Beispiel #1
0
    def concatenate(self,value,axis=0):
        """ Concatentate UncertContainer value to self.
            Assumes that if dimensions of self and value do not match, to 
            add a np.newaxis along axis of value
        """

        if isinstance(value,UncertContainer):
            if value.vals.ndim == self.vals.ndim:
                vals = value.vals
                dmin = value.dmin
                dmax = value.dmax
                wt = value.wt
                uncert = value.uncert
                mask = value.mask
            elif (value.vals.ndim + 1) == self.vals.ndim:
                vals =  ma.expand_dims(value.vals,axis)
                dmin =  ma.expand_dims(value.dmin,axis)
                dmax =  ma.expand_dims(value.dmax,axis)
                wt =  ma.expand_dims(value.wt,axis)
                uncert =  ma.expand_dims(value.uncert,axis)
                mask =  np.expand_dims(value.mask,axis)
            else:
                raise ValueError('Could not propery match dimensionality')
                
            self.vals = ma.concatenate((self.vals,vals),axis=axis)
            self.dmin = ma.concatenate((self.dmin,dmin),axis=axis)
            self.dmax = ma.concatenate((self.dmax,dmax),axis=axis)
            self.wt = ma.concatenate((self.wt,wt),axis=axis)
            self.uncert = ma.concatenate((self.uncert,uncert),axis=axis)
            
            self.mask = np.concatenate((self.mask,mask),axis=axis)
        else:
            raise ValueError('Can only concatenate with an UncertContainer object')
Beispiel #2
0
    def period_standardize(self, axis=None, dtype=None, ddof=1, period=None):
        """
    Standardizes data by substracting the average over a reference period,
    and by dividing by the standard deviation over the same period.
    

    Parameters
    ----------
    %(axis)s
    %(dtype)s
    %(ddof)s
    %(period)s

    Warnings
    --------
    The default ``ddof`` is 1: 
    by default, the method returns the unbiased estimate of the standard deviation.
    
        """
        if period is None:
            period = self.refperiod
        elif not isinstance(period, (tuple, list, ndarray)):
            msg = "Period should be a tuple (starting date, ending date)!"
            raise ValueError, msg
        refdata = mask_outside_period(self, period[0], period[1],
                                      include_edges=False)
        refavg = refdata.mean(axis=axis, dtype=dtype)
        refstd = refdata.std(axis=axis, dtype=dtype, ddof=ddof)
        if not axis:
            result = (self - refavg) * 1. / refstd
        else:
            result = (self - ma.expand_dims(refavg)).astype(float)
            result /= ma.expand_dims(refstd)
        return result
Beispiel #3
0
    def weighted_average(self, axis=0, expaxis=None):
        """ Calculate weighted average of data along axis
            after optionally inserting a new dimension into the
            shape array at position expaxis
        """

        if expaxis is not None:
            vals = ma.expand_dims(self.vals, expaxis)
            dmin = ma.expand_dims(self.dmin, expaxis)
            dmax = ma.expand_dims(self.dmax, expaxis)
            wt = ma.expand_dims(self.wt, expaxis)
        else:
            vals = self.vals
            wt = self.wt
            dmin = self.dmin
            dmax = self.dmax

        # Get average value
        avg, norm = ma.average(vals, axis=axis, weights=wt, returned=True)
        avg_ex = ma.expand_dims(avg, 0)

        # Calculate weighted uncertainty
        wtmax = ma.max(wt, axis=axis)
        neff = norm / wtmax  # Effective number of samples based on uncertainties

        # Seeking max deviation from the average; if above avg use max, if below use min
        term = np.empty_like(vals)

        indices = np.where(vals > avg_ex)
        i0 = indices[0]
        irest = indices[1:]
        ii = tuple(x for x in itertools.chain([i0], irest))
        jj = tuple(x for x in itertools.chain([np.zeros_like(i0)], irest))
        term[ii] = (dmax[ii] - avg_ex[jj])**2

        indices = np.where(vals <= avg_ex)
        i0 = indices[0]
        irest = indices[1:]
        ii = tuple(x for x in itertools.chain([i0], irest))
        jj = tuple(x for x in itertools.chain([np.zeros_like(i0)], irest))
        term[ii] = (avg_ex[jj] - dmin[ii])**2

        dsum = ma.sum(term * wt,
                      axis=0)  # Sum for weighted average of deviations

        dev = 0.5 * np.sqrt(dsum / (norm * neff))

        if isinstance(avg, (float, np.float)):
            avg = avg_ex

        tmp_min = avg - dev
        ii = np.where(tmp_min < 0)
        tmp_min[ii] = TOL * avg[ii]

        return UncertContainer(avg, tmp_min, avg + dev)
Beispiel #4
0
    def weighted_average(self,axis=0,expaxis=None):
        """ Calculate weighted average of data along axis
            after optionally inserting a new dimension into the
            shape array at position expaxis
        """

        if expaxis is not None:
            vals = ma.expand_dims(self.vals,expaxis)
            dmin = ma.expand_dims(self.dmin,expaxis)
            dmax = ma.expand_dims(self.dmax,expaxis)
            wt = ma.expand_dims(self.wt,expaxis)
        else:
            vals = self.vals
            wt = self.wt
            dmin = self.dmin
            dmax = self.dmax
        
        # Get average value
        avg,norm = ma.average(vals,axis=axis,weights=wt,returned=True)
        avg_ex = ma.expand_dims(avg,0)

        # Calculate weighted uncertainty
        wtmax = ma.max(wt,axis=axis)
        neff = norm/wtmax       # Effective number of samples based on uncertainties

        # Seeking max deviation from the average; if above avg use max, if below use min
        term = np.empty_like(vals)
        
        indices = np.where(vals > avg_ex)
        i0 = indices[0]
        irest = indices[1:]
        ii = tuple(x for x in itertools.chain([i0],irest))
        jj = tuple(x for x in itertools.chain([np.zeros_like(i0)],irest))
        term[ii] = (dmax[ii] - avg_ex[jj])**2
        
        indices = np.where(vals <= avg_ex)
        i0 = indices[0]
        irest = indices[1:]
        ii = tuple(x for x in itertools.chain([i0],irest))
        jj = tuple(x for x in itertools.chain([np.zeros_like(i0)],irest))
        term[ii] = (avg_ex[jj] - dmin[ii])**2
        
        dsum = ma.sum(term*wt,axis=0)     # Sum for weighted average of deviations

        dev = 0.5*np.sqrt(dsum/(norm*neff))
        
        if isinstance(avg,(float,np.float)):
            avg = avg_ex

        tmp_min = avg - dev
        ii = np.where(tmp_min < 0)
        tmp_min[ii] = TOL*avg[ii]
        
        return UncertContainer(avg,tmp_min,avg+dev)
Beispiel #5
0
def execute(mp):
    """Read, stretch and return tile."""
    # read parameters
    resampling = mp.params["resampling"]
    scale_method = mp.params.get("scale_method", None)
    scales_minmax = mp.params["scales_minmax"]

    with mp.open("raster", resampling=resampling) as raster_file:
        # exit if input tile is empty
        if raster_file.is_empty():
            return "empty"
        resampled = ()
        mask = ()
        # actually read data and iterate through bands
        raster_data = raster_file.read()
        if raster_data.ndim == 2:
            raster_data = ma.expand_dims(raster_data, axis=0)
        if not scale_method:
            scales_minmax = [(i, i) for i in range(len(raster_data))]
        for band, scale_minmax in zip(raster_data, scales_minmax):
            if scale_method in ["dtype_scale", "minmax_scale"]:
                scale_min, scale_max = scale_minmax
                resampled += (_stretch_array(band, scale_min, scale_max), )
            elif scale_method == "crop":
                scale_min, scale_max = scale_minmax
                band[band > scale_max] = scale_max
                band[band <= scale_min] = scale_min
                resampled += (band, )
            else:
                resampled += (band, )
            mask += (band.mask, )

    return ma.masked_array(np.stack(resampled), np.stack(mask))
Beispiel #6
0
def execute(
    mp,
    resampling="nearest",
    scale_method=None,
    scales_minmax=None,
    **kwargs
):
    """Read, stretch and return tile."""
    with mp.open("raster", resampling=resampling) as raster_file:

