Beispiel #1
0
    def add(self, sig=None, argtypes=None, restype=None):
        # Handle argtypes
        if argtypes is not None:
            warnings.warn("Keyword argument argtypes is deprecated",
                          DeprecationWarning)
            assert sig is None
            if restype is None:
                sig = tuple(argtypes)
            else:
                sig = restype(*argtypes)
        del argtypes
        del restype

        # compile core as device function
        args, return_type = sigutils.normalize_signature(sig)
        devfnsig = signature(return_type, *args)

        funcname = self.pyfunc.__name__
        kernelsource = self._get_kernel_source(self._kernel_template,
                                               devfnsig, funcname)
        corefn, return_type = self._compile_core(devfnsig)
        glbl = self._get_globals(corefn)
        sig = signature(types.void, *([a[:] for a in args] + [return_type[:]]))
        exec_(kernelsource, glbl)

        stager = glbl['__vectorized_%s' % funcname]
        kernel = self._compile_kernel(stager, sig)

        argdtypes = tuple(to_dtype(t) for t in devfnsig.args)
        resdtype = to_dtype(return_type)
        self.kernelmap[tuple(argdtypes)] = resdtype, kernel
Beispiel #2
0
 def _add_offset_to_slice(self, slice_var, offset_var, out_nodes, scope,
                             loc):
     if isinstance(slice_var, slice):
         f_text = """def f(offset):
             return slice({} + offset, {} + offset)
         """.format(slice_var.start, slice_var.stop)
         loc = {}
         exec_(f_text, {}, loc)
         f = loc['f']
         args = [offset_var]
         arg_typs = (types.intp,)
     else:
         def f(old_slice, offset):
             return slice(old_slice.start + offset, old_slice.stop + offset)
         args = [slice_var, offset_var]
         slice_type = self.typemap[slice_var.name]
         arg_typs = (slice_type, types.intp,)
     _globals = self.func_ir.func_id.func.__globals__
     f_ir = compile_to_numba_ir(f, _globals, self.typingctx, arg_typs,
                                 self.typemap, self.calltypes)
     _, block = f_ir.blocks.popitem()
     replace_arg_nodes(block, args)
     new_index = block.body[-2].value.value
     out_nodes.extend(block.body[:-2])  # ignore return nodes
     return new_index
Beispiel #3
0
    def add(self, sig=None, argtypes=None, restype=None):
        # Handle argtypes
        if argtypes is not None:
            warnings.warn("Keyword argument argtypes is deprecated",
                          DeprecationWarning)
            assert sig is None
            if restype is None:
                sig = tuple(argtypes)
            else:
                sig = restype(*argtypes)
        del argtypes
        del restype

        indims = [len(x) for x in self.inputsig]
        outdims = [len(x) for x in self.outputsig]
        args, return_type = sigutils.normalize_signature(sig)

        funcname = self.py_func.__name__
        src = expand_gufunc_template(self._kernel_template, indims,
                                     outdims, funcname, args)

        glbls = self._get_globals(sig)

        exec_(src, glbls)
        fnobj = glbls['__gufunc_{name}'.format(name=funcname)]

        outertys = list(_determine_gufunc_outer_types(args, indims + outdims))
        kernel = self._compile_kernel(fnobj, sig=tuple(outertys))

        dtypes = tuple(np.dtype(str(t.dtype)) for t in outertys)
        self.kernelmap[tuple(dtypes[:-1])] = dtypes[-1], kernel
Beispiel #4
0
    def add(self, sig=None, argtypes=None, restype=None):
        # Handle argtypes
        if argtypes is not None:
            warnings.warn("Keyword argument argtypes is deprecated",
                          DeprecationWarning)
            assert sig is None
            if restype is None:
                sig = tuple(argtypes)
            else:
                sig = restype(*argtypes)
        del argtypes
        del restype

        # compile core as device function
        args, return_type = sigutils.normalize_signature(sig)
        devfnsig = signature(return_type, *args)

        funcname = self.pyfunc.__name__
        kernelsource = self._get_kernel_source(self._kernel_template, devfnsig,
                                               funcname)
        corefn, return_type = self._compile_core(devfnsig)
        glbl = self._get_globals(corefn)
        sig = signature(types.void, *([a[:] for a in args] + [return_type[:]]))
        exec_(kernelsource, glbl)

        stager = glbl['__vectorized_%s' % funcname]
        kernel = self._compile_kernel(stager, sig)

        argdtypes = tuple(to_dtype(t) for t in devfnsig.args)
        resdtype = to_dtype(return_type)
        self.kernelmap[tuple(argdtypes)] = resdtype, kernel
Beispiel #5
0
    def add(self, sig=None, argtypes=None, restype=None):
        # Handle argtypes
        if argtypes is not None:
            warnings.warn("Keyword argument argtypes is deprecated",
                          DeprecationWarning)
            assert sig is None
            if restype is None:
                sig = tuple(argtypes)
            else:
                sig = restype(*argtypes)
        del argtypes
        del restype

        indims = [len(x) for x in self.inputsig]
        outdims = [len(x) for x in self.outputsig]
        args, return_type = sigutils.normalize_signature(sig)

        funcname = self.py_func.__name__
        src = expand_gufunc_template(self._kernel_template, indims, outdims,
                                     funcname, args)

        glbls = self._get_globals(sig)

        exec_(src, glbls)
        fnobj = glbls['__gufunc_{name}'.format(name=funcname)]

        outertys = list(_determine_gufunc_outer_types(args, indims + outdims))
        kernel = self._compile_kernel(fnobj, sig=tuple(outertys))

        dtypes = tuple(np.dtype(str(t.dtype)) for t in outertys)
        self.kernelmap[tuple(dtypes[:-1])] = dtypes[-1], kernel
Beispiel #6
0
def process_input_files(inputs):
    """
    Read input source files for execution of legacy @export / @exportmany
    decorators.
    """
    for ifile in inputs:
        with open(ifile) as fin:
            exec_(compile(fin.read(), ifile, 'exec'))
Beispiel #7
0
def _generate_property(field, template, fname):
    """
    Generate simple function that get/set a field of the instance
    """
    source = template.format(field)
    glbls = {}
    exec_(source, glbls)
    return njit(glbls[fname])
Beispiel #8
0
def _generate_property(field, template, fname):
    """
    Generate simple function that get/set a field of the instance
    """
    source = template.format(field)
    glbls = {}
    exec_(source, glbls)
    return njit(glbls[fname])
Beispiel #9
0
def process_input_files(inputs):
    """
    Read input source files for execution of legacy @export / @exportmany
    decorators.
    """
    for ifile in inputs:
        with open(ifile) as fin:
            exec_(compile(fin.read(), ifile, 'exec'))
Beispiel #10
0
 def create_f(self):
     code = """
     def f(x):
         n = x.shape[0]
         for i in range(n):
             x[i] = 1.
     """
     d = {}
     exec_(code.strip(), d)
     self.f.append(numba.jit("void(f8[:])", nopython=True)(d['f']))
Beispiel #11
0
 def _set_init(cls):
     """
     Generate a wrapper for calling the constructor from pure Python.
     Note the wrapper will only accept positional arguments.
     """
     ctor_source = _ctor_template
     glbls = {"__numba_cls_": cls}
     exec_(ctor_source, glbls)
     ctor = glbls['ctor']
     cls._ctor = njit(ctor)
Beispiel #12
0
 def _set_init(cls):
     """
     Generate a wrapper for calling the constructor from pure Python.
     Note the wrapper will only accept positional arguments.
     """
     ctor_source = _ctor_template
     glbls = {"__numba_cls_": cls}
     exec_(ctor_source, glbls)
     ctor = glbls['ctor']
     cls._ctor = njit(ctor)
def _get_dyn_func(**jit_args):
    code = """
        def dyn_func(x):
            res = 0
            for i in range(x):
                res += x
            return res
        """
    ns = {}
    exec_(code.strip(), ns)
    return jit(**jit_args)(ns['dyn_func'])
Beispiel #14
0
def _get_dyn_func(**jit_args):
    code = """
        def dyn_func(x):
            res = 0
            for i in range(x):
                res += x
            return res
        """
    ns = {}
    exec_(code.strip(), ns)
    return jit(**jit_args)(ns['dyn_func'])
Beispiel #15
0
 def _set_init(cls):
     # make ctor
     init = cls.class_type.instance_type.methods['__init__']
     argspec = inspect.getargspec(init)
     assert not argspec.varargs, 'varargs not supported'
     assert not argspec.keywords, 'keywords not supported'
     assert not argspec.defaults, 'defaults not supported'
     args = ', '.join(argspec.args[1:])
     ctor_source = _ctor_template.format(args=args)
     glbls = {"__numba_cls_": cls}
     exec_(ctor_source, glbls)
     ctor = glbls['ctor']
     cls._ctor = njit(ctor)
Beispiel #16
0
 def _set_init(cls):
     # make ctor
     init = cls.class_type.instance_type.methods['__init__']
     argspec = inspect.getargspec(init)
     assert not argspec.varargs, 'varargs not supported'
     assert not argspec.keywords, 'keywords not supported'
     assert not argspec.defaults, 'defaults not supported'
     args = ', '.join(argspec.args[1:])
     ctor_source = _ctor_template.format(args=args)
     glbls = {"__numba_cls_": cls}
     exec_(ctor_source, glbls)
     ctor = glbls['ctor']
     cls._ctor = njit(ctor)
Beispiel #17
0
Datei: base.py Projekt: esc/numba
 def _set_init(cls):
     """
     Generate a wrapper for calling the constructor from pure Python.
     Note the wrapper will only accept positional arguments.
     """
     init = cls.class_type.instance_type.methods['__init__']
     # get postitional and keyword arguments
     # offset by one to exclude the `self` arg
     args = _getargs(init)[1:]
     ctor_source = _ctor_template.format(args=', '.join(args))
     glbls = {"__numba_cls_": cls}
     exec_(ctor_source, glbls)
     ctor = glbls['ctor']
     cls._ctor = njit(ctor)
Beispiel #18
0
 def _set_init(cls):
     """
     Generate a wrapper for calling the constructor from pure Python.
     Note the wrapper will only accept positional arguments.
     """
     init = cls.class_type.instance_type.methods['__init__']
     # get postitional and keyword arguments
     # offset by one to exclude the `self` arg
     args = _getargs(init)[1:]
     ctor_source = _ctor_template.format(args=', '.join(args))
     glbls = {"__numba_cls_": cls}
     exec_(ctor_source, glbls)
     ctor = glbls['ctor']
     cls._ctor = njit(ctor)
Beispiel #19
0
def _generate_method(name, func):
    """
    Generate a wrapper for calling a method.  Note the wrapper will only
    accept positional arguments.
    """
    source = _method_code_template.format(method=name)
    glbls = {}
    exec_(source, glbls)
    method = njit(glbls['method'])

