dict[name] = ir_utils.mk_unique_var(name)
        ir_utils.replace_var_names(stencil_ir.blocks, new_var_dict)

        stencil_stub_last_label = max(stencil_ir.blocks.keys()) + 1

        # Shift lables in the kernel copy so they are guaranteed unique
        # and don't conflict with any labels in the stencil_ir.
        kernel_copy.blocks = ir_utils.add_offset_to_labels(
            kernel_copy.blocks, stencil_stub_last_label)
        new_label = max(kernel_copy.blocks.keys()) + 1
        # Adjust ret_blocks to account for addition of the offset.
        ret_blocks = [x + stencil_stub_last_label for x in ret_blocks]

        if config.DEBUG_ARRAY_OPT == 1:
            print("ret_blocks w/ offsets", ret_blocks, stencil_stub_last_label)
            print("before replace sentinel stencil_ir")
            ir_utils.dump_blocks(stencil_ir.blocks)
            print("before replace sentinel kernel_copy")
            ir_utils.dump_blocks(kernel_copy.blocks)

        # Search all the block in the stencil outline for the sentinel.
        for label, block in stencil_ir.blocks.items():
            for i, inst in enumerate(block.body):
                if (isinstance(inst, ir.Assign)
                        and inst.target.name == sentinel_name):
                    # We found the sentinel assignment.
                    loc = inst.loc
                    scope = block.scope
                    # split block across __sentinel__
                    # A new block is allocated for the statements prior to the
                    # sentinel but the new block maintains the current block
                    # label.
                    prev_block = ir.Block(scope, loc)
                    prev_block.body = block.body[:i]
                    # The current block is used for statements after sentinel.
                    block.body = block.body[i + 1:]
                    # But the current block gets a new label.
                    body_first_label = min(kernel_copy.blocks.keys())

                    # The previous block jumps to the minimum labelled block of
                    # the parfor body.
                    prev_block.append(ir.Jump(body_first_label, loc))
                    # Add all the parfor loop body blocks to the gufunc
                    # function's IR.
                    for (l, b) in kernel_copy.blocks.items():
                        stencil_ir.blocks[l] = b

                    stencil_ir.blocks[new_label] = block
                    stencil_ir.blocks[label] = prev_block
                    # Add a jump from all the blocks that previously contained
                    # a return in the stencil kernel to the block
                    # containing statements after the sentinel.
                    for ret_block in ret_blocks:
                        stencil_ir.blocks[ret_block].append(
                            ir.Jump(new_label, loc))
                    break
            else:
                continue
            break

        stencil_ir.blocks = ir_utils.rename_labels(stencil_ir.blocks)
        ir_utils.remove_dels(stencil_ir.blocks)

        assert (isinstance(the_array, types.Type))
        array_types = args

        new_stencil_param_types = list(array_types)

        if config.DEBUG_ARRAY_OPT == 1:
            print("new_stencil_param_types", new_stencil_param_types)
            ir_utils.dump_blocks(stencil_ir.blocks)

        # Compile the combined stencil function with the replaced loop
        # body in it.
        new_func = compiler.compile_ir(self._typingctx, self._targetctx,
                                       stencil_ir, new_stencil_param_types,
                                       None, compiler.DEFAULT_FLAGS, {})
        return new_func
Beispiel #4
0
    def add_indices_to_kernel(self, kernel, index_names, ndim, neighborhood,
                              standard_indexed):
        """
        Transforms the stencil kernel as specified by the user into one
        that includes each dimension's index variable as part of the getitem
        calls.  So, in effect array[-1] becomes array[index0-1].
        """
        const_dict = {}
        kernel_consts = []

        if config.DEBUG_ARRAY_OPT == 1:
            print("add_indices_to_kernel", ndim, neighborhood)
            ir_utils.dump_blocks(kernel.blocks)

        if neighborhood is None:
            need_to_calc_kernel = True
        else:
            need_to_calc_kernel = False
            if len(neighborhood) != ndim:
                raise ValueError("%d dimensional neighborhood specified for %d " \
                    "dimensional input array" % (len(neighborhood), ndim))

        tuple_table = ir_utils.get_tuple_table(kernel.blocks)

        relatively_indexed = set()

        for block in kernel.blocks.values():
            scope = block.scope
            loc = block.loc
            new_body = []
            for stmt in block.body:
                if (isinstance(stmt, ir.Assign)
                        and isinstance(stmt.value, ir.Const)):
                    if config.DEBUG_ARRAY_OPT == 1:
                        print("remembering in const_dict", stmt.target.name,
                              stmt.value.value)
                    # Remember consts for use later.
                    const_dict[stmt.target.name] = stmt.value.value
                if ((isinstance(stmt, ir.Assign)
                     and isinstance(stmt.value, ir.Expr)
                     and stmt.value.op in ['setitem', 'static_setitem']
                     and stmt.value.value.name in kernel.arg_names)
                        or (isinstance(stmt, ir.SetItem)
                            and stmt.target.name in kernel.arg_names)):
                    raise ValueError("Assignments to arrays passed to stencil " \
                        "kernels is not allowed.")
                if (isinstance(stmt, ir.Assign)
                        and isinstance(stmt.value, ir.Expr)
                        and stmt.value.op in ['getitem', 'static_getitem']
                        and stmt.value.value.name in kernel.arg_names
                        and stmt.value.value.name not in standard_indexed):
                    # We found a getitem from the input array.
                    if stmt.value.op == 'getitem':
                        stmt_index_var = stmt.value.index
                    else:
                        stmt_index_var = stmt.value.index_var
                        # allow static_getitem since rewrite passes are applied
                        #raise ValueError("Unexpected static_getitem in add_indices_to_kernel.")

                    relatively_indexed.add(stmt.value.value.name)

                    # Store the index used after looking up the variable in
                    # the const dictionary.
                    if need_to_calc_kernel:
                        assert hasattr(stmt_index_var, 'name')

