Beispiel #1
0
def test_legendre_spacetime_massmatrix(order):
    '''
	This test compares the analytical solution of the space-time MM to 
	the computed one.
	'''
    basis = basis_defs.LegendreQuad(order)
    mesh = mesh_common.mesh_1D(num_elems=1, xmin=-1., xmax=1.)

    # Set quadrature
    basis.set_elem_quadrature_type("GaussLegendre")
    basis.set_face_quadrature_type("GaussLegendre")

    MM = basis_st_tools.get_elem_mass_matrix_ader(mesh, basis, order, -1)
    '''
	Reference:
	Dumbser, M., Enaux, C., and Toro, E. JCP 2008
		Vol. 227, Issue 8, Pgs: 3971 - 4001 Appendix B
	'''
    # Multiply by 4.0 caused by reference element shift [0, 1] -> [-1, 1]
    if order == 1:
        expected = 4.0 * np.array([[1., 0., 0., 0.], [0., 1. / 3., 0., 0.],
                                   [0., 0., 1. / 3., 0], [0., 0., 0., 1. / 9.]
                                   ])
    elif order == 2:
        expected = 4.0 * np.array([[1., 0., 0., 0., 0., 0., 0., 0., 0.],
                                   [0., 1. / 3., 0., 0., 0., 0., 0., 0., 0.],
                                   [0., 0., 1. / 5., 0., 0., 0., 0., 0., 0.],
                                   [0., 0., 0., 1. / 3., 0., 0., 0., 0., 0.],
                                   [0., 0., 0., 0., 1. / 9., 0., 0., 0., 0.],
                                   [0., 0., 0., 0., 0., 1. / 15., 0., 0., 0.],
                                   [0., 0., 0., 0., 0., 0., 1. / 5, 0., 0.],
                                   [0., 0., 0., 0., 0., 0., 0., 1. / 15., 0.],
                                   [0., 0., 0., 0., 0., 0., 0., 0., 1. / 25.]])
    # Assert
    np.testing.assert_allclose(MM, expected, rtol, atol)
Beispiel #2
0
def set_basis(order, basis_name):
    '''
	Sets the basis class given the basis_name string argument

	Inputs:
	-------
		order: solution order
		basis_name: name of the basis function we wish to instantiate
			as a class

	Outputs:
	--------
		basis: instantiated basis class

	Raise:
	------
		If the basis class is not defined, returns a NotImplementedError
	'''
    if BasisType[basis_name] == BasisType.LagrangeSeg:
        basis = basis_defs.LagrangeSeg(order)
    elif BasisType[basis_name] == BasisType.LegendreSeg:
        basis = basis_defs.LegendreSeg(order)
    elif BasisType[basis_name] == BasisType.LagrangeQuad:
        basis = basis_defs.LagrangeQuad(order)
    elif BasisType[basis_name] == BasisType.LegendreQuad:
        basis = basis_defs.LegendreQuad(order)
    elif BasisType[basis_name] == BasisType.LagrangeTri:
        basis = basis_defs.LagrangeTri(order)
    elif BasisType[basis_name] == BasisType.HierarchicH1Tri:
        basis = basis_defs.HierarchicH1Tri(order)
    else:
        raise NotImplementedError

    return basis
Beispiel #3
0
def set_basis_spacetime(mesh, order, basis_name):
    '''
	Sets the space-time basis class given the basis_name string argument

	Inputs:
	-------
		order: solution order
		basis_name: name of the spatial basis function used to determine
			the space-time basis function we wish to instantiate
			as a class

	Outputs:
	--------
		basis_st: instantiated space-time basis class

	Raise:
	------
		If the basis class is not defined returns a NotImplementedError
	'''
    if BasisType[basis_name] == BasisType.LagrangeSeg:
        basis_st = basis_defs.LagrangeQuad(order)
    elif BasisType[basis_name] == BasisType.LegendreSeg:
        basis_st = basis_defs.LegendreQuad(order)
    elif BasisType[basis_name] == BasisType.LagrangeQuad:
        basis_st = basis_defs.LagrangeHex(order)
    elif BasisType[basis_name] == BasisType.LagrangeTri:
        basis_st = basis_defs.LagrangePrism(order)
    else:
        raise NotImplementedError

    return basis_st
Beispiel #4
0
def test_legendre_spacetime_stiffnessmatrix_spacedir_phys(dt, order):
    '''
	This test compares the analytical solution of the space-time 
	stiffness matrix in space to the computed one.
	'''
    basis = basis_defs.LegendreSeg(order)
    basis_st = basis_defs.LegendreQuad(order)
    mesh = mesh_common.mesh_1D(num_elems=1, xmin=0., xmax=1.)