        # exit if input tile is empty
        if raster_file.is_empty():
            return "empty"

        # actually read data and iterate through bands
        scaled = ()
        mask = ()
        raster_data = raster_file.read()
        if raster_data.ndim == 2:
            raster_data = ma.expand_dims(raster_data, axis=0)
        if not scale_method:
            scales_minmax = [(i, i) for i in range(len(raster_data))]

        for band, (scale_min, scale_max) in zip(raster_data, scales_minmax):
            if scale_method in ["dtype_scale", "minmax_scale"]:
                scaled += (_stretch_array(band, scale_min, scale_max), )
            elif scale_method == "crop":
                scaled += (np.clip(band, scale_min, scale_max), )
            else:
                scaled += (band, )
            mask += (band.mask, )

    return ma.masked_array(np.stack(scaled), np.stack(mask))
Beispiel #7
0
def ma_mad(x, axis=None):
    """Median absolute deviation"""
    median_x = ma.median(x, axis=axis)
    if axis is not None:
        median_x = ma.expand_dims(median_x, axis=axis)

    return ma.median(ma.abs(x - median_x), axis=axis)
Beispiel #8
0
def resample_from_array(
    in_raster=None, in_affine=None, out_tile=None, resampling="nearest",
    nodataval=0
):
    """
    Extract and resample from array to target tile.

    Parameters
    ----------
    in_raster : array
    in_affine : ``Affine``
    out_tile : ``BufferedTile``
    resampling : string
        one of rasterio's resampling methods (default: nearest)
    nodataval : integer or float
        raster nodata value (default: 0)

    Returns
    -------
    resampled array : array
    """
    if isinstance(in_raster, ma.MaskedArray):
        pass
    if isinstance(in_raster, np.ndarray):
        in_raster = ma.MaskedArray(in_raster, mask=in_raster == nodataval)
    elif isinstance(in_raster, ReferencedRaster):
        in_affine = in_raster.affine
        in_raster = in_raster.data
    elif isinstance(in_raster, tuple):
        in_raster = ma.MaskedArray(
            data=np.stack(in_raster),
            mask=np.stack([
                band.mask
                if isinstance(band, ma.masked_array)
                else np.where(band == nodataval, True, False)
                for band in in_raster
            ]),
            fill_value=nodataval
        )
    else:
        raise TypeError("wrong input data type: %s" % type(in_raster))
    if in_raster.ndim == 2:
        in_raster = ma.expand_dims(in_raster, axis=0)
    elif in_raster.ndim == 3:
        pass
    else:
        raise TypeError("input array must have 2 or 3 dimensions")
    if in_raster.fill_value != nodataval:
        ma.set_fill_value(in_raster, nodataval)
    out_shape = (in_raster.shape[0], ) + out_tile.shape
    dst_data = np.empty(out_shape, in_raster.dtype)
    in_raster = ma.masked_array(
        data=in_raster.filled(), mask=in_raster.mask, fill_value=nodataval)
    reproject(
        in_raster, dst_data, src_transform=in_affine, src_crs=out_tile.crs,
        dst_transform=out_tile.affine, dst_crs=out_tile.crs,
        resampling=Resampling[resampling])
    return ma.MaskedArray(dst_data, mask=dst_data == nodataval)
Beispiel #9
0
    def period_standardize(self, axis=None, dtype=None, ddof=1, period=None):
        """
    Standardizes data by substracting the average over a reference period,
    and by dividing by the standard deviation over the same period.
    

    Parameters
    ----------
    %(axis)s
    %(dtype)s
    %(ddof)s
    %(period)s

    Warnings
    --------
    The default ``ddof`` is 1: 
    by default, the method returns the unbiased estimate of the standard deviation.
    
        """
        if period is None:
            period = self.refperiod
        elif not isinstance(period, (tuple, list, ndarray)):
            msg = "Period should be a tuple (starting date, ending date)!"
            raise ValueError, msg
        refdata = mask_outside_period(self,
                                      period[0],
                                      period[1],
                                      include_edges=False)
        refavg = refdata.mean(axis=axis, dtype=dtype)
        refstd = refdata.std(axis=axis, dtype=dtype, ddof=ddof)
        if not axis:
            result = (self - refavg) * 1. / refstd
        else:
            result = (self - ma.expand_dims(refavg)).astype(float)
            result /= ma.expand_dims(refstd)
        return result
Beispiel #10
0
def prepare_array(data, masked=True, nodata=0, dtype="int16"):
    """
    Turn input data into a proper array for further usage.

    Output array is always 3-dimensional with the given data type. If the output
    is masked, the fill_value corresponds to the given nodata value and the
    nodata value will be burned into the data array.

    Parameters
    ----------
    data : array or iterable
        array (masked or normal) or iterable containing arrays
    nodata : integer or float
        nodata value (default: 0) used if input is not a masked array and
        for output array
    masked : bool
        return a NumPy Array or a NumPy MaskedArray (default: True)
    dtype : string
        data type of output array (default: "int16")

    Returns
    -------
    array : array
    """
    # input is iterable
    if isinstance(data, (list, tuple)):
        return _prepare_iterable(data, masked, nodata, dtype)

    # special case if a 2D single band is provided
    elif isinstance(data, np.ndarray) and data.ndim == 2:
        data = ma.expand_dims(data, axis=0)

    # input is a masked array
    if isinstance(data, ma.MaskedArray):
        return _prepare_masked(data, masked, nodata, dtype)

    # input is a NumPy array
    elif isinstance(data, np.ndarray):
        if masked:
            return ma.masked_values(data.astype(dtype, copy=False),
                                    nodata,
                                    copy=False)
        else:
            return data.astype(dtype, copy=False)
    else:
        raise ValueError(
            "Data must be array, masked array or iterable containing arrays. "
            "Current data: %s (%s)" % (data, type(data)))
Beispiel #11
0
    def log_objective_function(x, *inner_args, **inner_kwargs):
        import numpy.ma as ma

        value, jacobian = objective_function(x, *inner_args, **inner_kwargs)
        masked_value = ma.masked_equal(value, 0)

        log_value = ma.log(masked_value)

        # We need expand_dims here because value is lower-dimensional than jacobian, but they must have the same
        # dimensionality for numpy broadcasting to work here.
        log_jacobian = jacobian / ma.expand_dims(masked_value, -1)

        log_value = ma.filled(log_value, -1e100)
        log_jacobian = ma.filled(log_jacobian, np.random.randn())

        return log_value, log_jacobian
Beispiel #12
0
    def read(self, indexes=None, **kwargs):
        """
        Read reprojected & resampled input data.

        Parameters
        ----------
        indexes : integer or list
            band number or list of band numbers

        Returns
        -------
        data : array
        """
        band_indexes = self._get_band_indexes(indexes)
        arr = self.process.get_raw_output(self.tile)
        return (arr[band_indexes[0] -
                    1] if len(band_indexes) == 1 else ma.concatenate(
                        [ma.expand_dims(arr[i - 1], 0) for i in band_indexes]))
Beispiel #13
0
    def period_anomalies(self, axis=None, dtype=None, period=None):
        """
    Returns data anomalies (deviations from average), where the average
    is defined on a reference period, along a given axis.