    @wraps(func)
    def wrapper(*args, **kwargs):
        return method(*args, **kwargs)

    return wrapper
Beispiel #20
0
def _generate_method(name, func):
    """
    Generate a wrapper for calling a method.  Note the wrapper will only
    accept positional arguments.
    """
    source = _method_code_template.format(method=name)
    glbls = {}
    exec_(source, glbls)
    method = njit(glbls['method'])

    @wraps(func)
    def wrapper(*args, **kwargs):
        return method(*args, **kwargs)

    return wrapper
Beispiel #21
0
    def test_inner_function_with_closure_3(self):

        code = """
            def outer(x):
                y = x + 1
                z = 0

                def inner(x):
                    nonlocal z
                    z += x * x
                    return z + y

                return inner(x) + inner(x) + z
        """
        ns = {}
        exec_(code.strip(), ns)

        cfunc = njit(ns['outer'])
        self.assertEqual(cfunc(10), ns['outer'](10))
Beispiel #22
0
    def test_inner_function_with_closure_3(self):

        code = """
            def outer(x):
                y = x + 1
                z = 0

                def inner(x):
                    nonlocal z
                    z += x * x
                    return z + y

                return inner(x) + inner(x) + z
        """
        ns = {}
        exec_(code.strip(), ns)

        cfunc = njit(ns['outer'])
        self.assertEqual(cfunc(10), ns['outer'](10))
Beispiel #23
0
def _generate_method(name, func):
    """
    Generate a wrapper for calling a method
    """
    argspec = inspect.getargspec(func)
    assert not argspec.varargs, 'varargs not supported'
    assert not argspec.keywords, 'keywords not supported'
    assert not argspec.defaults, 'defaults not supported'

    args = ', '.join(argspec.args[1:])  # skipped self arg
    source = _method_code_template.format(method=name, args=args)
    glbls = {}
    exec_(source, glbls)
    method = njit(glbls['method'])

    @wraps(func)
    def wrapper(*args, **kwargs):
        return method(*args, **kwargs)

    return wrapper
Beispiel #24
0
    def _type_me(self, argtys, kwtys):
        """
        Implement AbstractTemplate.generic() for the typing class
        built by StencilFunc._install_type().
        Return the call-site signature.
        """
        if (self.neighborhood is not None
                and len(self.neighborhood) != argtys[0].ndim):
            raise ValueError("%d dimensional neighborhood specified "
                             "for %d dimensional input array" %
                             (len(self.neighborhood), argtys[0].ndim))

        argtys_extra = argtys
        sig_extra = ""
        result = None
        if 'out' in kwtys:
            argtys_extra += (kwtys['out'], )
            sig_extra += ", out=None"
            result = kwtys['out']

        if 'neighborhood' in kwtys:
            argtys_extra += (kwtys['neighborhood'], )
            sig_extra += ", neighborhood=None"

        # look in the type cache first
        if argtys_extra in self._type_cache:
            (_sig, _, _, _) = self._type_cache[argtys_extra]
            return _sig

        (real_ret, typemap, calltypes) = self.get_return_type(argtys)
        sig = signature(real_ret, *argtys_extra)
        dummy_text = ("def __numba_dummy_stencil({}{}):\n    pass\n".format(
            ",".join(self.kernel_ir.arg_names), sig_extra))
        exec_(dummy_text) in globals(), locals()
        dummy_func = eval("__numba_dummy_stencil")
        sig.pysig = utils.pysignature(dummy_func)
        self._targetctx.insert_func_defn([(self._lower_me, self, argtys_extra)
                                          ])
        self._type_cache[argtys_extra] = (sig, result, typemap, calltypes)
        return sig
Beispiel #25
0
def combo_svml_usecase(dtype, mode, vlen, flags):
    """ Combine multiple function calls under single umbrella usecase """

    name = usecase_name(dtype, mode, vlen, flags)
    body = """def {name}(n):
        ret = np.empty(n*8, dtype=np.{dtype})
        x   = np.empty(n*8, dtype=np.{dtype})\n""".format(**locals())
    funcs = numpy_funcs if mode == "numpy" else other_funcs
    contains = []
    avoids = []
    # fill body and expectatation patterns
    for f in funcs:
        b, c, a = func_patterns(f, ['x'], 'ret', dtype, mode, vlen, flags)
        avoids += a
        body += b
        contains += c
    body += " "*8 + "return ret"
    # now compile and return it along with its body in __doc__  and patterns
    ldict = {}
    exec_(body, globals(), ldict)
    ldict[name].__doc__ = body
    return ldict[name], contains, avoids
Beispiel #26
0
    def _type_me(self, argtys, kwtys):
        """
        Implement AbstractTemplate.generic() for the typing class
        built by StencilFunc._install_type().
        Return the call-site signature.
        """
        if (self.neighborhood is not None and
            len(self.neighborhood) != argtys[0].ndim):
            raise ValueError("%d dimensional neighborhood specified "
                             "for %d dimensional input array" %
                             (len(self.neighborhood), argtys[0].ndim))

        argtys_extra = argtys
        sig_extra = ""
        result = None
        if 'out' in kwtys:
            argtys_extra += (kwtys['out'],)
            sig_extra += ", out=None"
            result = kwtys['out']

        if 'neighborhood' in kwtys:
            argtys_extra += (kwtys['neighborhood'],)
            sig_extra += ", neighborhood=None"

        # look in the type cache first
        if argtys_extra in self._type_cache:
            (_sig, _, _, _) = self._type_cache[argtys_extra]
            return _sig