    # Set quadrature
    basis.set_elem_quadrature_type("GaussLegendre")
    basis.set_face_quadrature_type("GaussLegendre")
    basis_st.set_elem_quadrature_type("GaussLegendre")
    basis_st.set_face_quadrature_type("GaussLegendre")
    mesh.gbasis.set_elem_quadrature_type("GaussLegendre")
    mesh.gbasis.set_face_quadrature_type("GaussLegendre")

    # Get stiffness matrix in space
    SMS = basis_st_tools.get_stiffness_matrix_ader(mesh,
                                                   basis,
                                                   basis_st,
                                                   order,
                                                   dt,
                                                   elem_ID=0,
                                                   grad_dir=0,
                                                   physical_space=True)
    '''
	Reference:
	Dumbser, M., Enaux, C., and Toro, E. JCP 2008
		Vol. 227, Issue 8, Pgs: 3971 - 4001 Appendix B

	Note: We multiply by 4 here because (unlike Dumbser's paper), we 
	multiply by the inverse jacobian to account for non-ideal meshes

	See the Quail documentation (Section for ADER-DG: space-time 
	predictor step where the K matrices are defined)
	'''
    if order == 1:
        expected = 4.0 * np.array([[0., 2., 0., 0.], [0., 0., 0., 0.],
                                   [0., 0., 0., 2. / 3.], [0., 0., 0., 0.]])
    elif order == 2:
        expected = 4.0 * np.array([[0., 2., 0., 0., 0., 0., 0., 0., 0.],
                                   [0., 0., 2., 0., 0., 0., 0., 0., 0.],
                                   [0., 0., 0., 0., 0., 0., 0., 0., 0.],
                                   [0., 0., 0., 0., 2. / 3., 0., 0., 0., 0.],
                                   [0., 0., 0., 0., 0., 2. / 3., 0., 0., 0.],
                                   [0., 0., 0., 0., 0., 0., 0., 0., 0.],
                                   [0., 0., 0., 0., 0., 0., 0., 2. / 5., 0.],
                                   [0., 0., 0., 0., 0., 0., 0., 0., 2. / 5.],
                                   [0., 0., 0., 0., 0., 0., 0., 0., 0.]])
    # Assert
    np.testing.assert_allclose(SMS.transpose(), expected, rtol, atol)
Beispiel #5
0
def test_legendre_spacetime_stiffnessmatrix_timedir(dt, order):
    '''
	This test compares the analytical solution of the space-time 
	stiffness matrix in time to the computed one.
	'''
    basis = basis_defs.LegendreSeg(order)
    basis_st = basis_defs.LegendreQuad(order)
    mesh = mesh_common.mesh_1D(num_elems=1, xmin=-1., xmax=1.)

    # Set quadrature
    basis.set_elem_quadrature_type("GaussLegendre")
    basis.set_face_quadrature_type("GaussLegendre")
    basis_st.set_elem_quadrature_type("GaussLegendre")
    basis_st.set_face_quadrature_type("GaussLegendre")
    mesh.gbasis.set_elem_quadrature_type("GaussLegendre")
    mesh.gbasis.set_face_quadrature_type("GaussLegendre")

    # Get stiffness matrix in time
    SMT = basis_st_tools.get_stiffness_matrix_ader(mesh,
                                                   basis,
                                                   basis_st,
                                                   order,
                                                   dt,
                                                   elem_ID=0,
                                                   grad_dir=-1,
                                                   physical_space=False)
    '''
	Reference:
	Dumbser, M., Enaux, C., and Toro, E. JCP 2008
		Vol. 227, Issue 8, Pgs: 3971 - 4001 Appendix B
	'''
    # Multiply by 2.0 caused by reference element shift [0, 1] -> [-1, 1]
    if order == 1:
        expected = 2.0 * np.array([[0., 0., 0., 0.], [0., 0., 0., 0.],
                                   [2., 0., 0., 0.], [0., 2. / 3., 0., 0.]])
    elif order == 2:
        expected = 2.0 * np.array([[0., 0., 0., 0., 0., 0., 0., 0., 0.],
                                   [0., 0., 0., 0., 0., 0., 0., 0., 0.],
                                   [0., 0., 0., 0., 0., 0., 0., 0., 0.],
                                   [2., 0., 0., 0., 0., 0., 0., 0., 0.],
                                   [0., 2. / 3., 0., 0., 0., 0., 0., 0., 0.],
                                   [0., 0., 2. / 5., 0., 0., 0., 0., 0., 0.],
                                   [0., 0., 0., 2., 0., 0., 0., 0., 0.],
                                   [0., 0., 0., 0., 2. / 3., 0., 0., 0., 0.],
                                   [0., 0., 0., 0., 0., 2. / 5., 0., 0., 0.]])
    # Assert
    np.testing.assert_allclose(SMT, expected, rtol, atol)
Beispiel #6
0
def test_legendre_spacetime_massmatrix(order):
    '''
	This test makes sure that the already tested mass matrix yields
	the corrected inverse mass matrix with the diagonal inverted.
	'''
    basis = basis_defs.LegendreQuad(order)
    mesh = mesh_common.mesh_1D(num_elems=1, xmin=-1., xmax=1.)