    Parameters
    ----------
    %(axis)s
    %(dtype)s
    %(period)s
        
        """
        if period is None:
            period = self.refperiod
        elif not isinstance(period, (tuple, list, ndarray)):
            msg = "Period should be a tuple (starting date, ending date)!"
            raise ValueError(msg)
        period_mean = self.period_mean(axis=axis, dtype=dtype, period=period)
        if not axis:
            return self - period_mean
        else:
            return self - ma.expand_dims(period_mean, axis)
Beispiel #14
0
    def period_anomalies(self, axis=None, dtype=None, period=None):
        """
    Returns data anomalies (deviations from average), where the average
    is defined on a reference period, along a given axis.

    Parameters
    ----------
    %(axis)s
    %(dtype)s
    %(period)s
        
        """
        if period is None:
            period = self.refperiod
        elif not isinstance(period, (tuple, list, ndarray)):
            msg = "Period should be a tuple (starting date, ending date)!"
            raise ValueError(msg)
        period_mean = self.period_mean(axis=axis, dtype=dtype, period=period)
        if not axis:
            return self - period_mean
        else:
            return self - ma.expand_dims(period_mean, axis)
Beispiel #15
0
def _add_axes_back(arr, axis):
    '''
    Add axes back in again after they've been processed out.
    
    This is not a great implementation. I'm sure it can be improved upon. The
    only reason this function exists at all is because the numpy.ma math
    functions don't consistently take the keepdims option.
    '''
    # Here is the scenario. We have some array whose shape was originally
    # something like (a,b,c,d). We processed out the second and fourth axes
    # by summing over them (axis=(1,3)). At this point, we have an array whose
    # shape is now (a,c). Unfortunately, this array shape does not work well
    # for broadcasting against our original data. What we need is an array
    # with shape (a,1,c,1).
    #
    # So, this function needs to call ma.expand_dims once for each axis that
    # was removed.

    # make sure axis is iterable
    try:
        iter(axis)
    except TypeError:
        # singleton. Make iterable.
        axis = (axis, )

    if arr is ma.masked:
        # For reasons unknown, ma.expand_dims does nothing for the ma.masked.
        # Other singletons work fine. No idea why. I've submitted a bug report:
        # https://github.com/numpy/numpy/issues/7424
        new_shape = np.ones(len(axis), dtype=int)
        new_arr = np.zeros(new_shape)
        new_arr = ma.masked_array(data=new_arr, mask=True)
    else:
        # Otherwise, systematically add back the dimensions removed.
        new_arr = ma.copy(arr)
        for i in np.sort(axis):
            new_arr = ma.expand_dims(new_arr, i)

    return new_arr
Beispiel #16
0
def combine_signals(X_all,
                    Y_class,
                    Y_loc,
                    defo_m,
                    APS_topo_m,
                    APS_turb_m,
                    heading,
                    dem,
                    defo_source,
                    defo_sources,
                    loc_list,
                    outputs,
                    succesful_generate,
                    sar_speckle_strength=0.05):
    """ Given the synthetic outputs and labels (X and Y) and the parts of the synthetic data, combine into different formats and write to dictionary (X_all)
    Inputs:
        X_all | dict of masked arrays | keys are formats (e.g. uuu), then rank 4 masked array
        Y_class | rank 2 array | class labels, n x 1 (ie not one hot encoding)
        Y_loc | rank 2 array |  location of deformaiton, nx4 (xy location, xy width)
        defo_m | rank 2 array | deformation in metres, not masked
        APS_topo_m | rank 2 array | topographically correlated APS, incoherence and water masked out.  
        APS_turb_m | rank 2 array | tubulent APS, not masked
        heading | float | in degrees.  e.g. 192 or 012
        dem | rank 2 masked array | the  DEM.  Needed to make radar amplitude.  
        defo_source_n | int | 0 = no def, 1 = dyke, 2 = sill, 3 = Mogi.  No 0's should be passed to this as it makes no deformatio nsignals.  
        loc_list | list of tuples | xy of centre of location box, and xy width.  e.g [(186, 162), (69, 75)]
        outputs | list of strings | e.g. ['uuu', 'uud']
        succesful_generate | int | which number within a file we've generated so far
        sar_speckle_strength | float | strength (variance) of gaussain speckled noise added to SAR real and imaginary
    Returns:
        X_all | as above, but updated
        Y_class  | as above, but updated
        Y_loc  | as above, but updated
        succesful | boolean | True if no nans are present.  False if nans are
    History:
        2020/08/20 | MEG | Written from exisiting scripts.  
        2020/10/19 | MEG | Fix bug that nans_present was being returned, instead of succesful (and they are generally the opposite of each other)
    """
    import numpy as np
    import numpy.ma as ma
    from matplotlib.colors import LightSource  # used to make a synthetic Radar return.

    def normalise_m1_1(r2_array):
        """ Rescale a rank 2 array so that it lies within the range[-1, 1]
        """
        import numpy as np
        r2_array = r2_array - np.min(r2_array)
        r2_array = 2 * (r2_array / np.max(r2_array))
        r2_array -= 1
        return r2_array

    s1_wav = 0.056  # Sentinel-1 wavelength in m
    incidence = 30  # ditto - 30 roughly right for S1

    # 1 Create ph_all and classes and locations, depending on if we want deformation or not.
    if defo_source == 'no_def':
        ph_all = ((4 * np.pi) / s1_wav) * (
            APS_topo_m + APS_turb_m
        )  # comnbine the signals in m, then convert to rads
        Y_loc[succesful_generate, :] = np.array(
            [0, 0, 0, 0])  # 0 0 0 0 for no deformaiton
    else:
        ph_all = ((4 * np.pi) / s1_wav) * (
            APS_topo_m + APS_turb_m + defo_m
        )  # combine the signals in m, then convert to rads.  Here we include deformation.
        Y_loc[succesful_generate, :] = np.array(
            [loc_list[0][0], loc_list[0][1], loc_list[1][0],
             loc_list[1][1]])  # location of deformation
    Y_class[succesful_generate,
            0] = defo_sources.index(defo_source)  # write the label as a number
    ph_all_wrap = (ph_all + np.pi) % (2 * np.pi) - np.pi  # wrap

    #1 Genreate SAR amplitude
    look_az = heading - 90
    look_in = 90 - incidence  #
    ls = LightSource(azdeg=look_az, altdeg=look_in)
    sar_amplitude = normalise_m1_1(ls.hillshade(dem))  # in range [-1, 1]

    # make real and imaginary
    ifg_real = sar_amplitude * np.cos(ph_all_wrap)
    ifg_imaginary = sar_amplitude * np.sin(ph_all_wrap)
    ifg_real = ifg_real + sar_speckle_strength * np.random.randn(
        ifg_real.shape[0], ifg_real.shape[1])  # add noise to real
    ifg_imaginary = ifg_imaginary + sar_speckle_strength * np.random.randn(
        ifg_real.shape[0], ifg_real.shape[1])  # and imaginary

    # make things rank 4
    unwrapped = ma.expand_dims(ma.expand_dims(ph_all, axis=0), axis=3)
    dem = ma.expand_dims(ma.expand_dims(dem, axis=0), axis=3)
    ifg_real = ma.expand_dims(ma.expand_dims(ifg_real, axis=0), axis=3)
    ifg_imaginary = ma.expand_dims(ma.expand_dims(ifg_imaginary, axis=0),
                                   axis=3)
    wrapped = ma.expand_dims(ma.expand_dims(ph_all_wrap, axis=0), axis=3)

    # Check for Nans
    nans_present = False  #initiate
    for signal in [unwrapped, dem, ifg_real, ifg_imaginary, wrapped]:
        nans_present = np.logical_or(
            nans_present,
            np.max(np.isnan(signal).astype(int)).astype(bool)
        )  # check if nans in current signal, and update succesful.
    if nans_present:
        succesful = False
        print(f"| Failed due to Nans ", end='')
    else:
        succesful = True
        for output in outputs:
            if output == 'uuu':
                X_all[output][succesful_generate, ] = ma.concatenate(
                    (unwrapped, unwrapped, unwrapped), axis=3)  # uuu
            elif output == 'uud':
                X_all[output][succesful_generate, ] = ma.concatenate(
                    (unwrapped, unwrapped, dem), axis=3)  # uud
            elif output == 'rid':
                X_all[output][succesful_generate, ] = ma.concatenate(
                    (ifg_real, ifg_imaginary, dem), axis=3)  # rid
            elif output == 'www':
                X_all[output][succesful_generate, ] = ma.concatenate(
                    (wrapped, wrapped, wrapped), axis=3)  # www
            elif output == 'wwd':
                X_all[output][succesful_generate, ] = ma.concatenate(
                    (wrapped, wrapped, dem), axis=3)  #wwd
            else:
                raise Exception(
                    "Error in output format.  Should only be either 'uuu', 'uud', 'rid', 'www', or 'wwd'.  Exiting.  "
                )

    return X_all, Y_class, Y_loc, succesful
Beispiel #17
0
    def getSlicedArray(self, copy=True):
        """ Slice the rti using a tuple of slices made from the values of the combo and spin boxes.