                        if stmt_index_var.name in tuple_table:
                            kernel_consts += [tuple_table[stmt_index_var.name]]
                        elif stmt_index_var.name in const_dict:
                            kernel_consts += [const_dict[stmt_index_var.name]]
                        else:
                            raise ValueError(
                                "stencil kernel index is not "
                                "constant, 'neighborhood' option required")

                    if ndim == 1:
                        # Single dimension always has index variable 'index0'.
                        # tmpvar will hold the real index and is computed by
                        # adding the relative offset in stmt.value.index to
                        # the current absolute location in index0.
                        index_var = ir.Var(scope, index_names[0], loc)
                        tmpname = ir_utils.mk_unique_var("stencil_index")
                        tmpvar = ir.Var(scope, tmpname, loc)
                        acc_call = ir.Expr.binop(operator.add, stmt_index_var,
                                                 index_var, loc)
                        new_body.append(ir.Assign(acc_call, tmpvar, loc))
                        new_body.append(
                            ir.Assign(
                                ir.Expr.getitem(stmt.value.value, tmpvar, loc),
                                stmt.target, loc))
                    else:
                        index_vars = []
                        sum_results = []
                        s_index_name = ir_utils.mk_unique_var("stencil_index")
                        s_index_var = ir.Var(scope, s_index_name, loc)
                        const_index_vars = []
                        ind_stencils = []

                        # Same idea as above but you have to extract
                        # individual elements out of the tuple indexing
                        # expression and add the corresponding index variable
                        # to them and then reconstitute as a tuple that can
                        # index the array.
                        for dim in range(ndim):
                            tmpname = ir_utils.mk_unique_var("const_index")
                            tmpvar = ir.Var(scope, tmpname, loc)
                            new_body.append(
                                ir.Assign(ir.Const(dim, loc), tmpvar, loc))
                            const_index_vars += [tmpvar]
                            index_var = ir.Var(scope, index_names[dim], loc)
                            index_vars += [index_var]

                            tmpname = ir_utils.mk_unique_var(
                                "ind_stencil_index")
                            tmpvar = ir.Var(scope, tmpname, loc)
                            ind_stencils += [tmpvar]
                            getitemname = ir_utils.mk_unique_var("getitem")
                            getitemvar = ir.Var(scope, getitemname, loc)
                            getitemcall = ir.Expr.getitem(
                                stmt_index_var, const_index_vars[dim], loc)
                            new_body.append(
                                ir.Assign(getitemcall, getitemvar, loc))
                            acc_call = ir.Expr.binop(operator.add, getitemvar,
                                                     index_vars[dim], loc)
                            new_body.append(ir.Assign(acc_call, tmpvar, loc))

                        tuple_call = ir.Expr.build_tuple(ind_stencils, loc)
                        new_body.append(ir.Assign(tuple_call, s_index_var,
                                                  loc))
                        new_body.append(
                            ir.Assign(
                                ir.Expr.getitem(stmt.value.value, s_index_var,
                                                loc), stmt.target, loc))
                else:
                    new_body.append(stmt)
            block.body = new_body

        if need_to_calc_kernel:
            # Find the size of the kernel by finding the maximum absolute value
            # index used in the kernel specification.
            neighborhood = [[0, 0] for _ in range(ndim)]
            if len(kernel_consts) == 0:
                raise ValueError("Stencil kernel with no accesses to "
                                 "relatively indexed arrays.")

            for index in kernel_consts:
                if isinstance(index, tuple) or isinstance(index, list):
                    for i in range(len(index)):
                        te = index[i]
                        if isinstance(te, ir.Var) and te.name in const_dict:
                            te = const_dict[te.name]
                        if isinstance(te, int):
                            neighborhood[i][0] = min(neighborhood[i][0], te)
                            neighborhood[i][1] = max(neighborhood[i][1], te)
                        else:
                            raise ValueError(
                                "stencil kernel index is not constant,"
                                "'neighborhood' option required")
                    index_len = len(index)
                elif isinstance(index, int):
                    neighborhood[0][0] = min(neighborhood[0][0], index)
                    neighborhood[0][1] = max(neighborhood[0][1], index)
                    index_len = 1
                else:
                    raise ValueError(
                        "Non-tuple or non-integer used as stencil index.")
                if index_len != ndim:
                    raise ValueError(
                        "Stencil index does not match array dimensionality.")

        return (neighborhood, relatively_indexed)
Beispiel #5
0
def get_stencil_ir(sf, typingctx, args, scope, loc, input_dict, typemap,
                                                                    calltypes):
    """get typed IR from stencil bytecode
    """
    from numba.targets.cpu import CPUContext
    from numba.targets.registry import cpu_target
    from numba.annotations import type_annotations
    from numba.compiler import type_inference_stage

    # get untyped IR
    stencil_func_ir = sf.kernel_ir.copy()
    # copy the IR nodes to avoid changing IR in the StencilFunc object
    stencil_blocks = copy.deepcopy(stencil_func_ir.blocks)
    stencil_func_ir.blocks = stencil_blocks

    name_var_table = ir_utils.get_name_var_table(stencil_func_ir.blocks)
    if "out" in name_var_table:
        raise ValueError("Cannot use the reserved word 'out' in stencil kernels.")

    # get typed IR with a dummy pipeline (similar to test_parfors.py)
    targetctx = CPUContext(typingctx)
    with cpu_target.nested_context(typingctx, targetctx):
        tp = DummyPipeline(typingctx, targetctx, args, stencil_func_ir)

        numba.rewrites.rewrite_registry.apply(
            'before-inference', tp, tp.func_ir)

        tp.typemap, tp.return_type, tp.calltypes = type_inference_stage(
            tp.typingctx, tp.func_ir, tp.args, None)

        type_annotations.TypeAnnotation(
            func_ir=tp.func_ir,
            typemap=tp.typemap,
            calltypes=tp.calltypes,
            lifted=(),
            lifted_from=None,
            args=tp.args,
            return_type=tp.return_type,
            html_output=numba.config.HTML)

    # make block labels unique
    stencil_blocks = ir_utils.add_offset_to_labels(stencil_blocks,
                                                        ir_utils.next_label())
    min_label = min(stencil_blocks.keys())
    max_label = max(stencil_blocks.keys())
    ir_utils._max_label = max_label

    if config.DEBUG_ARRAY_OPT == 1:
        print("Initial stencil_blocks")
        ir_utils.dump_blocks(stencil_blocks)

