Beispiel #1
0
def __powerise10(x):
    """ Returns x as a * 10 ^ b with 0<= a <10
    """
    if x == 0: return 0, 0
    Neg = x < 0
    if Neg: x = -x
    a = 1.0 * x / 10**(floor(log10(x)))
    b = int(floor(log10(x)))
    if Neg: a = -a
    return a, b
Beispiel #2
0
def better_features(filename: str, debug=False) -> List:
    img = cv2.imread(filename)
    img = cv2.resize(img, (400, 300))
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    clean = cv2.GaussianBlur(gray, (3, 3), 0)
    _, clean = cv2.threshold(clean, 100, 255, 0)
    DEBUG(clean, debug)
    hm = cv2.HuMoments(cv2.moments(clean)).flatten()
    for i in range(0, 7):
        hm[i] = -1 * \
            copysign(1.0, hm[i]) * log10(abs(hm[i]))
    # return hm
    return [hm[0], hm[1], hm[3]]
Beispiel #3
0
    def get_ticks_and_labels(self, data_low, data_high, bounds_low,
                             bounds_high):
        ticks = self.get_ticks(data_low, data_high, bounds_low, bounds_high,
                               'auto')
        labels = array(['{:n}'.format(t) for t in ticks])

        # only label 0.1,1,10,100,1000...
        try:
            labels[log10(ticks) % 1 != 0] = ''
        except ValueError:
            pass

        return ticks, labels
Beispiel #4
0
    def get_ticks(self, *args, **kw):
        oticks = super(SparseLogTicks, self).get_ticks(*args, **kw)

        # get only 0.1,1,10,100,1000...
        ticks = oticks[oticks > 0]
        ticks = ticks[log10(ticks) % 1 == 0]

        if ticks.shape[0] == 1:
            tlow = 10**math.floor(math.log10(ticks[0]))
            if tlow == ticks[0]:
                tlow = 10**math.floor(math.log10(ticks[0]) - 1)

            ticks = hstack(([tlow], ticks))
            ticks = hstack((ticks, [10**math.ceil(math.log10(oticks[-1]))]))

            ticks[0] = max(oticks[0], ticks[0])

        return ticks
Beispiel #5
0
    def get_ticks(self, *args, **kw):
        oticks = super(SparseLogTicks, self).get_ticks(*args, **kw)

        # get only 0.1,1,10,100,1000...
        ticks = oticks[oticks > 0]
        ticks = ticks[log10(ticks) % 1 == 0]

        if ticks.shape[0] == 1:
            tlow = 10 ** math.floor(math.log10(ticks[0]))
            if tlow == ticks[0]:
                tlow = 10 ** math.floor(math.log10(ticks[0]) - 1)

            ticks = hstack(([tlow], ticks))
            ticks = hstack((ticks, [10 ** math.ceil(math.log10(oticks[-1]))]))

            ticks[0] = max(oticks[0], ticks[0])

        return ticks
Beispiel #6
0
def to_hu_moments(filename: str, debug=False) -> List[float]:
    im = cv2.imread(filename, cv2.IMREAD_GRAYSCALE)
    # Binary Image
    ret, thresh = cv2.threshold(im, 127, 255, 0)
    # Processing
    # Finding contours
    contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE,
                                           cv2.CHAIN_APPROX_NONE)
    # Sorting Contours
    contours.sort(key=lambda x: cv2.contourArea(x), reverse=True)
    cnt = contours[1]  # First is a box containing the hole image.

    x, y, w, h = cv2.boundingRect(cnt)
    # Cutted image to avoid shadows.
    im = im[y:y + h, x:x + w]

    DEBUG(im, mode="plt", debug=debug)

    # im = cv2.GaussianBlur(im, (5, 5), 0)
    _, im = cv2.threshold(im, 100, 255, cv2.THRESH_BINARY)

    DEBUG(im, mode="plt", debug=debug)

    contours, hierarchy = cv2.findContours(im, cv2.RETR_LIST,
                                           cv2.CHAIN_APPROX_NONE)
    contours.sort(key=lambda x: cv2.contourArea(x), reverse=True)

    for cnt in contours[1:]:
        cv2.fillPoly(im, pts=[cnt], color=(0, 0, 0))
    #     img = cv2.drawContours(im, cnt, -1, (255), cv2.FILLED)

    DEBUG(im, mode="plt", debug=debug)

    # Calculate Moments
    moments = cv2.moments(im)
    # Calculate Hu Moments
    huMoments = cv2.HuMoments(moments)
    # Log scale hu moments
    for i in range(0, 7):
        huMoments[i] = -1 * \
            copysign(1.0, huMoments[i]) * log10(abs(huMoments[i]))
    return huMoments[:-3]
Beispiel #7
0
def histogramdd(sample, bins=10, range=None, normed=False, weights=None):
    """histogramdd(sample, bins=10, range=None, normed=False, weights=None)

    Return the N-dimensional histogram of the sample.

