Beispiel #1
0
 def test_5_layers(self):
     training_input = np.array([[1]])
     expected_output = np.array([[1]])
     flexible_neural_network = FlexibleNeuralNetwork()
     flexible_neural_network.add_layer(NeuralNetworkLayer(1, 1))
     flexible_neural_network.add_layer(NeuralNetworkLayer(1, 1))
     flexible_neural_network.add_layer(NeuralNetworkLayer(1, 1))
     flexible_neural_network.add_layer(NeuralNetworkLayer(1, 1))
     flexible_neural_network.add_layer(NeuralNetworkLayer(1, 1))
     loss = None
     for i in range(self.training_rounds):
         loss = flexible_neural_network.train([(training_input,
                                                expected_output)])
     self.log.info("Loss: {}".format(loss))
     prediction = flexible_neural_network.predict(training_input)
     self.log.info("Prediction, Expected: {}, {}".format(
         prediction, expected_output))
     np.testing.assert_almost_equal(loss, 0, 2)
Beispiel #2
0
 def test_2_layers(self):
     #training_input = np.array([[0, 0, 1],
     #                           [0, 1, 1],
     #                           [1, 0, 1],
     #                           [1, 1, 1]])
     training_input = np.array([[0], [0], [1], [1]])
     expected_output = np.array([[0], [1], [1], [0]])
     flexible_neural_network = FlexibleNeuralNetwork()
     flexible_neural_network.add_layer(NeuralNetworkLayer(4, 4))
     flexible_neural_network.add_layer(NeuralNetworkLayer(4, 4))
     loss = None
     for i in range(self.training_rounds):
         loss = flexible_neural_network.train([(training_input,
                                                expected_output)])
     self.log.info("Loss: {}".format(loss))
     prediction = flexible_neural_network.predict(training_input)
     self.log.info("Prediction, Expected: {}, {}".format(
         prediction, expected_output))