    # rename variables,
    var_dict = {}
    for v, typ in tp.typemap.items():
        new_var = ir.Var(scope, mk_unique_var(v), loc)
        var_dict[v] = new_var
        typemap[new_var.name] = typ  # add new var type for overall function
    ir_utils.replace_vars(stencil_blocks, var_dict)

    if config.DEBUG_ARRAY_OPT == 1:
        print("After replace_vars")
        ir_utils.dump_blocks(stencil_blocks)

    # add call types to overall function
    for call, call_typ in tp.calltypes.items():
        calltypes[call] = call_typ

    arg_to_arr_dict = {}
    # replace arg with arr
    for block in stencil_blocks.values():
        for stmt in block.body:
            if isinstance(stmt, ir.Assign) and isinstance(stmt.value, ir.Arg):
                if config.DEBUG_ARRAY_OPT == 1:
                    print("input_dict", input_dict, stmt.value.index,
                               stmt.value.name, stmt.value.index in input_dict)
                arg_to_arr_dict[stmt.value.name] = input_dict[stmt.value.index].name
                stmt.value = input_dict[stmt.value.index]

    if config.DEBUG_ARRAY_OPT == 1:
        print("arg_to_arr_dict", arg_to_arr_dict)
        print("After replace arg with arr")
        ir_utils.dump_blocks(stencil_blocks)

    ir_utils.remove_dels(stencil_blocks)
    stencil_func_ir.blocks = stencil_blocks
    return stencil_func_ir, sf.get_return_type(args)[0], arg_to_arr_dict
Beispiel #6
0
    def _mk_stencil_parfor(self, label, in_args, out_arr, stencil_ir,
                           index_offsets, target, return_type, stencil_func,
                           arg_to_arr_dict):
        """ Converts a set of stencil kernel blocks to a parfor.
        """
        gen_nodes = []
        stencil_blocks = stencil_ir.blocks

        if config.DEBUG_ARRAY_OPT == 1:
            print("_mk_stencil_parfor", label, in_args, out_arr, index_offsets,
                   return_type, stencil_func, stencil_blocks)
            ir_utils.dump_blocks(stencil_blocks)

        in_arr = in_args[0]
        # run copy propagate to replace in_args copies (e.g. a = A)
        in_arr_typ = self.typemap[in_arr.name]
        in_cps, out_cps = ir_utils.copy_propagate(stencil_blocks, self.typemap)
        name_var_table = ir_utils.get_name_var_table(stencil_blocks)

        ir_utils.apply_copy_propagate(
            stencil_blocks,
            in_cps,
            name_var_table,
            self.typemap,
            self.calltypes)
        if config.DEBUG_ARRAY_OPT == 1:
            print("stencil_blocks after copy_propagate")
            ir_utils.dump_blocks(stencil_blocks)
        ir_utils.remove_dead(stencil_blocks, self.func_ir.arg_names, stencil_ir,
                             self.typemap)
        if config.DEBUG_ARRAY_OPT == 1:
            print("stencil_blocks after removing dead code")
            ir_utils.dump_blocks(stencil_blocks)

        # create parfor vars
        ndims = self.typemap[in_arr.name].ndim
        scope = in_arr.scope
        loc = in_arr.loc
        parfor_vars = []
        for i in range(ndims):
            parfor_var = ir.Var(scope, mk_unique_var(
                "$parfor_index_var"), loc)
            self.typemap[parfor_var.name] = types.intp
            parfor_vars.append(parfor_var)

        start_lengths, end_lengths = self._replace_stencil_accesses(
             stencil_blocks, parfor_vars, in_args, index_offsets, stencil_func,
             arg_to_arr_dict)

        if config.DEBUG_ARRAY_OPT == 1:
            print("stencil_blocks after replace stencil accesses")
            ir_utils.dump_blocks(stencil_blocks)

        # create parfor loop nests
        loopnests = []
        equiv_set = self.array_analysis.get_equiv_set(label)
        in_arr_dim_sizes = equiv_set.get_shape(in_arr)

        assert ndims == len(in_arr_dim_sizes)
        for i in range(ndims):
            last_ind = self._get_stencil_last_ind(in_arr_dim_sizes[i],
                                        end_lengths[i], gen_nodes, scope, loc)
            start_ind = self._get_stencil_start_ind(
                                        start_lengths[i], gen_nodes, scope, loc)
            # start from stencil size to avoid invalid array access
            loopnests.append(numba.parfor.LoopNest(parfor_vars[i],
                                start_ind, last_ind, 1))

        # We have to guarantee that the exit block has maximum label and that
        # there's only one exit block for the parfor body.
        # So, all return statements will change to jump to the parfor exit block.
        parfor_body_exit_label = max(stencil_blocks.keys()) + 1
        stencil_blocks[parfor_body_exit_label] = ir.Block(scope, loc)
        exit_value_var = ir.Var(scope, mk_unique_var("$parfor_exit_value"), loc)
        self.typemap[exit_value_var.name] = return_type.dtype

        # create parfor index var
        for_replacing_ret = []
        if ndims == 1:
            parfor_ind_var = parfor_vars[0]
        else:
            parfor_ind_var = ir.Var(scope, mk_unique_var(
                "$parfor_index_tuple_var"), loc)
            self.typemap[parfor_ind_var.name] = types.containers.UniTuple(
                types.intp, ndims)
            tuple_call = ir.Expr.build_tuple(parfor_vars, loc)
            tuple_assign = ir.Assign(tuple_call, parfor_ind_var, loc)
            for_replacing_ret.append(tuple_assign)

        if config.DEBUG_ARRAY_OPT == 1:
            print("stencil_blocks after creating parfor index var")
            ir_utils.dump_blocks(stencil_blocks)