        (real_ret, typemap, calltypes) = self.get_return_type(argtys)
        sig = signature(real_ret, *argtys_extra)
        dummy_text = ("def __numba_dummy_stencil({}{}):\n    pass\n".format(
                        ",".join(self.kernel_ir.arg_names), sig_extra))
        exec_(dummy_text) in globals(), locals()
        dummy_func = eval("__numba_dummy_stencil")
        sig.pysig = utils.pysignature(dummy_func)
        self._targetctx.insert_func_defn([(self._lower_me, self, argtys_extra)])
        self._type_cache[argtys_extra] = (sig, result, typemap, calltypes)
        return sig
def combo_svml_usecase(dtype, mode, vlen, flags):
    """ Combine multiple function calls under single umbrella usecase """

    name = usecase_name(dtype, mode, vlen, flags)
    body = """def {name}(n):
        x   = np.empty(n*8, dtype=np.{dtype})
        ret = np.empty_like(x)\n""".format(**locals())
    funcs = set(numpy_funcs if mode == "numpy" else other_funcs)
    if dtype.startswith('complex'):
        funcs = funcs.difference(complex_funcs_exclude)
    contains = set()
    avoids = set()
    # fill body and expectation patterns
    for f in funcs:
        b, c, a = func_patterns(f, ['x'], 'ret', dtype, mode, vlen, flags)
        avoids.update(a)
        body += b
        contains.update(c)
    body += " "*8 + "return ret"
    # now compile and return it along with its body in __doc__  and patterns
    ldict = {}
    exec_(body, globals(), ldict)
    ldict[name].__doc__ = body
    return ldict[name], contains, avoids
 def make_testcase(self, src, fname):
     glb = {}
     exec_(src, glb)
     fn = glb[fname]
     return fn
Beispiel #29
0
    def _stencil_wrapper(self, result, sigret, return_type, typemap, calltypes, *args):
        # Overall approach:
        # 1) Construct a string containing a function definition for the stencil function
        #    that will execute the stencil kernel.  This function definition includes a
        #    unique stencil function name, the parameters to the stencil kernel, loop
        #    nests across the dimenions of the input array.  Those loop nests use the
        #    computed stencil kernel size so as not to try to compute elements where
        #    elements outside the bounds of the input array would be needed.
        # 2) The but of the loop nest in this new function is a special sentinel
        #    assignment.
        # 3) Get the IR of this new function.
        # 4) Split the block containing the sentinel assignment and remove the sentinel
        #    assignment.  Insert the stencil kernel IR into the stencil function IR
        #    after label and variable renaming of the stencil kernel IR to prevent
        #    conflicts with the stencil function IR.
        # 5) Compile the combined stencil function IR + stencil kernel IR into existence.

        # Copy the kernel so that our changes for this callsite
        # won't effect other callsites.
        (kernel_copy, copy_calltypes) = self.copy_ir_with_calltypes(
                                            self.kernel_ir, calltypes)
        # The stencil kernel body becomes the body of a loop, for which args aren't needed.
        ir_utils.remove_args(kernel_copy.blocks)
        first_arg = kernel_copy.arg_names[0]

        in_cps, out_cps = ir_utils.copy_propagate(kernel_copy.blocks, typemap)
        name_var_table = ir_utils.get_name_var_table(kernel_copy.blocks)
        ir_utils.apply_copy_propagate(
            kernel_copy.blocks,
            in_cps,
            name_var_table,
            typemap,
            copy_calltypes)

        if "out" in name_var_table:
            raise ValueError("Cannot use the reserved word 'out' in stencil kernels.")

        sentinel_name = ir_utils.get_unused_var_name("__sentinel__", name_var_table)
        if config.DEBUG_ARRAY_OPT == 1:
            print("name_var_table", name_var_table, sentinel_name)

        the_array = args[0]

        if config.DEBUG_ARRAY_OPT == 1:
            print("_stencil_wrapper", return_type, return_type.dtype,
                                      type(return_type.dtype), args)
            ir_utils.dump_blocks(kernel_copy.blocks)

        # We generate a Numba function to execute this stencil and here
        # create the unique name of this function.
        stencil_func_name = "__numba_stencil_%s_%s" % (
                                        hex(id(the_array)).replace("-", "_"),
                                        self.id)

        # We will put a loop nest in the generated function for each
        # dimension in the input array.  Here we create the name for
        # the index variable for each dimension.  index0, index1, ...
        index_vars = []
        for i in range(the_array.ndim):
            index_var_name = ir_utils.get_unused_var_name("index" + str(i),
                                                          name_var_table)
            index_vars += [index_var_name]

        # Create extra signature for out and neighborhood.
        out_name = ir_utils.get_unused_var_name("out", name_var_table)
        neighborhood_name = ir_utils.get_unused_var_name("neighborhood",
                                                         name_var_table)
        sig_extra = ""
        if result is not None:
            sig_extra += ", {}=None".format(out_name)
        if "neighborhood" in dict(self.kws):
            sig_extra += ", {}=None".format(neighborhood_name)

        # Get a list of the standard indexed array names.
        standard_indexed = self.options.get("standard_indexing", [])

        if first_arg in standard_indexed:
            raise ValueError("The first argument to a stencil kernel must "
                             "use relative indexing, not standard indexing.")

        if len(set(standard_indexed) - set(kernel_copy.arg_names)) != 0:
            raise ValueError("Standard indexing requested for an array name "
                             "not present in the stencil kernel definition.")

        # Add index variables to getitems in the IR to transition the accesses
        # in the kernel from relative to regular Python indexing.  Returns the
        # computed size of the stencil kernel and a list of the relatively indexed
        # arrays.
        kernel_size, relatively_indexed = self.add_indices_to_kernel(
                kernel_copy, index_vars, the_array.ndim,
                self.neighborhood, standard_indexed)
        if self.neighborhood is None:
            self.neighborhood = kernel_size

        if config.DEBUG_ARRAY_OPT == 1:
            print("After add_indices_to_kernel")
            ir_utils.dump_blocks(kernel_copy.blocks)

        # The return in the stencil kernel becomes a setitem for that
        # particular point in the iteration space.
        ret_blocks = self.replace_return_with_setitem(kernel_copy.blocks,
                                                      index_vars, out_name)

        if config.DEBUG_ARRAY_OPT == 1:
            print("After replace_return_with_setitem", ret_blocks)
            ir_utils.dump_blocks(kernel_copy.blocks)

        # Start to form the new function to execute the stencil kernel.
        func_text = "def {}({}{}):\n".format(stencil_func_name,
                        ",".join(kernel_copy.arg_names), sig_extra)

        # Get loop ranges for each dimension, which could be either int
        # or variable. In the latter case we'll use the extra neighborhood
        # argument to the function.
        ranges = []
        for i in range(the_array.ndim):
            if isinstance(kernel_size[i][0], int):
                lo = kernel_size[i][0]
                hi = kernel_size[i][1]
            else:
                lo = "{}[{}][0]".format(neighborhood_name, i)
                hi = "{}[{}][1]".format(neighborhood_name, i)
            ranges.append((lo, hi))

        # If there are more than one relatively indexed arrays, add a call to
        # a function that will raise an error if any of the relatively indexed
        # arrays are of different size than the first input array.
        if len(relatively_indexed) > 1:
            func_text += "    raise_if_incompatible_array_sizes(" + first_arg
            for other_array in relatively_indexed:
                if other_array != first_arg:
                    func_text += "," + other_array
            func_text += ")\n"

        # Get the shape of the first input array.
        shape_name = ir_utils.get_unused_var_name("full_shape", name_var_table)
        func_text += "    {} = {}.shape\n".format(shape_name, first_arg)


        # If we have to allocate the output array (the out argument was not used)
        # then us numpy.full if the user specified a cval stencil decorator option
        # or np.zeros if they didn't to allocate the array.
        if result is None:
            if "cval" in self.options:
                cval = self.options["cval"]
                if return_type.dtype != typing.typeof.typeof(cval):
                    raise ValueError(
                        "cval type does not match stencil return type.")

                out_init ="{} = np.full({}, {}, dtype=np.{})\n".format(
                            out_name, shape_name, cval, return_type.dtype)

            else:
                out_init ="{} = np.zeros({}, dtype=np.{})\n".format(
                            out_name, shape_name, return_type.dtype)
            func_text += "    " + out_init

        offset = 1
        # Add the loop nests to the new function.
        for i in range(the_array.ndim):
            for j in range(offset):
                func_text += "    "
            # ranges[i][0] is the minimum index used in the i'th dimension
            # but minimum's greater than 0 don't preclude any entry in the array.
            # So, take the minimum of 0 and the minimum index found in the kernel
            # and this will be a negative number (potentially -0).  Then, we do
            # unary - on that to get the positive offset in this dimension whose
            # use is precluded.
            # ranges[i][1] is the maximum of 0 and the observed maximum index
            # in this dimension because negative maximums would not cause us to
            # preclude any entry in the array from being used.
            func_text += ("for {} in range(-min(0,{}),"
                          "{}[{}]-max(0,{})):\n").format(
                            index_vars[i],
                            ranges[i][0],
                            shape_name,
                            i,
                            ranges[i][1])
            offset += 1

        for j in range(offset):
            func_text += "    "
        # Put a sentinel in the code so we can locate it in the IR.  We will
        # remove this sentinel assignment and replace it with the IR for the
        # stencil kernel body.
        func_text += "{} = 0\n".format(sentinel_name)
        func_text += "    return {}\n".format(out_name)

        if config.DEBUG_ARRAY_OPT == 1:
            print("new stencil func text")
            print(func_text)

