Beispiel #1
0
def power_function():
    print("Testing -- power_mod function --")
    print("Using numpy.random generating {0} numbers".format(testnumber))
    for n in range(testnumber):
        a = rd.randint(minimum, maximum)
        b = rd.randint(minimum, maximum)
        c = rd.randint(minimum, maximum)
        tf1 = nmtf.power_mod(tf.constant(a), tf.constant(b), tf.constant(c))
        nm1 = nm.power_mod(a, b, c)
        print("Test {0}------------------------------".format(n + 1))
        print("nmtf.power_mod({0}, {1}, {2}) = ({3}, {4})".format(
            a, b, c, tf1[0].eval(), tf1[1].eval()))
        print("  nm.power_mod({0}, {1}, {2}) = {3}".format(a, b, c, nm1))
        print("")
Beispiel #2
0
def dlog(p, g, h, B=2**20):
    """
    Calculate discrete logarithm.

    :param p: Prime p.
    :param g: Any element in Z_star_p => h=g^x for 0 <= x <= B.
    :param h: Value h=g^x for 0 <= x <= B.
    :param B: x value space; 0 <= x <= B.
    :return: x: discrete log modulo p if found, None otherwise.
    """
    l_hash = dict()
    print('[+] Calculating l-value table...')
    for x1 in tqdm(range(B)):
        g_pow_x1 = numbthy.power_mod(g, x1, p)
        inv_g_pow_x1 = numbthy.invmod(g_pow_x1, p)
        l_val = h * inv_g_pow_x1
        l_val = l_val % p
        l_hash[l_val] = x1

    print('[+] Looking up r-value in l-value table...')
    x0, x1 = 0, 0
    g_pow_B = numbthy.power_mod(g, B, p)
    for x0 in tqdm(range(B)):
        r_val = numbthy.power_mod(g_pow_B, x0, p)

        try:
            x1 = l_hash[r_val]
            print('[+] Found!!')
            break
        except KeyError:
            pass
    
    if x0 != 0 and x1 != 0:
        x = x0 * B + x1
    else:
        x = None
    return x
Beispiel #3
0
    def create_blocks_2(self, number=0):
        """
        Construction 1.2
        Obtain blocks that create super set of one parallel class.
        :param number: iteration (offset) number according to Galois Field
        """

        # first obtain alpha (primitive element in Galois Field)
        alpha = 0
        for a in range(self.q):
            if is_primitive_root(a, self.q):
                alpha = a
                break

        # split points to groups
        groups = {
            1: self.points[:self.q],
            2: self.points[self.q:self.q * 2],
            3: self.points[self.q * 2:]
        }

        get = lambda index, group: groups[group][self.add_mod(index, number)]

        # references A^0
        self.blocks = {'a_': (groups[1][number], groups[2][number], groups[3][number])}

        # references B_i,j
        for i in range(0, self.t):
            for j in (1, 2, 3):
                self.blocks['b' + str(i) + ',' + str(j)] = \
                    (get(power_mod(alpha, i, self.q), j),
                     get(power_mod(alpha, i + 2 * self.t, self.q), j),
                     get(power_mod(alpha, i + 4 * self.t, self.q), j))

        # references A_i
        for i in range(0, 6 * self.t):
            self.blocks['a' + str(i)] = \
                (get(power_mod(alpha, i, self.q), 1),
                 get(power_mod(alpha, i + 2 * self.t, self.q), 2),
                 get(power_mod(alpha, i + 4 * self.t, self.q), 3))
Beispiel #4
0
#x0 = 2
#x1 = 1

#p=1073676287
#g=1010343267
#h=857348958
#B=pow(2, 10)

#1026831 (*this is the solution*)
#x0 = 1002;
#x1 = 783;

print datetime.datetime.now()

gi = numbthy.inverse_mod(g, p)
gPowB = numbthy.power_mod(g, B, p)

print "p", p
print "g", g
print "h", h
print "B", B
print "inverse g", gi
print "gPowB", gPowB

left = {}

powX1 = h % p
left[powX1] = 0
x1 = 1

while (x1 < B):
Beispiel #5
0
    def create_blocks_1(self, number=0):
        """
        Construction 1.1
        Obtain blocks that create one parallel class.
        :param number: iteration (offset) number according to Galois Field
        """

        # first obtain alpha (primitive element in Galois Field) and m (by specified equation)
        alpha, m = 0, 0
        for a in range(self.q):
            if is_primitive_root(a, self.q):
                for _m in range(self.q):
                    # let me satisfy the equation --> 2 * alpha^m = alpha^t + 1
                    right = self.add_mod(power_mod(a, self.t, self.q), 1)
                    _a = power_mod(a, _m, self.q)
                    left = self.add_mod(_a, _a)
                    if left == right:
                        alpha, m = a, _m
                        break