        # empty init block
        init_block = ir.Block(scope, loc)
        if out_arr == None:
            in_arr_typ = self.typemap[in_arr.name]

            shape_name = ir_utils.mk_unique_var("in_arr_shape")
            shape_var = ir.Var(scope, shape_name, loc)
            shape_getattr = ir.Expr.getattr(in_arr, "shape", loc)
            self.typemap[shape_name] = types.containers.UniTuple(types.intp,
                                                               in_arr_typ.ndim)
            init_block.body.extend([ir.Assign(shape_getattr, shape_var, loc)])

            zero_name = ir_utils.mk_unique_var("zero_val")
            zero_var = ir.Var(scope, zero_name, loc)
            if "cval" in stencil_func.options:
                cval = stencil_func.options["cval"]
                # TODO: Loosen this restriction to adhere to casting rules.
                if return_type.dtype != typing.typeof.typeof(cval):
                    raise ValueError("cval type does not match stencil return type.")

                temp2 = return_type.dtype(cval)
            else:
                temp2 = return_type.dtype(0)
            full_const = ir.Const(temp2, loc)
            self.typemap[zero_name] = return_type.dtype
            init_block.body.extend([ir.Assign(full_const, zero_var, loc)])

            so_name = ir_utils.mk_unique_var("stencil_output")
            out_arr = ir.Var(scope, so_name, loc)
            self.typemap[out_arr.name] = numba.types.npytypes.Array(
                                                           return_type.dtype,
                                                           in_arr_typ.ndim,
                                                           in_arr_typ.layout)
            dtype_g_np_var = ir.Var(scope, mk_unique_var("$np_g_var"), loc)
            self.typemap[dtype_g_np_var.name] = types.misc.Module(np)
            dtype_g_np = ir.Global('np', np, loc)
            dtype_g_np_assign = ir.Assign(dtype_g_np, dtype_g_np_var, loc)
            init_block.body.append(dtype_g_np_assign)

            dtype_np_attr_call = ir.Expr.getattr(dtype_g_np_var, return_type.dtype.name, loc)
            dtype_attr_var = ir.Var(scope, mk_unique_var("$np_attr_attr"), loc)
            self.typemap[dtype_attr_var.name] = types.functions.NumberClass(return_type.dtype)
            dtype_attr_assign = ir.Assign(dtype_np_attr_call, dtype_attr_var, loc)
            init_block.body.append(dtype_attr_assign)

            stmts = ir_utils.gen_np_call("full",
                                       np.full,
                                       out_arr,
                                       [shape_var, zero_var, dtype_attr_var],
                                       self.typingctx,
                                       self.typemap,
                                       self.calltypes)
            equiv_set.insert_equiv(out_arr, in_arr_dim_sizes)
            init_block.body.extend(stmts)

        self.replace_return_with_setitem(stencil_blocks, exit_value_var,
                                         parfor_body_exit_label)

        if config.DEBUG_ARRAY_OPT == 1:
            print("stencil_blocks after replacing return")
            ir_utils.dump_blocks(stencil_blocks)

        setitem_call = ir.SetItem(out_arr, parfor_ind_var, exit_value_var, loc)
        self.calltypes[setitem_call] = signature(
                                        types.none, self.typemap[out_arr.name],
                                        self.typemap[parfor_ind_var.name],
                                        self.typemap[out_arr.name].dtype
                                        )
        stencil_blocks[parfor_body_exit_label].body.extend(for_replacing_ret)
        stencil_blocks[parfor_body_exit_label].body.append(setitem_call)

        # simplify CFG of parfor body (exit block could be simplified often)
        # add dummy return to enable CFG
        stencil_blocks[parfor_body_exit_label].body.append(ir.Return(0,
                                            ir.Loc("stencilparfor_dummy", -1)))
        stencil_blocks = ir_utils.simplify_CFG(stencil_blocks)
        stencil_blocks[max(stencil_blocks.keys())].body.pop()

        if config.DEBUG_ARRAY_OPT == 1:
            print("stencil_blocks after adding SetItem")
            ir_utils.dump_blocks(stencil_blocks)

        pattern = ('stencil', [start_lengths, end_lengths])
        parfor = numba.parfor.Parfor(loopnests, init_block, stencil_blocks,
                                     loc, parfor_ind_var, equiv_set, pattern, self.flags)
        gen_nodes.append(parfor)
        gen_nodes.append(ir.Assign(out_arr, target, loc))
        return gen_nodes
Beispiel #7
0
    def _mk_stencil_parfor(self, label, in_args, out_arr, stencil_blocks,
                           index_offsets, target, return_type, stencil_func,
                           arg_to_arr_dict):
        """ Converts a set of stencil kernel blocks to a parfor.
        """
        gen_nodes = []

        if config.DEBUG_ARRAY_OPT == 1:
            print("_mk_stencil_parfor", label, in_args, out_arr, index_offsets,
                  return_type, stencil_func, stencil_blocks)
            ir_utils.dump_blocks(stencil_blocks)

        in_arr = in_args[0]
        # run copy propagate to replace in_args copies (e.g. a = A)
        in_arr_typ = self.typemap[in_arr.name]
        in_cps, out_cps = ir_utils.copy_propagate(stencil_blocks, self.typemap)
        name_var_table = ir_utils.get_name_var_table(stencil_blocks)

        ir_utils.apply_copy_propagate(stencil_blocks, in_cps, name_var_table,
                                      self.typemap, self.calltypes)
        if config.DEBUG_ARRAY_OPT == 1:
            print("stencil_blocks after copy_propagate")
            ir_utils.dump_blocks(stencil_blocks)
        ir_utils.remove_dead(stencil_blocks, self.func_ir.arg_names,
                             self.typemap)
        if config.DEBUG_ARRAY_OPT == 1:
            print("stencil_blocks after removing dead code")
            ir_utils.dump_blocks(stencil_blocks)

        # create parfor vars
        ndims = self.typemap[in_arr.name].ndim
        scope = in_arr.scope
        loc = in_arr.loc
        parfor_vars = []
        for i in range(ndims):
            parfor_var = ir.Var(scope, mk_unique_var("$parfor_index_var"), loc)
            self.typemap[parfor_var.name] = types.intp
            parfor_vars.append(parfor_var)

        start_lengths, end_lengths = self._replace_stencil_accesses(
            stencil_blocks, parfor_vars, in_args, index_offsets, stencil_func,
            arg_to_arr_dict)