    Parameters:

        sample : sequence or array
            A sequence containing N arrays or an NxM array. Input data.

        bins : sequence or scalar
            A sequence of edge arrays, a sequence of bin counts, or a scalar
            which is the bin count for all dimensions. Default is 10.

        range : sequence
            A sequence of lower and upper bin edges. Default is [min, max].

        normed : boolean
            If False, return the number of samples in each bin, if True,
            returns the density.

        weights : array
            Array of weights.  The weights are normed only if normed is True.
            Should the sum of the weights not equal N, the total bin count will
            not be equal to the number of samples.

    Returns:

        hist : array
            Histogram array.

        edges : list
            List of arrays defining the lower bin edges.

    SeeAlso:

        histogram

    Example

        >>> x = random.randn(100,3)
        >>> hist3d, edges = histogramdd(x, bins = (5, 6, 7))

    """

    try:
        # Sample is an ND-array.
        N, D = sample.shape
    except (AttributeError, ValueError):
        # Sample is a sequence of 1D arrays.
        sample = atleast_2d(sample).T
        N, D = sample.shape

    nbin = empty(D, int)
    edges = D * [None]
    dedges = D * [None]
    if weights is not None:
        weights = asarray(weights)

    try:
        M = len(bins)
        if M != D:
            raise AttributeError, 'The dimension of bins must be a equal to the dimension of the sample x.'
    except TypeError:
        bins = D * [bins]

    # Select range for each dimension
    # Used only if number of bins is given.
    if range is None:
        smin = atleast_1d(array(sample.min(0), float))
        smax = atleast_1d(array(sample.max(0), float))
    else:
        smin = zeros(D)
        smax = zeros(D)
        for i in arange(D):
            smin[i], smax[i] = range[i]

    # Make sure the bins have a finite width.
    for i in arange(len(smin)):
        if smin[i] == smax[i]:
            smin[i] = smin[i] - .5
            smax[i] = smax[i] + .5

    # Create edge arrays
    for i in arange(D):
        if isscalar(bins[i]):
            nbin[i] = bins[i] + 2  # +2 for outlier bins
            edges[i] = linspace(smin[i], smax[i], nbin[i] - 1)
        else:
            edges[i] = asarray(bins[i], float)
            nbin[i] = len(edges[i]) + 1  # +1 for outlier bins
        dedges[i] = diff(edges[i])

    nbin = asarray(nbin)

    # Compute the bin number each sample falls into.
    Ncount = {}
    for i in arange(D):
        Ncount[i] = digitize(sample[:, i], edges[i])

    # Using digitize, values that fall on an edge are put in the right bin.
    # For the rightmost bin, we want values equal to the right
    # edge to be counted in the last bin, and not as an outlier.
    outliers = zeros(N, int)
    for i in arange(D):
        # Rounding precision
        decimal = int(-log10(dedges[i].min())) + 6
        # Find which points are on the rightmost edge.
        on_edge = where(
            around(sample[:, i], decimal) == around(edges[i][-1], decimal))[0]
        # Shift these points one bin to the left.
        Ncount[i][on_edge] -= 1

    # Flattened histogram matrix (1D)
    hist = zeros(nbin.prod(), float)

    # Compute the sample indices in the flattened histogram matrix.
    ni = nbin.argsort()
    shape = []
    xy = zeros(N, int)
    for i in arange(0, D - 1):
        xy += Ncount[ni[i]] * nbin[ni[i + 1:]].prod()
    xy += Ncount[ni[-1]]

    # Compute the number of repetitions in xy and assign it to the flattened histmat.
    if len(xy) == 0:
        return zeros(nbin - 2, int), edges

    flatcount = bincount(xy, weights)
    a = arange(len(flatcount))
    hist[a] = flatcount

    # Shape into a proper matrix
    hist = hist.reshape(sort(nbin))
    for i in arange(nbin.size):
        j = ni[i]
        hist = hist.swapaxes(i, j)
        ni[i], ni[j] = ni[j], ni[i]

    # Remove outliers (indices 0 and -1 for each dimension).
    core = D * [slice(1, -1)]
    hist = hist[core]

    # Normalize if normed is True
    if normed:
        s = hist.sum()
        for i in arange(D):
            shape = ones(D, int)
            shape[i] = nbin[i] - 2
            hist = hist / dedges[i].reshape(shape)
        hist /= s

    return hist, edges
Beispiel #8
0
def log_opp(x):
    return 105*log10(x+1)
def histogramdd(sample, bins=10, range=None, normed=False, weights=None):
    """histogramdd(sample, bins=10, range=None, normed=False, weights=None)

    Return the N-dimensional histogram of the sample.