            :param copy: If True (the default), a copy is made so that inspectors cannot
                accidentally modify the underlying of the RTIs. You can set copy=False as a
                potential optimization, but only if you are absolutely sure that you don't modify
                the the slicedArray in your inspector! Note that this function calls transpose,
                which can still make a copy of the array for certain permutations.

            :return: Numpy masked array with the same number of dimension as the number of
                comboboxes (this can be zero!).

                Returns None if no slice can be made (i.e. the RTI is not sliceable).
        """
        #logger.debug("getSlicedArray() called")

        if not self.rtiIsSliceable:
            return None

        # The dimensions that are selected in the combo boxes will be set to slice(None),
        # the values from the spin boxes will be set as a single integer value
        nDims = self.rti.nDims
        sliceList = [slice(None)] * nDims

        for spinBox in self._spinBoxes:
            dimNr = spinBox.property("dim_nr")
            sliceList[dimNr] = spinBox.value()

        # Make the array slicer. It needs to be a tuple, a list of only integers will be
        # interpreted as an index. With a tuple, array[(exp1, exp2, ..., expN)] is equivalent to
        # array[exp1, exp2, ..., expN].
        # See: http://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
        logger.debug("Array slice list: {}".format(str(sliceList)))
        slicedArray = self.rti[tuple(sliceList)]

        # Make a copy to prevent inspectors from modifying the underlying array.
        if copy:
            slicedArray = ma.copy(slicedArray)

        # If there are no comboboxes the sliceList will contain no Slices objects, only ints. Then
        # the resulting slicedArray will be a usually a scalar (only structured fields may yield an
        # array). We convert this scalar to a zero-dimensional Numpy array so that inspectors
        # always get an array (having the same number of dimensions as the dimensionality of the
        # inspector, i.e. the number of comboboxes).
        if self.maxCombos == 0:
            slicedArray = ma.MaskedArray(slicedArray)

        # Post-condition type check
        check_is_an_array(slicedArray, np.ndarray)

        # Enforce the return type to be a masked array.
        if not isinstance(slicedArray, ma.MaskedArray):
            slicedArray = ma.MaskedArray(slicedArray)

        # Add fake dimensions of length 1 so that result.ndim will equal the number of combo boxes
        for dimNr in range(slicedArray.ndim, self.maxCombos):
            #logger.debug("Adding fake dimension: {}".format(dimNr))
            slicedArray = ma.expand_dims(slicedArray, dimNr)

        # Post-condition dimension check
        assert slicedArray.ndim == self.maxCombos, \
            "Bug: getSlicedArray should return a {:d}D array, got: {}D" \
            .format(self.maxCombos, slicedArray.ndim)

        # Convert to ArrayWithMask class for working around issues with the numpy maskedarray
        awm = ArrayWithMask.createFromMaskedArray(slicedArray)
        del slicedArray

        # Shuffle the dimensions to be in the order as specified by the combo boxes
        comboDims = [
            self._comboBoxDimensionIndex(cb) for cb in self._comboBoxes
        ]
        permutations = np.argsort(comboDims)
        logger.debug("slicedArray.shape: {}".format(awm.data.shape))
        logger.debug("Transposing dimensions: {}".format(permutations))
        awm = awm.transpose(permutations)

        awm.checkIsConsistent()

        return awm
Beispiel #18
0
def weighted_rms_var_from_yr(var,reg_name,reg_num,mask_var,wgt_var,year,hist_dict,ave_info,file_dict,avg_test_slice,obs_file,nlev):

    '''
    Computes the weighted rms for a year  

    @param var            The name of the variable that is being  averaged.

    @reg_name             The name of the region to average over.

    @reg_num              The number of the region in the region_mask.

    @mask_var             The name of the netCDF variable that contain the region mask.

    @wgt_var              The name of the netCDF variable that contains the weight information.

    @param year           The year to average over. 
    
    @param hist_dict      A dictionary that holds file references for all years/months. 
        
    @param ave_info       A dictionary of the type of average that is to be done.
                          Includes:  type, months_to_average, fn, and weights
                          (weights are not used in this function/average)
    
    @param file_dict      A dictionary which holds file pointers to the input files that
                          are needed by this average calculation.

    @param avg_test_slice Averaged slice used in this calculation.
 
    @param obs_file       Observation file that contains the values to be used in the caluculation.

    @param nlev           Number of ocean vertical levels

    @return nrms          The normalized rms results for this variable.
    '''


    import warnings

    # Get the weighted values from the yearly average file
    slev_weights = rover.fetch_slice(hist_dict,year,0,wgt_var,file_dict,time=False)
    # Get the region mask
    slev_mask = rover.fetch_slice(hist_dict,year,0,mask_var,file_dict,time=False)

    # Since weights and region mask are only one level, we need to expand them to all levels
    region_mask = MA.expand_dims(slev_mask, axis=0)
    weights = MA.expand_dims(slev_weights, axis=0)
    for lev in range(1,nlev):
        new_region_mask = MA.expand_dims(slev_mask, axis=0)
        region_mask = np.vstack((region_mask,new_region_mask))
        new_weights = MA.expand_dims(slev_weights, axis=0)
        weights = np.vstack((weights,new_weights))

    # Calculate the weighted average
    # First, we need to reshape the arrays to average along two dims
    if (reg_name == 'Glo'):
        temp_mask = MA.masked_where(region_mask<=int(reg_num),avg_test_slice)
    else:
        temp_mask = MA.masked_where(region_mask!=int(reg_num),avg_test_slice)

    ma_to_average = temp_mask.reshape(temp_mask.shape[0], -1)

    weights_flattened = weights.reshape(weights.shape[0],-1)

    warnings.filterwarnings("ignore")
    rms_Ave = MA.sqrt(MA.average((ma_to_average*ma_to_average), axis=1, weights=weights_flattened))
    warnings.filterwarnings("default")

    #nrms = rms_Ave/(MA.max(rms_Ave) - MA.min(rms_Ave))
    nrms = rms_Ave

    return nrms
Beispiel #19
0
def weighted_hor_avg_var_from_yr(var,reg_name,reg_num,mask_var,wgt_var,year,hist_dict,ave_info,file_dict,nlev):

    '''
    Computes the weighted hor mean rms diff for a year  

    @param var         The name of the variable that is being  averaged.

    @reg_name          The name of the region to average over.

    @reg_num           The number of the region in the region_mask.

    @mask_var          The name of the netCDF variable that contain the region mask.

    @wgt_var           The name of the netCDF variable that contains the weight information.

    @param year        The year to average over. 

    @param hist_dict   A dictionary that holds file references for all years/months. 