        # create parfor loop nests
        loopnests = []
        equiv_set = self.array_analysis.get_equiv_set(label)
        in_arr_dim_sizes = equiv_set.get_shape(in_arr.name)

        assert ndims == len(in_arr_dim_sizes)
        for i in range(ndims):
            last_ind = self._get_stencil_last_ind(in_arr_dim_sizes[i],
                                                  end_lengths[i], gen_nodes,
                                                  scope, loc)
            start_ind = self._get_stencil_start_ind(start_lengths[i],
                                                    gen_nodes, scope, loc)
            # start from stencil size to avoid invalid array access
            loopnests.append(
                numba.parfor.LoopNest(parfor_vars[i], start_ind, last_ind, 1))

        # replace return value to setitem to output array
        return_node = stencil_blocks[max(stencil_blocks.keys())].body.pop()
        assert isinstance(return_node, ir.Return)

        last_node = stencil_blocks[max(stencil_blocks.keys())].body.pop()
        while not isinstance(last_node, ir.Assign) or not isinstance(
                last_node.value, ir.Expr) or not last_node.value.op == 'cast':
            last_node = stencil_blocks[max(stencil_blocks.keys())].body.pop()
        assert isinstance(last_node, ir.Assign)
        assert isinstance(last_node.value, ir.Expr)
        assert last_node.value.op == 'cast'
        return_val = last_node.value.value

        # create parfor index var
        if ndims == 1:
            parfor_ind_var = parfor_vars[0]
        else:
            parfor_ind_var = ir.Var(scope,
                                    mk_unique_var("$parfor_index_tuple_var"),
                                    loc)
            self.typemap[parfor_ind_var.name] = types.containers.UniTuple(
                types.intp, ndims)
            tuple_call = ir.Expr.build_tuple(parfor_vars, loc)
            tuple_assign = ir.Assign(tuple_call, parfor_ind_var, loc)
            stencil_blocks[max(
                stencil_blocks.keys())].body.append(tuple_assign)

        # empty init block
        init_block = ir.Block(scope, loc)
        if out_arr == None:
            in_arr_typ = self.typemap[in_arr.name]

            shape_name = ir_utils.mk_unique_var("in_arr_shape")
            shape_var = ir.Var(scope, shape_name, loc)
            shape_getattr = ir.Expr.getattr(in_arr, "shape", loc)
            self.typemap[shape_name] = types.containers.UniTuple(
                types.intp, in_arr_typ.ndim)
            init_block.body.extend([ir.Assign(shape_getattr, shape_var, loc)])

            zero_name = ir_utils.mk_unique_var("zero_val")
            zero_var = ir.Var(scope, zero_name, loc)
            if "cval" in stencil_func.options:
                cval = stencil_func.options["cval"]
                # TODO: Loosen this restriction to adhere to casting rules.
                if return_type.dtype != typing.typeof.typeof(cval):
                    raise ValueError(
                        "cval type does not match stencil return type.")

                temp2 = return_type.dtype(cval)
            else:
                temp2 = return_type.dtype(0)
            full_const = ir.Const(temp2, loc)
            self.typemap[zero_name] = return_type.dtype
            init_block.body.extend([ir.Assign(full_const, zero_var, loc)])

            so_name = ir_utils.mk_unique_var("stencil_output")
            out_arr = ir.Var(scope, so_name, loc)
            self.typemap[out_arr.name] = numba.types.npytypes.Array(
                return_type.dtype, in_arr_typ.ndim, in_arr_typ.layout)
            dtype_g_np_var = ir.Var(scope, mk_unique_var("$np_g_var"), loc)
            self.typemap[dtype_g_np_var.name] = types.misc.Module(np)
            dtype_g_np = ir.Global('np', np, loc)
            dtype_g_np_assign = ir.Assign(dtype_g_np, dtype_g_np_var, loc)
            init_block.body.append(dtype_g_np_assign)

            dtype_np_attr_call = ir.Expr.getattr(dtype_g_np_var,
                                                 return_type.dtype.name, loc)
            dtype_attr_var = ir.Var(scope, mk_unique_var("$np_attr_attr"), loc)
            self.typemap[dtype_attr_var.name] = types.functions.NumberClass(
                return_type.dtype)
            dtype_attr_assign = ir.Assign(dtype_np_attr_call, dtype_attr_var,
                                          loc)
            init_block.body.append(dtype_attr_assign)

            stmts = ir_utils.gen_np_call("full", np.full, out_arr,
                                         [shape_var, zero_var, dtype_attr_var],
                                         self.typingctx, self.typemap,
                                         self.calltypes)
            equiv_set.insert_equiv(out_arr, in_arr_dim_sizes)
            init_block.body.extend(stmts)

        setitem_call = ir.SetItem(out_arr, parfor_ind_var, return_val, loc)
        self.calltypes[setitem_call] = signature(
            types.none, self.typemap[out_arr.name],
            self.typemap[parfor_ind_var.name],
            self.typemap[out_arr.name].dtype)
        stencil_blocks[max(stencil_blocks.keys())].body.append(setitem_call)

        parfor = numba.parfor.Parfor(loopnests, init_block, stencil_blocks,
                                     loc, parfor_ind_var, equiv_set)
        parfor.patterns = [('stencil', [start_lengths, end_lengths])]
        gen_nodes.append(parfor)
        gen_nodes.append(ir.Assign(out_arr, target, loc))
        return gen_nodes
Beispiel #8
0
    def _stencil_wrapper(self, result, sigret, return_type, typemap, calltypes, *args):
        # Overall approach:
        # 1) Construct a string containing a function definition for the stencil function
        #    that will execute the stencil kernel.  This function definition includes a
        #    unique stencil function name, the parameters to the stencil kernel, loop
        #    nests across the dimenions of the input array.  Those loop nests use the
        #    computed stencil kernel size so as not to try to compute elements where
        #    elements outside the bounds of the input array would be needed.
        # 2) The but of the loop nest in this new function is a special sentinel
        #    assignment.
        # 3) Get the IR of this new function.
        # 4) Split the block containing the sentinel assignment and remove the sentinel
        #    assignment.  Insert the stencil kernel IR into the stencil function IR
        #    after label and variable renaming of the stencil kernel IR to prevent
        #    conflicts with the stencil function IR.
        # 5) Compile the combined stencil function IR + stencil kernel IR into existence.