        # Force the new stencil function into existence.
        exec_(func_text) in globals(), locals()
        stencil_func = eval(stencil_func_name)
        if sigret is not None:
            pysig = utils.pysignature(stencil_func)
            sigret.pysig = pysig
        # Get the IR for the newly created stencil function.
        stencil_ir = compiler.run_frontend(stencil_func)
        ir_utils.remove_dels(stencil_ir.blocks)

        # rename all variables in stencil_ir afresh
        var_table = ir_utils.get_name_var_table(stencil_ir.blocks)
        new_var_dict = {}
        reserved_names = ([sentinel_name, out_name, neighborhood_name,
                           shape_name] + kernel_copy.arg_names + index_vars)
        for name, var in var_table.items():
            if not name in reserved_names:
                new_var_dict[name] = ir_utils.mk_unique_var(name)
        ir_utils.replace_var_names(stencil_ir.blocks, new_var_dict)

        stencil_stub_last_label = max(stencil_ir.blocks.keys()) + 1

        # Shift lables in the kernel copy so they are guaranteed unique
        # and don't conflict with any labels in the stencil_ir.
        kernel_copy.blocks = ir_utils.add_offset_to_labels(
                                kernel_copy.blocks, stencil_stub_last_label)
        new_label = max(kernel_copy.blocks.keys()) + 1
        # Adjust ret_blocks to account for addition of the offset.
        ret_blocks = [x + stencil_stub_last_label for x in ret_blocks]

        if config.DEBUG_ARRAY_OPT == 1:
            print("ret_blocks w/ offsets", ret_blocks, stencil_stub_last_label)
            print("before replace sentinel stencil_ir")
            ir_utils.dump_blocks(stencil_ir.blocks)
            print("before replace sentinel kernel_copy")
            ir_utils.dump_blocks(kernel_copy.blocks)

        # Search all the block in the stencil outline for the sentinel.
        for label, block in stencil_ir.blocks.items():
            for i, inst in enumerate(block.body):
                if (isinstance( inst, ir.Assign) and
                    inst.target.name == sentinel_name):
                    # We found the sentinel assignment.
                    loc = inst.loc
                    scope = block.scope
                    # split block across __sentinel__
                    # A new block is allocated for the statements prior to the
                    # sentinel but the new block maintains the current block
                    # label.
                    prev_block = ir.Block(scope, loc)
                    prev_block.body = block.body[:i]
                    # The current block is used for statements after sentinel.
                    block.body = block.body[i + 1:]
                    # But the current block gets a new label.
                    body_first_label = min(kernel_copy.blocks.keys())

                    # The previous block jumps to the minimum labelled block of
                    # the parfor body.
                    prev_block.append(ir.Jump(body_first_label, loc))
                    # Add all the parfor loop body blocks to the gufunc
                    # function's IR.
                    for (l, b) in kernel_copy.blocks.items():
                        stencil_ir.blocks[l] = b

                    stencil_ir.blocks[new_label] = block
                    stencil_ir.blocks[label] = prev_block
                    # Add a jump from all the blocks that previously contained
                    # a return in the stencil kernel to the block
                    # containing statements after the sentinel.
                    for ret_block in ret_blocks:
                        stencil_ir.blocks[ret_block].append(
                            ir.Jump(new_label, loc))
                    break
            else:
                continue
            break

        stencil_ir.blocks = ir_utils.rename_labels(stencil_ir.blocks)
        ir_utils.remove_dels(stencil_ir.blocks)

        assert(isinstance(the_array, types.Type))
        array_types = args

        new_stencil_param_types = list(array_types)

        if config.DEBUG_ARRAY_OPT == 1:
            print("new_stencil_param_types", new_stencil_param_types)
            ir_utils.dump_blocks(stencil_ir.blocks)

        # Compile the combined stencil function with the replaced loop
        # body in it.
        new_func = compiler.compile_ir(
            self._typingctx,
            self._targetctx,
            stencil_ir,
            new_stencil_param_types,
            None,
            compiler.DEFAULT_FLAGS,
            {})
        return new_func
Beispiel #30
0
    def _stencil_wrapper(self, result, sigret, return_type, typemap, calltypes,
                         *args):
        # Overall approach:
        # 1) Construct a string containing a function definition for the stencil function
        #    that will execute the stencil kernel.  This function definition includes a
        #    unique stencil function name, the parameters to the stencil kernel, loop
        #    nests across the dimenions of the input array.  Those loop nests use the
        #    computed stencil kernel size so as not to try to compute elements where
        #    elements outside the bounds of the input array would be needed.
        # 2) The but of the loop nest in this new function is a special sentinel
        #    assignment.
        # 3) Get the IR of this new function.
        # 4) Split the block containing the sentinel assignment and remove the sentinel
        #    assignment.  Insert the stencil kernel IR into the stencil function IR
        #    after label and variable renaming of the stencil kernel IR to prevent
        #    conflicts with the stencil function IR.
        # 5) Compile the combined stencil function IR + stencil kernel IR into existence.

        # Copy the kernel so that our changes for this callsite
        # won't effect other callsites.
        (kernel_copy,
         copy_calltypes) = self.copy_ir_with_calltypes(self.kernel_ir,
                                                       calltypes)
        # The stencil kernel body becomes the body of a loop, for which args aren't needed.
        ir_utils.remove_args(kernel_copy.blocks)
        first_arg = kernel_copy.arg_names[0]

        in_cps, out_cps = ir_utils.copy_propagate(kernel_copy.blocks, typemap)
        name_var_table = ir_utils.get_name_var_table(kernel_copy.blocks)
        ir_utils.apply_copy_propagate(kernel_copy.blocks, in_cps,
                                      name_var_table, typemap, copy_calltypes)

        if "out" in name_var_table:
            raise ValueError(
                "Cannot use the reserved word 'out' in stencil kernels.")

        sentinel_name = ir_utils.get_unused_var_name("__sentinel__",
                                                     name_var_table)
        if config.DEBUG_ARRAY_OPT == 1:
            print("name_var_table", name_var_table, sentinel_name)

        the_array = args[0]

        if config.DEBUG_ARRAY_OPT == 1:
            print("_stencil_wrapper", return_type, return_type.dtype,
                  type(return_type.dtype), args)
            ir_utils.dump_blocks(kernel_copy.blocks)

        # We generate a Numba function to execute this stencil and here
        # create the unique name of this function.
        stencil_func_name = "__numba_stencil_%s_%s" % (hex(
            id(the_array)).replace("-", "_"), self.id)

        # We will put a loop nest in the generated function for each
        # dimension in the input array.  Here we create the name for
        # the index variable for each dimension.  index0, index1, ...
        index_vars = []
        for i in range(the_array.ndim):
            index_var_name = ir_utils.get_unused_var_name(
                "index" + str(i), name_var_table)
            index_vars += [index_var_name]

        # Create extra signature for out and neighborhood.
        out_name = ir_utils.get_unused_var_name("out", name_var_table)
        neighborhood_name = ir_utils.get_unused_var_name(
            "neighborhood", name_var_table)
        sig_extra = ""
        if result is not None:
            sig_extra += ", {}=None".format(out_name)
        if "neighborhood" in dict(self.kws):
            sig_extra += ", {}=None".format(neighborhood_name)

        # Get a list of the standard indexed array names.
        standard_indexed = self.options.get("standard_indexing", [])

        if first_arg in standard_indexed:
            raise ValueError("The first argument to a stencil kernel must "
                             "use relative indexing, not standard indexing.")

        if len(set(standard_indexed) - set(kernel_copy.arg_names)) != 0:
            raise ValueError("Standard indexing requested for an array name "
                             "not present in the stencil kernel definition.")