    @param nlev        Number of ocean vertical levels

    @param ave_info    A dictionary of the type of average that is to be done.
                       Includes:  type, months_to_average, fn, and weights
                       (weights are not used in this function/average)
    
    @param file_dict   A dictionary which holds file pointers to the input files that
                       are needed by this average calculation.

    @return var_Ave    The averaged results for this variable across the designated time frame.

    '''

    # Get correct data slice from the yearly average file
    var_val = rover.fetch_slice(hist_dict,year,0,var,file_dict)

    # Get the weighted values from the yearly average file
    slev_weights = rover.fetch_slice(hist_dict,year,0,wgt_var,file_dict,time=False)
    # Get the region mask
    slev_mask = rover.fetch_slice(hist_dict,year,0,mask_var,file_dict,time=False)
    # Since weights and region mask are only one level, we need to expand them to all levels
    region_mask = MA.expand_dims(slev_mask, axis=0)
    weights = MA.expand_dims(slev_weights, axis=0)
    if var_val.ndim > 2:
        for lev in range(1,nlev):
            new_region_mask = MA.expand_dims(slev_mask, axis=0)
            region_mask = np.vstack((region_mask,new_region_mask))
            new_weights = MA.expand_dims(slev_weights, axis=0)
            weights = np.vstack((weights,new_weights))
    else:
        region_mask = np.squeeze(region_mask,axis=0)
        
    # Calculate the weighted average
    # First, we need to reshape the arrays to average along two dims
    if (reg_name == 'Glo'):
        temp_mask = MA.masked_where(region_mask<=int(reg_num),var_val)
    else:
        temp_mask = MA.masked_where(region_mask!=int(reg_num),var_val)

    ma_to_average = temp_mask.reshape(temp_mask.shape[0], -1)

    if var_val.ndim > 2:
        weights_flattened = weights.reshape(weights.shape[0],-1)
    else:
        weights_flattened = np.squeeze(weights,axis=0)
    var_Ave = MA.average(ma_to_average,axis=1, weights=weights_flattened)
    return np.array(var_Ave)
Beispiel #20
0
def load_GPM_IMERG_files(file_path=None,
                         filename_pattern=None,
                         filelist=None,
                         variable_name='precipitationCal',
                         name='GPM_IMERG'):
    ''' Load multiple GPM Level 3 IMEGE files containing calibrated \
        precipitation and generate an OCW Dataset obejct.

    :param file_path: Directory to the HDF files to load.
    :type file_path: :mod:`string`

    :param filename_pattern: Path to the HDF files to load.
    :type filename_pattern: :mod:`string`

    :param filelist: A list of filenames
    :type filelist: :mod:`string`

    :param variable_name: The variable name to load from the HDF file.
    :type variable_name: :mod:`string`

    :param name: (Optional) A name for the loaded dataset.
    :type name: :mod:`string`

    :returns: An OCW Dataset object with the requested variable's data from \
        the HDF file.
    :rtype: :class:`dataset.Dataset`

    :raises ValueError:
    '''

    if not filelist:
        GPM_files = []
        for pattern in filename_pattern:
            GPM_files.extend(glob(file_path + pattern))
    else:
        GPM_files = [line.rstrip('\n') for line in open(filelist)]

    GPM_files.sort()

    file_object_first = h5py.File(GPM_files[0])
    lats = file_object_first['Grid']['lat'][:]
    lons = file_object_first['Grid']['lon'][:]

    lons, lats = numpy.meshgrid(lons, lats)

    variable_unit = "mm/hr"

    times = []
    nfile = len(GPM_files)
    for ifile, file in enumerate(GPM_files):
        print('Reading file ' + str(ifile + 1) + '/' + str(nfile), file)
        file_object = h5py.File(file)
        time_struct_parsed = strptime(file[-39:-23], "%Y%m%d-S%H%M%S")
        times.append(datetime(*time_struct_parsed[:6]))
        values0 = ma.transpose(ma.masked_less(
            file_object['Grid'][variable_name][:], 0.))
        values0 = ma.expand_dims(values0, axis=0)
        if ifile == 0:
            values = values0
        else:
            values = ma.concatenate((values, values0))
        file_object.close()
    times = numpy.array(times)
    return Dataset(lats, lons, times, values, variable_name, units=variable_unit, name=name)
Beispiel #21
0
def resample_from_array(in_raster=None,
                        in_affine=None,
                        out_tile=None,
                        in_crs=None,
                        resampling="nearest",
                        nodataval=None,
                        nodata=0):
    """
    Extract and resample from array to target tile.

    Parameters
    ----------
    in_raster : array
    in_affine : ``Affine``
    out_tile : ``BufferedTile``
    resampling : string
        one of rasterio's resampling methods (default: nearest)
    nodata : integer or float
        raster nodata value (default: 0)

    Returns
    -------
    resampled array : array
    """
    if nodataval is not None:
        warnings.warn("'nodataval' is deprecated, please use 'nodata'")
        nodata = nodata or nodataval
    # TODO rename function
    if isinstance(in_raster, ma.MaskedArray):
        pass
    elif isinstance(in_raster, np.ndarray):
        in_raster = ma.MaskedArray(in_raster, mask=in_raster == nodata)
    elif isinstance(in_raster, ReferencedRaster):
        in_affine = in_raster.affine
        in_crs = in_raster.crs
        in_raster = in_raster.data
    elif isinstance(in_raster, tuple):
        in_raster = ma.MaskedArray(
            data=np.stack(in_raster),
            mask=np.stack([
                band.mask if isinstance(band, ma.masked_array) else np.where(
                    band == nodata, True, False) for band in in_raster
            ]),
            fill_value=nodata)
    else:
        raise TypeError("wrong input data type: %s" % type(in_raster))
    if in_raster.ndim == 2:
        in_raster = ma.expand_dims(in_raster, axis=0)
    elif in_raster.ndim == 3:
        pass
    else:
        raise TypeError("input array must have 2 or 3 dimensions")
    if in_raster.fill_value != nodata:
        ma.set_fill_value(in_raster, nodata)
    dst_data = np.empty((in_raster.shape[0], ) + out_tile.shape,
                        in_raster.dtype)
    logger.debug(in_raster)
    logger.debug(in_affine)
    logger.debug(out_tile.affine)
    reproject(in_raster.filled(),
              dst_data,
              src_transform=in_affine,
              src_crs=in_crs or out_tile.crs,
              src_nodata=nodata,
              dst_transform=out_tile.affine,
              dst_crs=out_tile.crs,
              dst_nodata=nodata,
              resampling=Resampling[resampling])
    logger.debug(dst_data)
    hanse = ma.MaskedArray(dst_data,
                           mask=dst_data == nodata,
                           fill_value=nodata)
    logger.debug(hanse)
    return hanse
Beispiel #22
0
def load_GPM_IMERG_files_with_spatial_filter(file_path=None,
                         filename_pattern=None,
                         filelist=None,
                         variable_name='precipitationCal',
                         user_mask_file=None,
                         mask_variable_name='mask',
                         user_mask_values=[10],
                         longitude_name='lon',
                         latitude_name='lat'):
    ''' Load multiple GPM Level 3 IMEGE files containing calibrated \
        precipitation and generate a two-dimensional array \
        for the masked grid points.
    :param file_path: Directory to the HDF files to load.
    :type file_path: :mod:`string`
    :param filename_pattern: Path to the HDF files to load.
    :type filename_pattern: :mod:`string`
    :param filelist: A list of filenames
    :type filelist: :mod:`string`
    :param variable_name: The variable name to load from the HDF file.
    :type variable_name: :mod:`string`
    :param name: (Optional) A name for the loaded dataset.
    :type name: :mod:`string`
    :user_mask_file: user's own gridded mask file(a netCDF file name)
    :type name: :mod:`string`
    :mask_variable_name: mask variables in user_mask_file
    :type name: :mod:`string`
    :longitude_name: longitude variable in user_mask_file
    :type name: :mod:`string`
    :latitude_name: latitude variable in user_mask_file
    :type name: :mod:`string`
    :param user_mask_values: grid points where mask_variable == user_mask_value will be extracted.
    :type user_mask_values: list of strings
    :returns: A two-dimensional array with the requested variable's MASKED data from \
        the HDF file.
    :rtype: :class:`dataset.Dataset`
    :raises ValueError:
    '''

    if not filelist:
        GPM_files = []
        for pattern in filename_pattern:
            GPM_files.extend(glob(file_path + pattern))
    else:
        GPM_files = [line.rstrip('\n') for line in open(filelist)]

