def A(n):
    if n % 2 == 0 or n % 5 == 0:
        return 0
    for k in divisorList(totient(9*n)):
        if pow(10, k, 9*n) == 1:
            return k
Beispiel #2
0
from numbertheory import primeList
import numbertheory
def residues(n, m):
    for i in range(m):
        yield pow(i, n, m)

n = 13
for m in primeList(1000):
    t = numbertheory.totient(m)
    r = list(residues(n, m))
    r = list(set(r))
    r.sort()
    if m % n == 1 and numbertheory.isPrime(m):
        print(m , len(r), r)
Beispiel #3
0
def teration(a, n, m):
	if n == 0 or m == 1:
		return 1
	return pow(a, teration(a, n-1, totient(m)),m)
Beispiel #4
0
from numbertheory import totient
s = 0
for x in range(2, 1000000 + 1):
    s += totient(x)
print(s)