        # Add index variables to getitems in the IR to transition the accesses
        # in the kernel from relative to regular Python indexing.  Returns the
        # computed size of the stencil kernel and a list of the relatively indexed
        # arrays.
        kernel_size, relatively_indexed = self.add_indices_to_kernel(
            kernel_copy, index_vars, the_array.ndim, self.neighborhood,
            standard_indexed)
        if self.neighborhood is None:
            self.neighborhood = kernel_size

        if config.DEBUG_ARRAY_OPT == 1:
            print("After add_indices_to_kernel")
            ir_utils.dump_blocks(kernel_copy.blocks)

        # The return in the stencil kernel becomes a setitem for that
        # particular point in the iteration space.
        ret_blocks = self.replace_return_with_setitem(kernel_copy.blocks,
                                                      index_vars, out_name)

        if config.DEBUG_ARRAY_OPT == 1:
            print("After replace_return_with_setitem", ret_blocks)
            ir_utils.dump_blocks(kernel_copy.blocks)

        # Start to form the new function to execute the stencil kernel.
        func_text = "def {}({}{}):\n".format(stencil_func_name,
                                             ",".join(kernel_copy.arg_names),
                                             sig_extra)

        # Get loop ranges for each dimension, which could be either int
        # or variable. In the latter case we'll use the extra neighborhood
        # argument to the function.
        ranges = []
        for i in range(the_array.ndim):
            if isinstance(kernel_size[i][0], int):
                lo = kernel_size[i][0]
                hi = kernel_size[i][1]
            else:
                lo = "{}[{}][0]".format(neighborhood_name, i)
                hi = "{}[{}][1]".format(neighborhood_name, i)
            ranges.append((lo, hi))

        # If there are more than one relatively indexed arrays, add a call to
        # a function that will raise an error if any of the relatively indexed
        # arrays are of different size than the first input array.
        if len(relatively_indexed) > 1:
            func_text += "    raise_if_incompatible_array_sizes(" + first_arg
            for other_array in relatively_indexed:
                if other_array != first_arg:
                    func_text += "," + other_array
            func_text += ")\n"

        # Get the shape of the first input array.
        shape_name = ir_utils.get_unused_var_name("full_shape", name_var_table)
        func_text += "    {} = {}.shape\n".format(shape_name, first_arg)

        # If we have to allocate the output array (the out argument was not used)
        # then us numpy.full if the user specified a cval stencil decorator option
        # or np.zeros if they didn't to allocate the array.
        if result is None:
            return_type_name = numpy_support.as_dtype(
                return_type.dtype).type.__name__
            if "cval" in self.options:
                cval = self.options["cval"]
                if return_type.dtype != typing.typeof.typeof(cval):
                    raise ValueError(
                        "cval type does not match stencil return type.")
                out_init = "{} = np.full({}, {}, dtype=np.{})\n".format(
                    out_name, shape_name, cval, return_type_name)
            else:
                out_init = "{} = np.zeros({}, dtype=np.{})\n".format(
                    out_name, shape_name, return_type_name)
            func_text += "    " + out_init

        offset = 1
        # Add the loop nests to the new function.
        for i in range(the_array.ndim):
            for j in range(offset):
                func_text += "    "
            # ranges[i][0] is the minimum index used in the i'th dimension
            # but minimum's greater than 0 don't preclude any entry in the array.
            # So, take the minimum of 0 and the minimum index found in the kernel
            # and this will be a negative number (potentially -0).  Then, we do
            # unary - on that to get the positive offset in this dimension whose
            # use is precluded.
            # ranges[i][1] is the maximum of 0 and the observed maximum index
            # in this dimension because negative maximums would not cause us to
            # preclude any entry in the array from being used.
            func_text += ("for {} in range(-min(0,{}),"
                          "{}[{}]-max(0,{})):\n").format(
                              index_vars[i], ranges[i][0], shape_name, i,
                              ranges[i][1])
            offset += 1

        for j in range(offset):
            func_text += "    "
        # Put a sentinel in the code so we can locate it in the IR.  We will
        # remove this sentinel assignment and replace it with the IR for the
        # stencil kernel body.
        func_text += "{} = 0\n".format(sentinel_name)
        func_text += "    return {}\n".format(out_name)

        if config.DEBUG_ARRAY_OPT == 1:
            print("new stencil func text")
            print(func_text)

        # Force the new stencil function into existence.
        exec_(func_text) in globals(), locals()
        stencil_func = eval(stencil_func_name)
        if sigret is not None:
            pysig = utils.pysignature(stencil_func)
            sigret.pysig = pysig
        # Get the IR for the newly created stencil function.
        stencil_ir = compiler.run_frontend(stencil_func)
        ir_utils.remove_dels(stencil_ir.blocks)

        # rename all variables in stencil_ir afresh
        var_table = ir_utils.get_name_var_table(stencil_ir.blocks)
        new_var_dict = {}
        reserved_names = (
            [sentinel_name, out_name, neighborhood_name, shape_name] +
            kernel_copy.arg_names + index_vars)
        for name, var in var_table.items():
            if not name in reserved_names:
                new_var_dict[name] = ir_utils.mk_unique_var(name)
        ir_utils.replace_var_names(stencil_ir.blocks, new_var_dict)

        stencil_stub_last_label = max(stencil_ir.blocks.keys()) + 1

        # Shift lables in the kernel copy so they are guaranteed unique
        # and don't conflict with any labels in the stencil_ir.
        kernel_copy.blocks = ir_utils.add_offset_to_labels(
            kernel_copy.blocks, stencil_stub_last_label)
        new_label = max(kernel_copy.blocks.keys()) + 1
        # Adjust ret_blocks to account for addition of the offset.
        ret_blocks = [x + stencil_stub_last_label for x in ret_blocks]

        if config.DEBUG_ARRAY_OPT == 1:
            print("ret_blocks w/ offsets", ret_blocks, stencil_stub_last_label)
            print("before replace sentinel stencil_ir")
            ir_utils.dump_blocks(stencil_ir.blocks)
            print("before replace sentinel kernel_copy")
            ir_utils.dump_blocks(kernel_copy.blocks)

        # Search all the block in the stencil outline for the sentinel.
        for label, block in stencil_ir.blocks.items():
            for i, inst in enumerate(block.body):
                if (isinstance(inst, ir.Assign)
                        and inst.target.name == sentinel_name):
                    # We found the sentinel assignment.
                    loc = inst.loc
                    scope = block.scope
                    # split block across __sentinel__
                    # A new block is allocated for the statements prior to the
                    # sentinel but the new block maintains the current block
                    # label.
                    prev_block = ir.Block(scope, loc)
                    prev_block.body = block.body[:i]
                    # The current block is used for statements after sentinel.
                    block.body = block.body[i + 1:]
                    # But the current block gets a new label.
                    body_first_label = min(kernel_copy.blocks.keys())

                    # The previous block jumps to the minimum labelled block of
                    # the parfor body.
                    prev_block.append(ir.Jump(body_first_label, loc))
                    # Add all the parfor loop body blocks to the gufunc
                    # function's IR.
                    for (l, b) in kernel_copy.blocks.items():
                        stencil_ir.blocks[l] = b

                    stencil_ir.blocks[new_label] = block
                    stencil_ir.blocks[label] = prev_block
                    # Add a jump from all the blocks that previously contained
                    # a return in the stencil kernel to the block
                    # containing statements after the sentinel.
                    for ret_block in ret_blocks:
                        stencil_ir.blocks[ret_block].append(
                            ir.Jump(new_label, loc))
                    break
            else:
                continue
            break

        stencil_ir.blocks = ir_utils.rename_labels(stencil_ir.blocks)
        ir_utils.remove_dels(stencil_ir.blocks)

        assert (isinstance(the_array, types.Type))
        array_types = args

        new_stencil_param_types = list(array_types)

        if config.DEBUG_ARRAY_OPT == 1:
            print("new_stencil_param_types", new_stencil_param_types)
            ir_utils.dump_blocks(stencil_ir.blocks)

        # Compile the combined stencil function with the replaced loop
        # body in it.
        new_func = compiler.compile_ir(self._typingctx, self._targetctx,
                                       stencil_ir, new_stencil_param_types,
                                       None, compiler.DEFAULT_FLAGS, {})
        return new_func
Beispiel #31
0
def _create_gufunc_for_parfor_body(
        lowerer,
        parfor,
        typemap,
        typingctx,
        targetctx,
        flags,
        locals,
        has_aliases,
        index_var_typ):
    '''
    Takes a parfor and creates a gufunc function for its body.
    There are two parts to this function.
    1) Code to iterate across the iteration space as defined by the schedule.
    2) The parfor body that does the work for a single point in the iteration space.
    Part 1 is created as Python text for simplicity with a sentinel assignment to mark the point
    in the IR where the parfor body should be added.
    This Python text is 'exec'ed into existence and its IR retrieved with run_frontend.
    The IR is scanned for the sentinel assignment where that basic block is split and the IR
    for the parfor body inserted.
    '''

    # The parfor body and the main function body share ir.Var nodes.
    # We have to do some replacements of Var names in the parfor body to make them
    # legal parameter names.  If we don't copy then the Vars in the main function also
    # would incorrectly change their name.
    loop_body = copy.copy(parfor.loop_body)
    remove_dels(loop_body)

    parfor_dim = len(parfor.loop_nests)
    loop_indices = [l.index_variable.name for l in parfor.loop_nests]