        # Copy the kernel so that our changes for this callsite
        # won't effect other callsites.
        (kernel_copy, copy_calltypes) = self.copy_ir_with_calltypes(
                                            self.kernel_ir, calltypes)
        # The stencil kernel body becomes the body of a loop, for which args aren't needed.
        ir_utils.remove_args(kernel_copy.blocks)
        first_arg = kernel_copy.arg_names[0]

        in_cps, out_cps = ir_utils.copy_propagate(kernel_copy.blocks, typemap)
        name_var_table = ir_utils.get_name_var_table(kernel_copy.blocks)
        ir_utils.apply_copy_propagate(
            kernel_copy.blocks,
            in_cps,
            name_var_table,
            typemap,
            copy_calltypes)

        if "out" in name_var_table:
            raise ValueError("Cannot use the reserved word 'out' in stencil kernels.")

        sentinel_name = ir_utils.get_unused_var_name("__sentinel__", name_var_table)
        if config.DEBUG_ARRAY_OPT == 1:
            print("name_var_table", name_var_table, sentinel_name)

        the_array = args[0]

        if config.DEBUG_ARRAY_OPT == 1:
            print("_stencil_wrapper", return_type, return_type.dtype,
                                      type(return_type.dtype), args)
            ir_utils.dump_blocks(kernel_copy.blocks)

        # We generate a Numba function to execute this stencil and here
        # create the unique name of this function.
        stencil_func_name = "__numba_stencil_%s_%s" % (
                                        hex(id(the_array)).replace("-", "_"),
                                        self.id)

        # We will put a loop nest in the generated function for each
        # dimension in the input array.  Here we create the name for
        # the index variable for each dimension.  index0, index1, ...
        index_vars = []
        for i in range(the_array.ndim):
            index_var_name = ir_utils.get_unused_var_name("index" + str(i),
                                                          name_var_table)
            index_vars += [index_var_name]

        # Create extra signature for out and neighborhood.
        out_name = ir_utils.get_unused_var_name("out", name_var_table)
        neighborhood_name = ir_utils.get_unused_var_name("neighborhood",
                                                         name_var_table)
        sig_extra = ""
        if result is not None:
            sig_extra += ", {}=None".format(out_name)
        if "neighborhood" in dict(self.kws):
            sig_extra += ", {}=None".format(neighborhood_name)

        # Get a list of the standard indexed array names.
        standard_indexed = self.options.get("standard_indexing", [])

        if first_arg in standard_indexed:
            raise ValueError("The first argument to a stencil kernel must "
                             "use relative indexing, not standard indexing.")

        if len(set(standard_indexed) - set(kernel_copy.arg_names)) != 0:
            raise ValueError("Standard indexing requested for an array name "
                             "not present in the stencil kernel definition.")

        # Add index variables to getitems in the IR to transition the accesses
        # in the kernel from relative to regular Python indexing.  Returns the
        # computed size of the stencil kernel and a list of the relatively indexed
        # arrays.
        kernel_size, relatively_indexed = self.add_indices_to_kernel(
                kernel_copy, index_vars, the_array.ndim,
                self.neighborhood, standard_indexed)
        if self.neighborhood is None:
            self.neighborhood = kernel_size

        if config.DEBUG_ARRAY_OPT == 1:
            print("After add_indices_to_kernel")
            ir_utils.dump_blocks(kernel_copy.blocks)

        # The return in the stencil kernel becomes a setitem for that
        # particular point in the iteration space.
        ret_blocks = self.replace_return_with_setitem(kernel_copy.blocks,
                                                      index_vars, out_name)

        if config.DEBUG_ARRAY_OPT == 1:
            print("After replace_return_with_setitem", ret_blocks)
            ir_utils.dump_blocks(kernel_copy.blocks)

        # Start to form the new function to execute the stencil kernel.
        func_text = "def {}({}{}):\n".format(stencil_func_name,
                        ",".join(kernel_copy.arg_names), sig_extra)

        # Get loop ranges for each dimension, which could be either int
        # or variable. In the latter case we'll use the extra neighborhood
        # argument to the function.
        ranges = []
        for i in range(the_array.ndim):
            if isinstance(kernel_size[i][0], int):
                lo = kernel_size[i][0]
                hi = kernel_size[i][1]
            else:
                lo = "{}[{}][0]".format(neighborhood_name, i)
                hi = "{}[{}][1]".format(neighborhood_name, i)
            ranges.append((lo, hi))

        # If there are more than one relatively indexed arrays, add a call to
        # a function that will raise an error if any of the relatively indexed
        # arrays are of different size than the first input array.
        if len(relatively_indexed) > 1:
            func_text += "    raise_if_incompatible_array_sizes(" + first_arg
            for other_array in relatively_indexed:
                if other_array != first_arg:
                    func_text += "," + other_array
            func_text += ")\n"

        # Get the shape of the first input array.
        shape_name = ir_utils.get_unused_var_name("full_shape", name_var_table)
        func_text += "    {} = {}.shape\n".format(shape_name, first_arg)


        # If we have to allocate the output array (the out argument was not used)
        # then us numpy.full if the user specified a cval stencil decorator option
        # or np.zeros if they didn't to allocate the array.
        if result is None:
            if "cval" in self.options:
                cval = self.options["cval"]
                if return_type.dtype != typing.typeof.typeof(cval):
                    raise ValueError(
                        "cval type does not match stencil return type.")