    GPM_files.sort()

    file_object_first = h5py.File(GPM_files[0])
    lats = file_object_first['Grid']['lat'][:]
    lons = file_object_first['Grid']['lon'][:]

    lons, lats = numpy.meshgrid(lons, lats)

    nfile = len(GPM_files)
    for ifile, file in enumerate(GPM_files):
        if ifile == 0 and user_mask_file:
            file_object = netCDF4.Dataset(user_mask_file)
            mask_variable = file_object.variables[mask_variable_name][:]
            mask_longitude = file_object.variables[longitude_name][:]
            mask_latitude = file_object.variables[latitude_name][:]
            spatial_mask = utils.regrid_spatial_mask(lons,lats,
                                                     mask_longitude, mask_latitude,
                                                     mask_variable,
                                                     user_mask_values)
            y_index, x_index = numpy.where(spatial_mask == 0)
        print('Reading file ' + str(ifile + 1) + '/' + str(nfile), file)
        file_object = h5py.File(file)
        values0 = ma.transpose(ma.masked_less(
            file_object['Grid'][variable_name][:], 0.))
        values_masked = values0[y_index, x_index]
        values_masked = ma.expand_dims(values_masked, axis=0)
        if ifile == 0:
            values = values_masked
        else:
            values = ma.concatenate((values, values_masked))
        file_object.close()
    return values
Beispiel #23
0
def weighted_hor_avg_var_from_yr(var,reg_name,reg_num,mask_var,wgt_var,year,hist_dict,ave_info,file_dict):

    '''
    Computes the weighted hor mean rms diff for a year  

    @param var         The name of the variable that is being  averaged.

    @reg_name          The name of the region to average over.

    @reg_num           The number of the region in the region_mask.

    @mask_var          The name of the netCDF variable that contain the region mask.

    @wgt_var           The name of the netCDF variable that contains the weight information.

    @param year        The year to average over. 

    @param hist_dict   A dictionary that holds file references for all years/months. 

    @param ave_info    A dictionary of the type of average that is to be done.
                       Includes:  type, months_to_average, fn, and weights
                       (weights are not used in this function/average)
    
    @param file_dict   A dictionary which holds file pointers to the input files that
                       are needed by this average calculation.

    @return var_Ave    The averaged results for this variable across the designated time frame.
    '''

    # Get correct data slice from the yearly average file
    var_val = rover.fetch_slice(hist_dict,year,0,var,file_dict)

    # Get the weighted values from the yearly average file
    slev_weights = rover.fetch_slice(hist_dict,year,0,wgt_var,file_dict,time=False)
    # Get the region mask
    slev_mask = rover.fetch_slice(hist_dict,year,0,mask_var,file_dict,time=False)
    # Since weights and region mask are only one level, we need to expand them to all levels
    region_mask = MA.expand_dims(slev_mask, axis=0)
    weights = MA.expand_dims(slev_weights, axis=0)
    if var_val.ndim > 2:
        for lev in range(1,60):
            new_region_mask = MA.expand_dims(slev_mask, axis=0)
            region_mask = np.vstack((region_mask,new_region_mask))
            new_weights = MA.expand_dims(slev_weights, axis=0)
            weights = np.vstack((weights,new_weights))
    else:
        region_mask = np.squeeze(region_mask,axis=0)
        
    # Calculate the weighted average
    # First, we need to reshape the arrays to average along two dims
    if (reg_name == 'Glo'):
        temp_mask = MA.masked_where(region_mask<=int(reg_num),var_val)
    else:
        temp_mask = MA.masked_where(region_mask!=int(reg_num),var_val)

    ma_to_average = temp_mask.reshape(temp_mask.shape[0], -1)

    if var_val.ndim > 2:
        weights_flattened = weights.reshape(weights.shape[0],-1)
    else:
        weights_flattened = np.squeeze(weights,axis=0)
    var_Ave = MA.average(ma_to_average,axis=1, weights=weights_flattened)
    return np.array(var_Ave)
Beispiel #24
0
def weighted_rms_var_from_yr(var,reg_name,reg_num,mask_var,wgt_var,year,hist_dict,ave_info,file_dict,avg_test_slice,obs_file):

    '''
    Computes the weighted rms for a year  

    @param var            The name of the variable that is being  averaged.

    @reg_name             The name of the region to average over.

    @reg_num              The number of the region in the region_mask.

    @mask_var             The name of the netCDF variable that contain the region mask.

    @wgt_var              The name of the netCDF variable that contains the weight information.

    @param year           The year to average over. 
    
    @param hist_dict      A dictionary that holds file references for all years/months. 
        
    @param ave_info       A dictionary of the type of average that is to be done.
                          Includes:  type, months_to_average, fn, and weights
                          (weights are not used in this function/average)
    
    @param file_dict      A dictionary which holds file pointers to the input files that
                          are needed by this average calculation.

    @param avg_test_slice Averaged slice used in this calculation.
 
    @param obs_file       Observation file that contains the values to be used in the caluculation.

    @return nrms          The normalized rms results for this variable.
    '''


    import warnings

    # Get the weighted values from the yearly average file
    slev_weights = rover.fetch_slice(hist_dict,year,0,wgt_var,file_dict,time=False)
    # Get the region mask
    slev_mask = rover.fetch_slice(hist_dict,year,0,mask_var,file_dict,time=False)

    # Since weights and region mask are only one level, we need to expand them to all levels
    region_mask = MA.expand_dims(slev_mask, axis=0)
    weights = MA.expand_dims(slev_weights, axis=0)
    for lev in range(1,60):
        new_region_mask = MA.expand_dims(slev_mask, axis=0)
        region_mask = np.vstack((region_mask,new_region_mask))
        new_weights = MA.expand_dims(slev_weights, axis=0)
        weights = np.vstack((weights,new_weights))

    # Calculate the weighted average
    # First, we need to reshape the arrays to average along two dims
    if (reg_name == 'Glo'):
        temp_mask = MA.masked_where(region_mask<=int(reg_num),avg_test_slice)
    else:
        temp_mask = MA.masked_where(region_mask!=int(reg_num),avg_test_slice)

    ma_to_average = temp_mask.reshape(temp_mask.shape[0], -1)

    weights_flattened = weights.reshape(weights.shape[0],-1)

    warnings.filterwarnings("ignore")
    rms_Ave = MA.sqrt(MA.average((ma_to_average*ma_to_average), axis=1, weights=weights_flattened))
    warnings.filterwarnings("default")

    #nrms = rms_Ave/(MA.max(rms_Ave) - MA.min(rms_Ave))
    nrms = rms_Ave

    return nrms
Beispiel #25
0
    def interpolate(self, new_fps: int = None, kind='cubic'):
        if new_fps is None:
            new_fps = self.fps

        _frames = self.data.shape[0]
        if _frames == 1:
            raise ValueError("Can't interpolate single frame")