    # Get all the parfor params.
    parfor_params = parfor.params
    # Get just the outputs of the parfor.
    parfor_outputs = numba.parfor.get_parfor_outputs(parfor, parfor_params)
    # Get all parfor reduction vars, and operators.
    parfor_redvars, parfor_reddict = numba.parfor.get_parfor_reductions(
        parfor, parfor_params, lowerer.fndesc.calltypes)
    # Compute just the parfor inputs as a set difference.
    parfor_inputs = sorted(
        list(
            set(parfor_params) -
            set(parfor_outputs) -
            set(parfor_redvars)))

    if config.DEBUG_ARRAY_OPT == 1:
        print("parfor_params = ", parfor_params, " ", type(parfor_params))
        print("parfor_outputs = ", parfor_outputs, " ", type(parfor_outputs))
        print("parfor_inputs = ", parfor_inputs, " ", type(parfor_inputs))
        print("parfor_redvars = ", parfor_redvars, " ", type(parfor_redvars))

    # Reduction variables are represented as arrays, so they go under
    # different names.
    parfor_redarrs = []
    for var in parfor_redvars:
        arr = var + "_arr"
        parfor_redarrs.append(arr)
        typemap[arr] = types.npytypes.Array(typemap[var], 1, "C")

    # Reorder all the params so that inputs go first then outputs.
    parfor_params = parfor_inputs + parfor_outputs + parfor_redarrs

    if config.DEBUG_ARRAY_OPT == 1:
        print("parfor_params = ", parfor_params, " ", type(parfor_params))
        print("loop_indices = ", loop_indices, " ", type(loop_indices))
        print("loop_body = ", loop_body, " ", type(loop_body))
        _print_body(loop_body)

    # Some Var are not legal parameter names so create a dict of potentially illegal
    # param name to guaranteed legal name.
    param_dict = legalize_names(parfor_params + parfor_redvars)
    if config.DEBUG_ARRAY_OPT == 1:
        print(
            "param_dict = ",
            sorted(
                param_dict.items()),
            " ",
            type(param_dict))

    # Some loop_indices are not legal parameter names so create a dict of potentially illegal
    # loop index to guaranteed legal name.
    ind_dict = legalize_names(loop_indices)
    # Compute a new list of legal loop index names.
    legal_loop_indices = [ind_dict[v] for v in loop_indices]
    if config.DEBUG_ARRAY_OPT == 1:
        print("ind_dict = ", sorted(ind_dict.items()), " ", type(ind_dict))
        print(
            "legal_loop_indices = ",
            legal_loop_indices,
            " ",
            type(legal_loop_indices))
        for pd in parfor_params:
            print("pd = ", pd)
            print("pd type = ", typemap[pd], " ", type(typemap[pd]))

    # Get the types of each parameter.
    param_types = [typemap[v] for v in parfor_params]
    # if config.DEBUG_ARRAY_OPT==1:
    #    param_types_dict = { v:typemap[v] for v in parfor_params }
    #    print("param_types_dict = ", param_types_dict, " ", type(param_types_dict))
    #    print("param_types = ", param_types, " ", type(param_types))

    # Replace illegal parameter names in the loop body with legal ones.
    replace_var_names(loop_body, param_dict)
    # remember the name before legalizing as the actual arguments
    parfor_args = parfor_params
    # Change parfor_params to be legal names.
    parfor_params = [param_dict[v] for v in parfor_params]
    parfor_params_orig = parfor_params

    parfor_params = []
    ascontig = False
    for pindex in range(len(parfor_params_orig)):
        if ascontig and pindex < len(parfor_inputs) and isinstance(param_types[pindex], types.npytypes.Array):
            parfor_params.append(parfor_params_orig[pindex]+"param")
        else:
            parfor_params.append(parfor_params_orig[pindex])

    # Change parfor body to replace illegal loop index vars with legal ones.
    replace_var_names(loop_body, ind_dict)
    loop_body_var_table = get_name_var_table(loop_body)
    sentinel_name = get_unused_var_name("__sentinel__", loop_body_var_table)

    if config.DEBUG_ARRAY_OPT == 1:
        print(
            "legal parfor_params = ",
            parfor_params,
            " ",
            type(parfor_params))

    # Determine the unique names of the scheduling and gufunc functions.
    # sched_func_name = "__numba_parfor_sched_%s" % (hex(hash(parfor)).replace("-", "_"))
    gufunc_name = "__numba_parfor_gufunc_%s" % (
        hex(hash(parfor)).replace("-", "_"))
    if config.DEBUG_ARRAY_OPT:
        # print("sched_func_name ", type(sched_func_name), " ", sched_func_name)
        print("gufunc_name ", type(gufunc_name), " ", gufunc_name)

    gufunc_txt = ""

    # Create the gufunc function.
    gufunc_txt += "def " + gufunc_name + \
        "(sched, " + (", ".join(parfor_params)) + "):\n"

    for pindex in range(len(parfor_inputs)):
        if ascontig and isinstance(param_types[pindex], types.npytypes.Array):
            gufunc_txt += ("    " + parfor_params_orig[pindex]
                + " = np.ascontiguousarray(" + parfor_params[pindex] + ")\n")

    # Add initialization of reduction variables
    for arr, var in zip(parfor_redarrs, parfor_redvars):
        gufunc_txt += "    " + param_dict[var] + \
            "=" + param_dict[arr] + "[0]\n"

    # For each dimension of the parfor, create a for loop in the generated gufunc function.
    # Iterate across the proper values extracted from the schedule.
    # The form of the schedule is start_dim0, start_dim1, ..., start_dimN, end_dim0,
    # end_dim1, ..., end_dimN
    for eachdim in range(parfor_dim):
        for indent in range(eachdim + 1):
            gufunc_txt += "    "
        sched_dim = eachdim
        gufunc_txt += ("for " +
                       legal_loop_indices[eachdim] +
                       " in range(sched[" +
                       str(sched_dim) +
                       "], sched[" +
                       str(sched_dim +
                           parfor_dim) +
                       "] + np.uint8(1)):\n")

    if config.DEBUG_ARRAY_OPT_RUNTIME:
        for indent in range(parfor_dim + 1):
            gufunc_txt += "    "
        gufunc_txt += "print("
        for eachdim in range(parfor_dim):
            gufunc_txt += "\"" + legal_loop_indices[eachdim] + "\"," + legal_loop_indices[eachdim] + ","
        gufunc_txt += ")\n"

    # Add the sentinel assignment so that we can find the loop body position
    # in the IR.
    for indent in range(parfor_dim + 1):
        gufunc_txt += "    "
    gufunc_txt += sentinel_name + " = 0\n"
    # Add assignments of reduction variables (for returning the value)
    for arr, var in zip(parfor_redarrs, parfor_redvars):
        gufunc_txt += "    " + param_dict[arr] + \
            "[0] = " + param_dict[var] + "\n"
    gufunc_txt += "    return None\n"

    if config.DEBUG_ARRAY_OPT:
        print("gufunc_txt = ", type(gufunc_txt), "\n", gufunc_txt)
    # Force gufunc outline into existence.
    globls = {"np": np}
    locls = {}
    exec_(gufunc_txt, globls, locls)
    gufunc_func = locls[gufunc_name]

    if config.DEBUG_ARRAY_OPT:
        print("gufunc_func = ", type(gufunc_func), "\n", gufunc_func)
    # Get the IR for the gufunc outline.
    gufunc_ir = compiler.run_frontend(gufunc_func)

    if config.DEBUG_ARRAY_OPT:
        print("gufunc_ir dump ", type(gufunc_ir))
        gufunc_ir.dump()
        print("loop_body dump ", type(loop_body))
        _print_body(loop_body)

    # rename all variables in gufunc_ir afresh
    var_table = get_name_var_table(gufunc_ir.blocks)
    new_var_dict = {}
    reserved_names = [sentinel_name] + \
        list(param_dict.values()) + legal_loop_indices
    for name, var in var_table.items():
        if not (name in reserved_names):
            new_var_dict[name] = mk_unique_var(name)
    replace_var_names(gufunc_ir.blocks, new_var_dict)
    if config.DEBUG_ARRAY_OPT:
        print("gufunc_ir dump after renaming ")
        gufunc_ir.dump()

    gufunc_param_types = [
        numba.types.npytypes.Array(
            index_var_typ, 1, "C")] + param_types
    if config.DEBUG_ARRAY_OPT:
        print(
            "gufunc_param_types = ",
            type(gufunc_param_types),
            "\n",
            gufunc_param_types)

    gufunc_stub_last_label = max(gufunc_ir.blocks.keys()) + 1

    # Add gufunc stub last label to each parfor.loop_body label to prevent
    # label conflicts.
    loop_body = add_offset_to_labels(loop_body, gufunc_stub_last_label)
    # new label for splitting sentinel block
    new_label = max(loop_body.keys()) + 1