                out_init ="{} = np.full({}, {}, dtype=np.{})\n".format(
                            out_name, shape_name, cval, return_type.dtype)

            else:
                out_init ="{} = np.zeros({}, dtype=np.{})\n".format(
                            out_name, shape_name, return_type.dtype)
            func_text += "    " + out_init

        offset = 1
        # Add the loop nests to the new function.
        for i in range(the_array.ndim):
            for j in range(offset):
                func_text += "    "
            # ranges[i][0] is the minimum index used in the i'th dimension
            # but minimum's greater than 0 don't preclude any entry in the array.
            # So, take the minimum of 0 and the minimum index found in the kernel
            # and this will be a negative number (potentially -0).  Then, we do
            # unary - on that to get the positive offset in this dimension whose
            # use is precluded.
            # ranges[i][1] is the maximum of 0 and the observed maximum index
            # in this dimension because negative maximums would not cause us to
            # preclude any entry in the array from being used.
            func_text += ("for {} in range(-min(0,{}),"
                          "{}[{}]-max(0,{})):\n").format(
                            index_vars[i],
                            ranges[i][0],
                            shape_name,
                            i,
                            ranges[i][1])
            offset += 1

        for j in range(offset):
            func_text += "    "
        # Put a sentinel in the code so we can locate it in the IR.  We will
        # remove this sentinel assignment and replace it with the IR for the
        # stencil kernel body.
        func_text += "{} = 0\n".format(sentinel_name)
        func_text += "    return {}\n".format(out_name)

        if config.DEBUG_ARRAY_OPT == 1:
            print("new stencil func text")
            print(func_text)

        # Force the new stencil function into existence.
        exec_(func_text) in globals(), locals()
        stencil_func = eval(stencil_func_name)
        if sigret is not None:
            pysig = utils.pysignature(stencil_func)
            sigret.pysig = pysig
        # Get the IR for the newly created stencil function.
        stencil_ir = compiler.run_frontend(stencil_func)
        ir_utils.remove_dels(stencil_ir.blocks)

        # rename all variables in stencil_ir afresh
        var_table = ir_utils.get_name_var_table(stencil_ir.blocks)
        new_var_dict = {}
        reserved_names = ([sentinel_name, out_name, neighborhood_name,
                           shape_name] + kernel_copy.arg_names + index_vars)
        for name, var in var_table.items():
            if not name in reserved_names:
                new_var_dict[name] = ir_utils.mk_unique_var(name)
        ir_utils.replace_var_names(stencil_ir.blocks, new_var_dict)

        stencil_stub_last_label = max(stencil_ir.blocks.keys()) + 1

        # Shift lables in the kernel copy so they are guaranteed unique
        # and don't conflict with any labels in the stencil_ir.
        kernel_copy.blocks = ir_utils.add_offset_to_labels(
                                kernel_copy.blocks, stencil_stub_last_label)
        new_label = max(kernel_copy.blocks.keys()) + 1
        # Adjust ret_blocks to account for addition of the offset.
        ret_blocks = [x + stencil_stub_last_label for x in ret_blocks]

        if config.DEBUG_ARRAY_OPT == 1:
            print("ret_blocks w/ offsets", ret_blocks, stencil_stub_last_label)
            print("before replace sentinel stencil_ir")
            ir_utils.dump_blocks(stencil_ir.blocks)
            print("before replace sentinel kernel_copy")
            ir_utils.dump_blocks(kernel_copy.blocks)

        # Search all the block in the stencil outline for the sentinel.
        for label, block in stencil_ir.blocks.items():
            for i, inst in enumerate(block.body):
                if (isinstance( inst, ir.Assign) and
                    inst.target.name == sentinel_name):
                    # We found the sentinel assignment.
                    loc = inst.loc
                    scope = block.scope
                    # split block across __sentinel__
                    # A new block is allocated for the statements prior to the
                    # sentinel but the new block maintains the current block
                    # label.
                    prev_block = ir.Block(scope, loc)
                    prev_block.body = block.body[:i]
                    # The current block is used for statements after sentinel.
                    block.body = block.body[i + 1:]
                    # But the current block gets a new label.
                    body_first_label = min(kernel_copy.blocks.keys())

                    # The previous block jumps to the minimum labelled block of
                    # the parfor body.
                    prev_block.append(ir.Jump(body_first_label, loc))
                    # Add all the parfor loop body blocks to the gufunc
                    # function's IR.
                    for (l, b) in kernel_copy.blocks.items():
                        stencil_ir.blocks[l] = b

                    stencil_ir.blocks[new_label] = block
                    stencil_ir.blocks[label] = prev_block
                    # Add a jump from all the blocks that previously contained
                    # a return in the stencil kernel to the block
                    # containing statements after the sentinel.
                    for ret_block in ret_blocks:
                        stencil_ir.blocks[ret_block].append(
                            ir.Jump(new_label, loc))
                    break
            else:
                continue
            break

        stencil_ir.blocks = ir_utils.rename_labels(stencil_ir.blocks)
        ir_utils.remove_dels(stencil_ir.blocks)

        assert(isinstance(the_array, types.Type))
        array_types = args

        new_stencil_param_types = list(array_types)

        if config.DEBUG_ARRAY_OPT == 1:
            print("new_stencil_param_types", new_stencil_param_types)
            ir_utils.dump_blocks(stencil_ir.blocks)

        # Compile the combined stencil function with the replaced loop
        # body in it.
        new_func = compiler.compile_ir(
            self._typingctx,
            self._targetctx,
            stencil_ir,
            new_stencil_param_types,
            None,
            compiler.DEFAULT_FLAGS,
            {})
        return new_func
Beispiel #9
0
    def add_indices_to_kernel(self, kernel, index_names, ndim,
                              neighborhood, standard_indexed):
        """
        Transforms the stencil kernel as specified by the user into one
        that includes each dimension's index variable as part of the getitem
        calls.  So, in effect array[-1] becomes array[index0-1].
        """
        const_dict = {}
        kernel_consts = []

        if config.DEBUG_ARRAY_OPT == 1:
            print("add_indices_to_kernel", ndim, neighborhood)
            ir_utils.dump_blocks(kernel.blocks)

        if neighborhood is None:
            need_to_calc_kernel = True
        else:
            need_to_calc_kernel = False
            if len(neighborhood) != ndim:
                raise ValueError("%d dimensional neighborhood specified for %d " \
                    "dimensional input array" % (len(neighborhood), ndim))