    # Set quadrature
    basis.set_elem_quadrature_type("GaussLegendre")
    basis.set_face_quadrature_type("GaussLegendre")

    MM = basis_st_tools.get_elem_mass_matrix_ader(mesh, basis, order, -1)
    iMM = basis_st_tools.get_elem_inv_mass_matrix_ader(mesh, basis, order, -1)

    np.testing.assert_allclose(np.diagonal(iMM), 1. / np.diagonal(MM), rtol,
                               atol)
Beispiel #7
0
def test_temporal_flux_ader_tnp1(order):
    '''
	This test compares the analytical solution of the space-time temporal
	flux evaluated at t^{n+1} to the computed one.
	'''
    basis_st = basis_defs.LegendreQuad(order)
    mesh = mesh_common.mesh_1D(num_elems=1, xmin=-1., xmax=1.)

    # Set quadrature
    basis_st.set_elem_quadrature_type("GaussLegendre")
    basis_st.set_face_quadrature_type("GaussLegendre")
    mesh.gbasis.set_elem_quadrature_type("GaussLegendre")
    mesh.gbasis.set_face_quadrature_type("GaussLegendre")

    # Get flux matrices in time
    FTL = basis_st_tools.get_temporal_flux_ader(mesh,
                                                basis_st,
                                                basis_st,
                                                order,
                                                physical_space=False)
    '''
	Reference:
	Dumbser, M., Enaux, C., and Toro, E. JCP 2008
		Vol. 227, Issue 8, Pgs: 3971 - 4001 Appendix B
	'''
    # Multiply by 2.0 caused by reference element shift [0, 1] -> [-1, 1]
    if order == 1:
        expected = 2.0 * np.array([[1., 0., 1., 0.], [
            0., 1. / 3., 0., 1. / 3.
        ], [1., 0., 1., 0], [0., 1. / 3., 0., 1. / 3.]])
    elif order == 2:
        expected = 2.0 * np.array(
            [[1., 0., 0., 1., 0., 0., 1., 0., 0.],
             [0., 1. / 3., 0., 0., 1. / 3., 0., 0., 1. / 3., 0.],
             [0., 0., 1. / 5., 0., 0., 1. / 5., 0., 0., 1. / 5.],
             [1., 0., 0., 1., 0., 0., 1., 0., 0.],
             [0., 1. / 3., 0., 0., 1. / 3., 0., 0., 1. / 3., 0.],
             [0., 0., 1. / 5., 0., 0., 1. / 5., 0., 0., 1. / 5.],
             [1., 0., 0., 1., 0., 0., 1., 0., 0.],
             [0., 1. / 3., 0., 0., 1. / 3., 0., 0., 1. / 3., 0.],
             [0., 0., 1. / 5., 0., 0., 1. / 5., 0., 0., 1. / 5.]])

    # Assert
    np.testing.assert_allclose(FTL, expected, rtol, atol)
Beispiel #8
0
def test_legendre_spacetime_massmatrix_phys(order):
    '''
	This test compares the analytical solution of the space-time MM to 
	the computed one, but uses a physics element that spans [0.0, 0.5]
	'''
    basis = basis_defs.LegendreQuad(order)
    mesh = mesh_common.mesh_1D(num_elems=1, xmin=0., xmax=0.5)

    # Set quadrature
    basis.set_elem_quadrature_type("GaussLegendre")
    basis.set_face_quadrature_type("GaussLegendre")

    MM = basis_st_tools.get_elem_mass_matrix_ader(mesh,
                                                  basis,
                                                  order,
                                                  0,
                                                  physical_space=True)
    '''
	Reference:
	Dumbser, M., Enaux, C., and Toro, E. JCP 2008
		Vol. 227, Issue 8, Pgs: 3971 - 4001 Appendix B
	'''
    if order == 1:
        expected = np.array([[1., 0., 0., 0.], [0., 1. / 3., 0., 0.],
                             [0., 0., 1. / 3., 0], [0., 0., 0., 1. / 9.]])
    elif order == 2:
        expected = np.array([[1., 0., 0., 0., 0., 0., 0., 0., 0.],
                             [0., 1. / 3., 0., 0., 0., 0., 0., 0., 0.],
                             [0., 0., 1. / 5., 0., 0., 0., 0., 0., 0.],
                             [0., 0., 0., 1. / 3., 0., 0., 0., 0., 0.],
                             [0., 0., 0., 0., 1. / 9., 0., 0., 0., 0.],
                             [0., 0., 0., 0., 0., 1. / 15., 0., 0., 0.],
                             [0., 0., 0., 0., 0., 0., 1. / 5, 0., 0.],
                             [0., 0., 0., 0., 0., 0., 0., 1. / 15., 0.],
                             [0., 0., 0., 0., 0., 0., 0., 0., 1. / 25.]])
    # Assert
    np.testing.assert_allclose(MM, expected, rtol, atol)