    # If enabled, add a print statement after every assignment.
    if config.DEBUG_ARRAY_OPT_RUNTIME:
        for label, block in loop_body.items():
            new_block = block.copy()
            new_block.clear()
            loc = block.loc
            scope = block.scope
            for inst in block.body:
                new_block.append(inst)
                # Append print after assignment
                if isinstance(inst, ir.Assign):
                    # Only apply to numbers
                    if typemap[inst.target.name] not in types.number_domain:
                        continue

                    # Make constant string
                    strval = "{} =".format(inst.target.name)
                    strconsttyp = types.Const(strval)

                    lhs = ir.Var(scope, mk_unique_var("str_const"), loc)
                    assign_lhs = ir.Assign(value=ir.Const(value=strval, loc=loc),
                                           target=lhs, loc=loc)
                    typemap[lhs.name] = strconsttyp
                    new_block.append(assign_lhs)

                    # Make print node
                    print_node = ir.Print(args=[lhs, inst.target], vararg=None, loc=loc)
                    new_block.append(print_node)
                    sig = numba.typing.signature(types.none,
                                           typemap[lhs.name],
                                           typemap[inst.target.name])
                    lowerer.fndesc.calltypes[print_node] = sig
            loop_body[label] = new_block

    if config.DEBUG_ARRAY_OPT:
        print("parfor loop body")
        _print_body(loop_body)

    wrapped_blocks = wrap_loop_body(loop_body)
    hoisted = hoist(parfor_params, loop_body, typemap, wrapped_blocks)
    start_block = gufunc_ir.blocks[min(gufunc_ir.blocks.keys())]
    start_block.body = start_block.body[:-1] + hoisted + [start_block.body[-1]]
    unwrap_loop_body(loop_body)

    if config.DEBUG_ARRAY_OPT:
        print("After hoisting")
        _print_body(loop_body)

    # Search all the block in the gufunc outline for the sentinel assignment.
    for label, block in gufunc_ir.blocks.items():
        for i, inst in enumerate(block.body):
            if isinstance(
                    inst,
                    ir.Assign) and inst.target.name == sentinel_name:
                # We found the sentinel assignment.
                loc = inst.loc
                scope = block.scope
                # split block across __sentinel__
                # A new block is allocated for the statements prior to the sentinel
                # but the new block maintains the current block label.
                prev_block = ir.Block(scope, loc)
                prev_block.body = block.body[:i]
                # The current block is used for statements after the sentinel.
                block.body = block.body[i + 1:]
                # But the current block gets a new label.
                body_first_label = min(loop_body.keys())

                # The previous block jumps to the minimum labelled block of the
                # parfor body.
                prev_block.append(ir.Jump(body_first_label, loc))
                # Add all the parfor loop body blocks to the gufunc function's
                # IR.
                for (l, b) in loop_body.items():
                    gufunc_ir.blocks[l] = b
                body_last_label = max(loop_body.keys())
                gufunc_ir.blocks[new_label] = block
                gufunc_ir.blocks[label] = prev_block
                # Add a jump from the last parfor body block to the block containing
                # statements after the sentinel.
                gufunc_ir.blocks[body_last_label].append(
                    ir.Jump(new_label, loc))
                break
        else:
            continue
        break

    if config.DEBUG_ARRAY_OPT:
        print("gufunc_ir last dump before renaming")
        gufunc_ir.dump()

    gufunc_ir.blocks = rename_labels(gufunc_ir.blocks)
    remove_dels(gufunc_ir.blocks)

    if config.DEBUG_ARRAY_OPT:
        print("gufunc_ir last dump")
        gufunc_ir.dump()
        print("flags", flags)
        print("typemap", typemap)

    old_alias = flags.noalias
    if not has_aliases:
        if config.DEBUG_ARRAY_OPT:
            print("No aliases found so adding noalias flag.")
        flags.noalias = True
    kernel_func = compiler.compile_ir(
        typingctx,
        targetctx,
        gufunc_ir,
        gufunc_param_types,
        types.none,
        flags,
        locals)

    flags.noalias = old_alias

    kernel_sig = signature(types.none, *gufunc_param_types)
    if config.DEBUG_ARRAY_OPT:
        print("kernel_sig = ", kernel_sig)

    return kernel_func, parfor_args, kernel_sig
 def make_testcase(self, src, fname):
     glb = {}
     exec_(src, glb)
     fn = glb[fname]
     return fn
Beispiel #33
0
def _create_gufunc_for_parfor_body(lowerer, parfor, typemap, typingctx,
                                   targetctx, flags, locals):
    '''
    Takes a parfor and creates a gufunc function for its body.
    There are two parts to this function.
    1) Code to iterate across the iteration space as defined by the schedule.
    2) The parfor body that does the work for a single point in the iteration space.
    Part 1 is created as Python text for simplicity with a sentinel assignment to mark the point
    in the IR where the parfor body should be added.
    This Python text is 'exec'ed into existence and its IR retrieved with run_frontend.
    The IR is scanned for the sentinel assignment where that basic block is split and the IR
    for the parfor body inserted.
    '''

    # The parfor body and the main function body share ir.Var nodes.
    # We have to do some replacements of Var names in the parfor body to make them
    # legal parameter names.  If we don't copy then the Vars in the main function also
    # would incorrectly change their name.
    loop_body = copy.copy(parfor.loop_body)
    remove_dels(loop_body)

    parfor_dim = len(parfor.loop_nests)
    loop_indices = [l.index_variable.name for l in parfor.loop_nests]

    # Get all the parfor params.
    parfor_params = parfor.params
    # Get just the outputs of the parfor.
    parfor_outputs = numba.parfor.get_parfor_outputs(parfor, parfor_params)
    # Get all parfor reduction vars, and operators.
    parfor_redvars, parfor_reddict = numba.parfor.get_parfor_reductions(
        parfor, parfor_params, lowerer.fndesc.calltypes)
    # Compute just the parfor inputs as a set difference.
    parfor_inputs = sorted(
        list(set(parfor_params) - set(parfor_outputs) - set(parfor_redvars)))

    if config.DEBUG_ARRAY_OPT == 1:
        print("parfor_params = ", parfor_params, " ", type(parfor_params))
        print("parfor_outputs = ", parfor_outputs, " ", type(parfor_outputs))
        print("parfor_inputs = ", parfor_inputs, " ", type(parfor_inputs))
        print("parfor_redvars = ", parfor_redvars, " ", type(parfor_redvars))

    # Reduction variables are represented as arrays, so they go under
    # different names.
    parfor_redarrs = []
    for var in parfor_redvars:
        arr = var + "_arr"
        parfor_redarrs.append(arr)
        typemap[arr] = types.npytypes.Array(typemap[var], 1, "C")

    # Reorder all the params so that inputs go first then outputs.
    parfor_params = parfor_inputs + parfor_outputs + parfor_redarrs

    if config.DEBUG_ARRAY_OPT == 1:
        print("parfor_params = ", parfor_params, " ", type(parfor_params))
        print("loop_indices = ", loop_indices, " ", type(loop_indices))
        print("loop_body = ", loop_body, " ", type(loop_body))
        _print_body(loop_body)

    # Some Var are not legal parameter names so create a dict of potentially illegal
    # param name to guaranteed legal name.
    param_dict = legalize_names(parfor_params + parfor_redvars)
    if config.DEBUG_ARRAY_OPT == 1:
        print("param_dict = ", sorted(param_dict.items()), " ",
              type(param_dict))

    # Some loop_indices are not legal parameter names so create a dict of potentially illegal
    # loop index to guaranteed legal name.
    ind_dict = legalize_names(loop_indices)
    # Compute a new list of legal loop index names.
    legal_loop_indices = [ind_dict[v] for v in loop_indices]
    if config.DEBUG_ARRAY_OPT == 1:
        print("ind_dict = ", sorted(ind_dict.items()), " ", type(ind_dict))
        print("legal_loop_indices = ", legal_loop_indices, " ",
              type(legal_loop_indices))
        for pd in parfor_params:
            print("pd = ", pd)
            print("pd type = ", typemap[pd], " ", type(typemap[pd]))

    # Get the types of each parameter.
    param_types = [typemap[v] for v in parfor_params]
    # if config.DEBUG_ARRAY_OPT==1:
    #    param_types_dict = { v:typemap[v] for v in parfor_params }
    #    print("param_types_dict = ", param_types_dict, " ", type(param_types_dict))
    #    print("param_types = ", param_types, " ", type(param_types))