        tuple_table = ir_utils.get_tuple_table(kernel.blocks)

        relatively_indexed = set()

        for block in kernel.blocks.values():
            scope = block.scope
            loc = block.loc
            new_body = []
            for stmt in block.body:
                if (isinstance(stmt, ir.Assign) and
                    isinstance(stmt.value, ir.Const)):
                    if config.DEBUG_ARRAY_OPT == 1:
                        print("remembering in const_dict", stmt.target.name,
                              stmt.value.value)
                    # Remember consts for use later.
                    const_dict[stmt.target.name] = stmt.value.value
                if ((isinstance(stmt, ir.Assign)
                        and isinstance(stmt.value, ir.Expr)
                        and stmt.value.op in ['setitem', 'static_setitem']
                        and stmt.value.value.name in kernel.arg_names) or
                   (isinstance(stmt, ir.SetItem)
                        and stmt.target.name in kernel.arg_names)):
                    raise ValueError("Assignments to arrays passed to stencil " \
                        "kernels is not allowed.")
                if (isinstance(stmt, ir.Assign)
                        and isinstance(stmt.value, ir.Expr)
                        and stmt.value.op in ['getitem', 'static_getitem']
                        and stmt.value.value.name in kernel.arg_names
                        and stmt.value.value.name not in standard_indexed):
                    # We found a getitem from the input array.
                    if stmt.value.op == 'getitem':
                        stmt_index_var = stmt.value.index
                    else:
                        stmt_index_var = stmt.value.index_var
                        # allow static_getitem since rewrite passes are applied
                        #raise ValueError("Unexpected static_getitem in add_indices_to_kernel.")

                    relatively_indexed.add(stmt.value.value.name)

                    # Store the index used after looking up the variable in
                    # the const dictionary.
                    if need_to_calc_kernel:
                        assert hasattr(stmt_index_var, 'name')

                        if stmt_index_var.name in tuple_table:
                            kernel_consts += [tuple_table[stmt_index_var.name]]
                        elif stmt_index_var.name in const_dict:
                            kernel_consts += [const_dict[stmt_index_var.name]]
                        else:
                            raise ValueError("Non-constant specified for "
                                             "stencil kernel index.")

                    if ndim == 1:
                        # Single dimension always has index variable 'index0'.
                        # tmpvar will hold the real index and is computed by
                        # adding the relative offset in stmt.value.index to
                        # the current absolute location in index0.
                        index_var = ir.Var(scope, index_names[0], loc)
                        tmpname = ir_utils.mk_unique_var("stencil_index")
                        tmpvar  = ir.Var(scope, tmpname, loc)
                        acc_call = ir.Expr.binop('+', stmt_index_var,
                                                 index_var, loc)
                        new_body.append(ir.Assign(acc_call, tmpvar, loc))
                        new_body.append(ir.Assign(
                                       ir.Expr.getitem(stmt.value.value,tmpvar,loc),
                                       stmt.target,loc))
                    else:
                        index_vars = []
                        sum_results = []
                        s_index_name = ir_utils.mk_unique_var("stencil_index")
                        s_index_var  = ir.Var(scope, s_index_name, loc)
                        const_index_vars = []
                        ind_stencils = []

                        # Same idea as above but you have to extract
                        # individual elements out of the tuple indexing
                        # expression and add the corresponding index variable
                        # to them and then reconstitute as a tuple that can
                        # index the array.
                        for dim in range(ndim):
                            tmpname = ir_utils.mk_unique_var("const_index")
                            tmpvar  = ir.Var(scope, tmpname, loc)
                            new_body.append(ir.Assign(ir.Const(dim, loc),
                                                      tmpvar, loc))
                            const_index_vars += [tmpvar]
                            index_var = ir.Var(scope, index_names[dim], loc)
                            index_vars += [index_var]

                            tmpname = ir_utils.mk_unique_var("ind_stencil_index")
                            tmpvar  = ir.Var(scope, tmpname, loc)
                            ind_stencils += [tmpvar]
                            getitemname = ir_utils.mk_unique_var("getitem")
                            getitemvar  = ir.Var(scope, getitemname, loc)
                            getitemcall = ir.Expr.getitem(stmt_index_var,
                                                       const_index_vars[dim], loc)
                            new_body.append(ir.Assign(getitemcall, getitemvar, loc))
                            acc_call = ir.Expr.binop('+', getitemvar,
                                                     index_vars[dim], loc)
                            new_body.append(ir.Assign(acc_call, tmpvar, loc))

                        tuple_call = ir.Expr.build_tuple(ind_stencils, loc)
                        new_body.append(ir.Assign(tuple_call, s_index_var, loc))
                        new_body.append(ir.Assign(
                                  ir.Expr.getitem(stmt.value.value,s_index_var,loc),
                                  stmt.target,loc))
                else:
                    new_body.append(stmt)
            block.body = new_body

        if need_to_calc_kernel:
            # Find the size of the kernel by finding the maximum absolute value
            # index used in the kernel specification.
            neighborhood = [[0,0] for _ in range(ndim)]
            if len(kernel_consts) == 0:
                raise ValueError("Stencil kernel with no accesses to "
                                 "relatively indexed arrays.")

            for index in kernel_consts:
                if isinstance(index, tuple) or isinstance(index, list):
                    for i in range(len(index)):
                        te = index[i]
                        if isinstance(te, ir.Var) and te.name in const_dict:
                            te = const_dict[te.name]
                        if isinstance(te, int):
                            neighborhood[i][0] = min(neighborhood[i][0], te)
                            neighborhood[i][1] = max(neighborhood[i][1], te)
                        else:
                            raise ValueError(
                                "Non-constant used as stencil index.")
                    index_len = len(index)
                elif isinstance(index, int):
                    neighborhood[0][0] = min(neighborhood[0][0], index)
                    neighborhood[0][1] = max(neighborhood[0][1], index)
                    index_len = 1
                else:
                    raise ValueError(
                        "Non-tuple or non-integer used as stencil index.")
                if index_len != ndim:
                    raise ValueError(
                        "Stencil index does not match array dimensionality.")

        return (neighborhood, relatively_indexed)