    Parameters:

        sample : sequence or array
            A sequence containing N arrays or an NxM array. Input data.

        bins : sequence or scalar
            A sequence of edge arrays, a sequence of bin counts, or a scalar
            which is the bin count for all dimensions. Default is 10.

        range : sequence
            A sequence of lower and upper bin edges. Default is [min, max].

        normed : boolean
            If False, return the number of samples in each bin, if True,
            returns the density.

        weights : array
            Array of weights.  The weights are normed only if normed is True.
            Should the sum of the weights not equal N, the total bin count will
            not be equal to the number of samples.

    Returns:

        hist : array
            Histogram array.

        edges : list
            List of arrays defining the lower bin edges.

    SeeAlso:

        histogram

    Example

        >>> x = random.randn(100,3)
        >>> hist3d, edges = histogramdd(x, bins = (5, 6, 7))

    """

    try:
        # Sample is an ND-array.
        N, D = sample.shape
    except (AttributeError, ValueError):
        # Sample is a sequence of 1D arrays.
        sample = atleast_2d(sample).T
        N, D = sample.shape

    nbin = empty(D, int)
    edges = D*[None]
    dedges = D*[None]
    if weights is not None:
        weights = asarray(weights)

    try:
        M = len(bins)
        if M != D:
            raise AttributeError, 'The dimension of bins must be a equal to the dimension of the sample x.'
    except TypeError:
        bins = D*[bins]

    # Select range for each dimension
    # Used only if number of bins is given.
    if range is None:
        smin = atleast_1d(array(sample.min(0), float))
        smax = atleast_1d(array(sample.max(0), float))
    else:
        smin = zeros(D)
        smax = zeros(D)
        for i in arange(D):
            smin[i], smax[i] = range[i]

    # Make sure the bins have a finite width.
    for i in arange(len(smin)):
        if smin[i] == smax[i]:
            smin[i] = smin[i] - .5
            smax[i] = smax[i] + .5

    # Create edge arrays
    for i in arange(D):
        if isscalar(bins[i]):
            nbin[i] = bins[i] + 2 # +2 for outlier bins
            edges[i] = linspace(smin[i], smax[i], nbin[i]-1)
        else:
            edges[i] = asarray(bins[i], float)
            nbin[i] = len(edges[i])+1  # +1 for outlier bins
        dedges[i] = diff(edges[i])

    nbin =  asarray(nbin)

    # Compute the bin number each sample falls into.
    Ncount = {}
    for i in arange(D):
        Ncount[i] = digitize(sample[:,i], edges[i])

    # Using digitize, values that fall on an edge are put in the right bin.
    # For the rightmost bin, we want values equal to the right
    # edge to be counted in the last bin, and not as an outlier.
    outliers = zeros(N, int)
    for i in arange(D):
        # Rounding precision
        decimal = int(-log10(dedges[i].min())) +6
        # Find which points are on the rightmost edge.
        on_edge = where(around(sample[:,i], decimal) == around(edges[i][-1], decimal))[0]
        # Shift these points one bin to the left.
        Ncount[i][on_edge] -= 1

    # Flattened histogram matrix (1D)
    hist = zeros(nbin.prod(), float)

    # Compute the sample indices in the flattened histogram matrix.
    ni = nbin.argsort()
    shape = []
    xy = zeros(N, int)
    for i in arange(0, D-1):
        xy += Ncount[ni[i]] * nbin[ni[i+1:]].prod()
    xy += Ncount[ni[-1]]

    # Compute the number of repetitions in xy and assign it to the flattened histmat.
    if len(xy) == 0:
        return zeros(nbin-2, int), edges

    flatcount = bincount(xy, weights)
    a = arange(len(flatcount))
    hist[a] = flatcount

    # Shape into a proper matrix
    hist = hist.reshape(sort(nbin))
    for i in arange(nbin.size):
        j = ni[i]
        hist = hist.swapaxes(i,j)
        ni[i],ni[j] = ni[j],ni[i]

    # Remove outliers (indices 0 and -1 for each dimension).
    core = D*[slice(1,-1)]
    hist = hist[core]

    # Normalize if normed is True
    if normed:
        s = hist.sum()
        for i in arange(D):
            shape = ones(D, int)
            shape[i] = nbin[i]-2
            hist = hist / dedges[i].reshape(shape)
        hist /= s

    return hist, edges