    # Replace illegal parameter names in the loop body with legal ones.
    replace_var_names(loop_body, param_dict)
    # remember the name before legalizing as the actual arguments
    parfor_args = parfor_params
    # Change parfor_params to be legal names.
    parfor_params = [param_dict[v] for v in parfor_params]
    # Change parfor body to replace illegal loop index vars with legal ones.
    replace_var_names(loop_body, ind_dict)
    loop_body_var_table = get_name_var_table(loop_body)
    sentinel_name = get_unused_var_name("__sentinel__", loop_body_var_table)

    if config.DEBUG_ARRAY_OPT == 1:
        print("legal parfor_params = ", parfor_params, " ",
              type(parfor_params))

    # Determine the unique names of the scheduling and gufunc functions.
    # sched_func_name = "__numba_parfor_sched_%s" % (hex(hash(parfor)).replace("-", "_"))
    gufunc_name = "__numba_parfor_gufunc_%s" % (hex(hash(parfor)).replace(
        "-", "_"))
    if config.DEBUG_ARRAY_OPT:
        # print("sched_func_name ", type(sched_func_name), " ", sched_func_name)
        print("gufunc_name ", type(gufunc_name), " ", gufunc_name)

    # Create the gufunc function.
    gufunc_txt = "def " + gufunc_name + \
        "(sched, " + (", ".join(parfor_params)) + "):\n"
    # Add initialization of reduction variables
    for arr, var in zip(parfor_redarrs, parfor_redvars):
        gufunc_txt += "    " + param_dict[var] + \
            "=" + param_dict[arr] + "[0]\n"
    # For each dimension of the parfor, create a for loop in the generated gufunc function.
    # Iterate across the proper values extracted from the schedule.
    # The form of the schedule is start_dim0, start_dim1, ..., start_dimN, end_dim0,
    # end_dim1, ..., end_dimN
    for eachdim in range(parfor_dim):
        for indent in range(eachdim + 1):
            gufunc_txt += "    "
        sched_dim = eachdim
        gufunc_txt += ("for " + legal_loop_indices[eachdim] +
                       " in range(sched[" + str(sched_dim) + "], sched[" +
                       str(sched_dim + parfor_dim) + "] + 1):\n")

    if config.DEBUG_ARRAY_OPT_RUNTIME:
        for indent in range(parfor_dim + 1):
            gufunc_txt += "    "
        gufunc_txt += "print("
        for eachdim in range(parfor_dim):
            gufunc_txt += "\"" + legal_loop_indices[
                eachdim] + "\"," + legal_loop_indices[eachdim] + ","
        gufunc_txt += ")\n"

    # Add the sentinel assignment so that we can find the loop body position
    # in the IR.
    for indent in range(parfor_dim + 1):
        gufunc_txt += "    "
    gufunc_txt += sentinel_name + " = 0\n"
    # Add assignments of reduction variables (for returning the value)
    for arr, var in zip(parfor_redarrs, parfor_redvars):
        gufunc_txt += "    " + param_dict[arr] + \
            "[0] = " + param_dict[var] + "\n"
    gufunc_txt += "    return None\n"

    if config.DEBUG_ARRAY_OPT:
        print("gufunc_txt = ", type(gufunc_txt), "\n", gufunc_txt)
    # Force gufunc outline into existence.
    exec_(gufunc_txt)
    gufunc_func = eval(gufunc_name)
    if config.DEBUG_ARRAY_OPT:
        print("gufunc_func = ", type(gufunc_func), "\n", gufunc_func)
    # Get the IR for the gufunc outline.
    gufunc_ir = compiler.run_frontend(gufunc_func)
    if config.DEBUG_ARRAY_OPT:
        print("gufunc_ir dump ", type(gufunc_ir))
        gufunc_ir.dump()
        print("loop_body dump ", type(loop_body))
        _print_body(loop_body)

    # rename all variables in gufunc_ir afresh
    var_table = get_name_var_table(gufunc_ir.blocks)
    new_var_dict = {}
    reserved_names = [sentinel_name] + \
        list(param_dict.values()) + legal_loop_indices
    for name, var in var_table.items():
        if not (name in reserved_names):
            new_var_dict[name] = mk_unique_var(name)
    replace_var_names(gufunc_ir.blocks, new_var_dict)
    if config.DEBUG_ARRAY_OPT:
        print("gufunc_ir dump after renaming ")
        gufunc_ir.dump()

    gufunc_param_types = [numba.types.npytypes.Array(numba.intp, 1, "C")
                          ] + param_types
    if config.DEBUG_ARRAY_OPT:
        print("gufunc_param_types = ", type(gufunc_param_types), "\n",
              gufunc_param_types)

    gufunc_stub_last_label = max(gufunc_ir.blocks.keys()) + 1

    # Add gufunc stub last label to each parfor.loop_body label to prevent
    # label conflicts.
    loop_body = add_offset_to_labels(loop_body, gufunc_stub_last_label)
    # new label for splitting sentinel block
    new_label = max(loop_body.keys()) + 1

    # If enabled, add a print statement after every assignment.
    if config.DEBUG_ARRAY_OPT_RUNTIME:
        for label, block in loop_body.items():
            new_block = block.copy()
            new_block.clear()
            loc = block.loc
            scope = block.scope
            for inst in block.body:
                new_block.append(inst)
                # Append print after assignment
                if isinstance(inst, ir.Assign):
                    # Only apply to numbers
                    if typemap[inst.target.name] not in types.number_domain:
                        continue

                    # Make constant string
                    strval = "{} =".format(inst.target.name)
                    strconsttyp = types.Const(strval)

                    lhs = ir.Var(scope, mk_unique_var("str_const"), loc)
                    assign_lhs = ir.Assign(value=ir.Const(value=strval,
                                                          loc=loc),
                                           target=lhs,
                                           loc=loc)
                    typemap[lhs.name] = strconsttyp
                    new_block.append(assign_lhs)

                    # Make print node
                    print_node = ir.Print(args=[lhs, inst.target],
                                          vararg=None,
                                          loc=loc)
                    new_block.append(print_node)
                    sig = numba.typing.signature(types.none, typemap[lhs.name],
                                                 typemap[inst.target.name])
                    lowerer.fndesc.calltypes[print_node] = sig
            loop_body[label] = new_block

    if config.DEBUG_ARRAY_OPT:
        print("parfor loop body")
        _print_body(loop_body)

    wrapped_blocks = wrap_loop_body(loop_body)
    hoisted = hoist(parfor_params, loop_body, typemap, wrapped_blocks)
    start_block = gufunc_ir.blocks[min(gufunc_ir.blocks.keys())]
    start_block.body = start_block.body[:-1] + hoisted + [start_block.body[-1]]
    unwrap_loop_body(loop_body)

    if config.DEBUG_ARRAY_OPT:
        print("After hoisting")
        _print_body(loop_body)

    # Search all the block in the gufunc outline for the sentinel assignment.
    for label, block in gufunc_ir.blocks.items():
        for i, inst in enumerate(block.body):
            if isinstance(inst,
                          ir.Assign) and inst.target.name == sentinel_name:
                # We found the sentinel assignment.
                loc = inst.loc
                scope = block.scope
                # split block across __sentinel__
                # A new block is allocated for the statements prior to the sentinel
                # but the new block maintains the current block label.
                prev_block = ir.Block(scope, loc)
                prev_block.body = block.body[:i]
                # The current block is used for statements after the sentinel.
                block.body = block.body[i + 1:]
                # But the current block gets a new label.
                body_first_label = min(loop_body.keys())

                # The previous block jumps to the minimum labelled block of the
                # parfor body.
                prev_block.append(ir.Jump(body_first_label, loc))
                # Add all the parfor loop body blocks to the gufunc function's
                # IR.
                for (l, b) in loop_body.items():
                    gufunc_ir.blocks[l] = b
                body_last_label = max(loop_body.keys())
                gufunc_ir.blocks[new_label] = block
                gufunc_ir.blocks[label] = prev_block
                # Add a jump from the last parfor body block to the block containing
                # statements after the sentinel.
                gufunc_ir.blocks[body_last_label].append(
                    ir.Jump(new_label, loc))
                break
        else:
            continue
        break

    if config.DEBUG_ARRAY_OPT:
        print("gufunc_ir last dump before renaming")
        gufunc_ir.dump()

    gufunc_ir.blocks = rename_labels(gufunc_ir.blocks)
    remove_dels(gufunc_ir.blocks)

    if config.DEBUG_ARRAY_OPT:
        print("gufunc_ir last dump")
        gufunc_ir.dump()

    kernel_func = compiler.compile_ir(typingctx, targetctx, gufunc_ir,
                                      gufunc_param_types, types.none, flags,
                                      locals)

    kernel_sig = signature(types.none, *gufunc_param_types)
    if config.DEBUG_ARRAY_OPT:
        print("kernel_sig = ", kernel_sig)

    return kernel_func, parfor_args, kernel_sig