        # split points to groups
        groups = {
            1: self.points[:self.q],
            2: self.points[self.q:],
        }

        get = lambda index, group: groups[group][self.add_mod(index, number)]

        # references A^0
        self.blocks = {'a_': (groups[1][number],
                              groups[2][number],
                              groups[2][-1])}

        # references A_i, B_i
        for i in range(0, self.t):
            self.blocks['a' + str(i)] = \
                (get(power_mod(alpha, i + m + self.t, self.q), 2),
                 get(power_mod(alpha, i + m + 3 * self.t, self.q), 2),
                 get(power_mod(alpha, i + m + 5 * self.t, self.q), 2))

            self.blocks['b' + str(i)] = \
                (get(power_mod(alpha, i, self.q), 1),
                 get(power_mod(alpha, i + self.t, self.q), 1),
                 get(power_mod(alpha, i + m, self.q), 2))

        # references B_i
        for i in range(2 * self.t, 3 * self.t):
            self.blocks['b' + str(i)] = \
                (get(power_mod(alpha, i, self.q), 1),
                 get(power_mod(alpha, i + self.t, self.q), 1),
                 get(power_mod(alpha, i + m, self.q), 2))

        # references B_i
        for i in range(4 * self.t, 5 * self.t):
            self.blocks['b' + str(i)] = \
                (get(power_mod(alpha, i, self.q), 1),
                 get(power_mod(alpha, i + self.t, self.q), 1),
                 get(power_mod(alpha, i + m, self.q), 2))
Beispiel #6
0
 def test_power_mod(self):
     for testcase in ((2, 5, 13, 6), (2, -21, 31, 16), (-2, -21, 31, 15),
                      (0, 5, 31, 0), (5, 0, 31, 1)):
         self.assertEqual(
             numbthy.power_mod(testcase[0], testcase[1], testcase[2]),
             testcase[3])
Beispiel #7
0
    texterat="p={0}, q={1}, n={2}, t of n={3}, d={4}, and e={5}"
    print(texterat.format(varp,varq,varn,totientn,vard,vare))
    #prints variables
if why=='n':
    varp=int(input('Enter p: '))
    varq=int(input('Enter q: '))
    varn=varp*varq
    totientn=(varp-1)*(varq-1)
    vard=int(input('Enter d: '))
    vare=int(input('Enter e: '))
    texterat="p={0}, q={1}, n={2}, t of n={3}, d={4}, and e={5}"
    print(texterat.format(varp,varq,varn,totientn,vard,vare))

check=13
varc=power_mod(check,vare,varn)
varb=power_mod(varc,vard,varn)
if check==varb:
    print("Variables confirmed")
    endop='t'
elif check!=varb:
    print("Variables denied")
    endop='q'
#checks variables

associations = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 .,:;'\"/\\<>(){}[]-=_+?!"
choice=input("Enter e to encrypt, d to decrypt, or q to quit: ")
while choice!='q' and endop!='q':
    if choice=="e":
        conn=1
        mes=input("Input string to be encrypted: ")
Beispiel #8
0
def f2(p, g, h, x1):
    denom = power_mod(g, x1, p)

    return (h * inverse_mod(denom, p)) % p
Beispiel #9
0
def f1(p, g, x0, b):
    return power_mod(g, (x0 * b), p)
Beispiel #10
0
def DecryptCipher(CipherVal, EncExp, p1, q1):
    DecExp = inverse_mod(EncExp, (p1 - 1) * (q1 - 1))
    MsgVal = power_mod(CipherVal, DecExp, p1 * q1)

    return MsgVal
Beispiel #11
0
from numbthy import inverse_mod, power_mod

p = 13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084171

g = 11717829880366207009516117596335367088558084999998952205599979459063929499736583746670572176471460312928594829675428279466566527115212748467589894601965568

h = 3239475104050450443565264378728065788649097520952449527834792452971981976143292558073856937958553180532878928001494706097394108577585732452307673444020333

table = []

B = 2**20

for x1 in range(B + 1):
    denominator = inverse_mod(power_mod(g, x1, p), p)
    table.append((h * denominator) % p)

for x0 in range(B + 1):
    power = B * x0
    trial = power_mod(g, power, p)
    print 'Try ' + str(x0)
    try:
        x1 = table.index(trial)
        print x0, x1
        print x0 * B + x1
        break
    except ValueError:
        continue