        _new_frames = round(_frames * new_fps / self.fps)
        steps = np.linspace(0, 1, _frames)
        new_steps = np.linspace(0, 1, _new_frames)

        transposed = self.points_perspective()  # (points, people, frames, dims)
        masked_confidence = ma.array(self.confidence, mask=self.confidence == 0)
        confidence = ma.expand_dims(masked_confidence.transpose(), axis=3)  # (points, people, frames, 1)
        points = ma.concatenate([transposed, confidence], axis=3)

        new_people = []
        for people in points:
            new_frames = []
            for frames in people:
                mask = frames.transpose()[0].mask

                partial_steps = ma.array(steps, mask=mask).compressed()

                if partial_steps.shape[0] == 0:  # No data for this point
                    new_frames.append(np.zeros((_new_frames, frames.shape[1])))
                else:
                    partial_frames = frames.compressed().reshape(partial_steps.shape[0], frames.shape[1])

                    if len(partial_steps) == 1:
                        f = lambda l: partial_frames
                    else:
                        this_kind = kind if len(partial_steps) > 3 \
                            else "quadratic" if len(partial_steps) > 2 and kind == "cubic" \
                            else "linear"  # Can't do something fancy for 2 points
                        f = interp1d(partial_steps, partial_frames, axis=0, kind=this_kind)

                    first_step = partial_steps[0]
                    last_step = partial_steps[-1]
                    if first_step == 0 and last_step == 1:
                        new_frames.append(f(new_steps))
                    else:
                        first_step_where = np.argwhere(new_steps >= first_step)
                        first_step_index = first_step_where[0][0] if len(first_step_where) > 0 else 0

                        last_step_where = np.argwhere(new_steps > last_step)
                        last_step_index = last_step_where[0][0] if len(last_step_where) > 0 else len(new_steps)

                        if first_step_index == last_step_index:
                            new_frames.append(np.zeros((len(new_steps), frames.shape[1])))
                        else:
                            frame_data = f(new_steps[first_step_index:last_step_index])
                            new_frames.append(np.concatenate([
                                np.zeros((first_step_index, frames.shape[1])),
                                np.array(frame_data),
                                np.zeros((len(new_steps) - last_step_index, frames.shape[1]))
                            ]))
            new_people.append(np.stack(new_frames, axis=0))

        new_data = np.stack(new_people, axis=0).transpose([2, 1, 0, 3])
        dimensions, confidence = np.split(new_data, [-1], axis=3)
        confidence = np.squeeze(confidence, axis=3)

        mask = confidence == 0
        stacked_confidence = np.stack([mask, mask], axis=3)
        masked_data = ma.masked_array(dimensions, mask=stacked_confidence)

        return NumPyPoseBody(fps=new_fps, data=masked_data, confidence=confidence)
Beispiel #26
0
def load_GPM_IMERG_files(file_path=None,
                         filename_pattern=None,
                         filelist=None,
                         variable_name='precipitationCal',
                         name='GPM_IMERG'):
    ''' Load multiple GPM Level 3 IMEGE files containing calibrated \
        precipitation and generate an OCW Dataset obejct.

    :param file_path: Directory to the HDF files to load.
    :type file_path: :mod:`string`

    :param filename_pattern: Path to the HDF files to load.
    :type filename_pattern: :mod:`string`

    :param filelist: A list of filenames
    :type filelist: :mod:`string`

    :param variable_name: The variable name to load from the HDF file.
    :type variable_name: :mod:`string`

    :param name: (Optional) A name for the loaded dataset.
    :type name: :mod:`string`

    :returns: An OCW Dataset object with the requested variable's data from \
        the HDF file.
    :rtype: :class:`dataset.Dataset`

    :raises ValueError:
    '''

    if not filelist:
        GPM_files = []
        for pattern in filename_pattern:
            GPM_files.extend(glob(file_path + pattern))
    else:
        GPM_files = [line.rstrip('\n') for line in open(filelist)]

    GPM_files.sort()

    file_object_first = h5py.File(GPM_files[0])
    lats = file_object_first['Grid']['lat'][:]
    lons = file_object_first['Grid']['lon'][:]

    lons, lats = numpy.meshgrid(lons, lats)

    variable_unit = "mm/hr"

    times = []
    nfile = len(GPM_files)
    for ifile, file in enumerate(GPM_files):
        print('Reading file ' + str(ifile + 1) + '/' + str(nfile), file)
        file_object = h5py.File(file)
        time_struct_parsed = strptime(file[-39:-23], "%Y%m%d-S%H%M%S")
        times.append(datetime(*time_struct_parsed[:6]))
        values0 = ma.transpose(
            ma.masked_less(file_object['Grid'][variable_name][:], 0.))
        values0 = ma.expand_dims(values0, axis=0)
        if ifile == 0:
            values = values0
        else:
            values = ma.concatenate((values, values0))
        file_object.close()
    times = numpy.array(times)
    return Dataset(lats,
                   lons,
                   times,
                   values,
                   variable_name,
                   units=variable_unit,
                   name=name)
Beispiel #27
0
def load_GPM_IMERG_files_with_spatial_filter(file_path=None,
                                             filename_pattern=None,
                                             filelist=None,
                                             variable_name='precipitationCal',
                                             user_mask_file=None,
                                             mask_variable_name='mask',
                                             user_mask_values=[10],
                                             longitude_name='lon',
                                             latitude_name='lat'):
    ''' Load multiple GPM Level 3 IMEGE files containing calibrated \
        precipitation and generate a two-dimensional array \
        for the masked grid points.
    :param file_path: Directory to the HDF files to load.
    :type file_path: :mod:`string`
    :param filename_pattern: Path to the HDF files to load.
    :type filename_pattern: :mod:`string`
    :param filelist: A list of filenames
    :type filelist: :mod:`string`
    :param variable_name: The variable name to load from the HDF file.
    :type variable_name: :mod:`string`
    :param name: (Optional) A name for the loaded dataset.
    :type name: :mod:`string`
    :user_mask_file: user's own gridded mask file(a netCDF file name)
    :type name: :mod:`string`
    :mask_variable_name: mask variables in user_mask_file    
    :type name: :mod:`string`
    :longitude_name: longitude variable in user_mask_file    
    :type name: :mod:`string`
    :latitude_name: latitude variable in user_mask_file    
    :type name: :mod:`string`
    :param user_mask_values: grid points where mask_variable == user_mask_value will be extracted.
    :type user_mask_values: list of strings
    :returns: A two-dimensional array with the requested variable's MASKED data from \
        the HDF file.
    :rtype: :class:`dataset.Dataset`
    :raises ValueError:
    '''

    if not filelist:
        GPM_files = []
        for pattern in filename_pattern:
            GPM_files.extend(glob(file_path + pattern))
    else:
        GPM_files = [line.rstrip('\n') for line in open(filelist)]

    GPM_files.sort()

    file_object_first = h5py.File(GPM_files[0])
    lats = file_object_first['Grid']['lat'][:]
    lons = file_object_first['Grid']['lon'][:]

    lons, lats = numpy.meshgrid(lons, lats)

    nfile = len(GPM_files)
    for ifile, file in enumerate(GPM_files):
        if ifile == 0 and user_mask_file:
            file_object = netCDF4.Dataset(user_mask_file)
            mask_variable = file_object.variables[mask_variable_name][:]
            mask_longitude = file_object.variables[longitude_name][:]
            mask_latitude = file_object.variables[latitude_name][:]
            spatial_mask = utils.regrid_spatial_mask(lons, lats,
                                                     mask_longitude,
                                                     mask_latitude,
                                                     mask_variable,
                                                     user_mask_values)
            y_index, x_index = numpy.where(spatial_mask == 0)
        print('Reading file ' + str(ifile + 1) + '/' + str(nfile), file)
        file_object = h5py.File(file)
        values0 = ma.transpose(
            ma.masked_less(file_object['Grid'][variable_name][:], 0.))
        values_masked = values0[y_index, x_index]
        values_masked = ma.expand_dims(values_masked, axis=0)
        if ifile == 0:
            values = values_masked
        else:
            values = ma.concatenate((values, values_masked))
        file_object.close()
    return values
Beispiel #28
0
    def getSlicedArray(self, copy=True):
        """ Slice the rti using a tuple of slices made from the values of the combo and spin boxes.

            :param copy: If True (the default), a copy is made so that inspectors cannot
                accidentally modify the underlying of the RTIs. You can set copy=False as a
                potential optimization, but only if you are absolutely sure that you don't modify
                the the slicedArray in your inspector! Note that this function calls transpose,
                which can still make a copy of the array for certain permutations.

            :return: ArrayWithMask array with the same number of dimension as the number of
                comboboxes (this can be zero!).

                Returns None if no slice can be made (i.e. the RTI is not sliceable).
            :rtype ArrayWithMask:
        """
        #logger.debug("getSlicedArray() called")

        if not self._rti:
            self.sigShowMessage.emit("No item selected.")
            return None

        if not self.rtiIsSliceable:
            # This is very common so we don't show a message so the user isn't flooded.
            # Also this can have many different causes (compound data, lists, etc_ so it's
            # difficult to show a good, descriptive message.
            return None

        if np.prod(self._rti.arrayShape) == 0:
            self.sigShowMessage.emit("Selected item has zero array elements.")
            return None

        # The dimensions that are selected in the combo boxes will be set to slice(None),
        # the values from the spin boxes will be set as a single integer value
        nDims = self.rti.nDims
        sliceList = [slice(None)] * nDims

        for spinBox in self._spinBoxes:
            dimNr = spinBox.property("dim_nr")
            sliceList[dimNr] = spinBox.value()

        # Make the array slicer. It needs to be a tuple, a list of only integers will be
        # interpreted as an index. With a tuple, array[(exp1, exp2, ..., expN)] is equivalent to
        # array[exp1, exp2, ..., expN].
        # See: http://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
        slicedArray = self.rti[tuple(sliceList)]

        # Make a copy to prevent inspectors from modifying the underlying array.
        if copy:
            if versionStrToTuple(np.__version__) >= (1, 19, 0):
                slicedArray = np.copy(slicedArray,
                                      subok=True)  # Fixes issue #8
            else:
                slicedArray = ma.copy(slicedArray)

        # If there are no comboboxes the sliceList will contain no Slices objects, only ints. Then
        # the resulting slicedArray will be a usually a scalar (only structured fields may yield an
        # array). We convert this scalar to a zero-dimensional Numpy array so that inspectors
        # always get an array (having the same number of dimensions as the dimensionality of the
        # inspector, i.e. the number of comboboxes).
        # Also scalar RTIs, which have nDim == 0, can return a scalar which must be converted.
        # TODO: perhaps always convert to array.
        if self.maxCombos == 0 or self.rti.nDims == 0:
            slicedArray = ma.MaskedArray(slicedArray)

        # Post-condition type check
        check_is_an_array(slicedArray, np.ndarray)

        # Enforce the return type to be a masked array.
        if not isinstance(slicedArray, ma.MaskedArray):
            slicedArray = ma.MaskedArray(slicedArray)

        # Add fake dimensions of length 1 so that result.ndim will equal the number of combo boxes
        # TODO: Perhaps get rid of this because it fails with masked arrays with fill values.
        # The less we do here, the less chance an error occurs. See development/todo.txt
        for dimNr in range(slicedArray.ndim, self.maxCombos):
            #logger.debug("Adding fake dimension: {}".format(dimNr))
            slicedArray = ma.expand_dims(slicedArray, dimNr)

        # Post-condition dimension check
        assert slicedArray.ndim == self.maxCombos, \
            "Bug: getSlicedArray should return a {:d}D array, got: {}D" \
            .format(self.maxCombos, slicedArray.ndim)

        # Convert to ArrayWithMask class for working around issues with the numpy maskedarray
        awm = ArrayWithMask.createFromMaskedArray(slicedArray)
        del slicedArray

        # Shuffle the dimensions to be in the order as specified by the combo boxes
        comboDims = [
            self._comboBoxDimensionIndex(cb) for cb in self._comboBoxes
        ]
        permutations = np.argsort(comboDims)
        logger.debug("slicedArray.shape: {}".format(awm.data.shape))
        logger.debug("Transposing dimensions: {}".format(permutations))
        awm = awm.transpose(permutations)

        awm.checkIsConsistent()

        return awm
Beispiel #29
0
    def getSlicedArray(self, copy=True):
        """ Slice the rti using a tuple of slices made from the values of the combo and spin boxes.

            :param copy: If True (the default), a copy is made so that inspectors cannot
                accidentally modify the underlying of the RTIs. You can set copy=False as a
                potential optimization, but only if you are absolutely sure that you don't modify
                the the slicedArray in your inspector! Note that this function calls transpose,
                which can still make a copy of the array for certain permutations.

            :return: Numpy masked array with the same number of dimension as the number of
                comboboxes (this can be zero!).

                Returns None if no slice can be made (i.e. the RTI is not sliceable).
        """
        #logger.debug("getSlicedArray() called")

        if not self.rtiIsSliceable:
            return None

        # The dimensions that are selected in the combo boxes will be set to slice(None),
        # the values from the spin boxes will be set as a single integer value
        nDims = self.rti.nDims
        sliceList = [slice(None)] * nDims

        for spinBox in self._spinBoxes:
            dimNr = spinBox.property("dim_nr")
            sliceList[dimNr] = spinBox.value()

        # Make the array slicer. It needs to be a tuple, a list of only integers will be
        # interpreted as an index. With a tuple, array[(exp1, exp2, ..., expN)] is equivalent to
        # array[exp1, exp2, ..., expN].
        # See: http://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
        logger.debug("Array slice list: {}".format(str(sliceList)))
        slicedArray = self.rti[tuple(sliceList)]

        # Make a copy to prevent inspectors from modifying the underlying array.
        if copy:
            slicedArray = ma.copy(slicedArray)

        # If there are no comboboxes the sliceList will contain no Slices objects, only ints. Then
        # the resulting slicedArray will be a usually a scalar (only structured fields may yield an
        # array). We convert this scalar to a zero-dimensional Numpy array so that inspectors
        # always get an array (having the same number of dimensions as the dimensionality of the
        # inspector, i.e. the number of comboboxes).
        if self.maxCombos == 0:
            slicedArray = ma.MaskedArray(slicedArray)

        # Post-condition type check
        check_is_an_array(slicedArray, np.ndarray)

        # Enforce the return type to be a masked array.
        if not isinstance(slicedArray, ma.MaskedArray):
            slicedArray = ma.MaskedArray(slicedArray)

        # Add fake dimensions of length 1 so that result.ndim will equal the number of combo boxes
        for dimNr in range(slicedArray.ndim, self.maxCombos):
            #logger.debug("Adding fake dimension: {}".format(dimNr))
            slicedArray = ma.expand_dims(slicedArray, dimNr)

        # Post-condition dimension check
        assert slicedArray.ndim == self.maxCombos, \
            "Bug: getSlicedArray should return a {:d}D array, got: {}D" \
            .format(self.maxCombos, slicedArray.ndim)

        # Convert to ArrayWithMask class for working around issues with the numpy maskedarray
        awm = ArrayWithMask.createFromMaskedArray(slicedArray)
        del slicedArray

        # Shuffle the dimensions to be in the order as specified by the combo boxes
        comboDims = [self._comboBoxDimensionIndex(cb) for cb in self._comboBoxes]
        permutations = np.argsort(comboDims)
        logger.debug("slicedArray.shape: {}".format(awm.data.shape))
        logger.debug("Transposing dimensions: {}".format(permutations))
        awm = awm.transpose(permutations)

        awm.checkIsConsistent()

        return awm
import numpy as np
import numpy.ma as ma

x = ma.array([1, 2, 4])
x[1] = ma.masked
x
np.expand_dims(x, axis=0)
ma.expand_dims(x, axis=0)
x[np.newaxis, :]