Beispiel #1
0
def fixedPositonBySignet(srcImg):
    h, w = srcImg.shape[:2]
    img = cv2.cvtColor(srcImg, cv2.COLOR_RGB2HSV)
    img = cv2.inRange(img, np.array((90, 60, 50), dtype=np.uint8), np.array((140, 255, 255), dtype=np.uint8))
    contours0, hierarchy = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    for cnt in contours0:
        if len(cnt) < 5:
            continue
        ellipse = cv2.fitEllipse(cnt)
        center, r, ang = ellipse
        # 角度精确读不足,使用直线检测来确定偏转角度
        chileIm = cv2.getRectSubPix(srcImg, (400, 100), center)
        new_img = cv2.cvtColor(chileIm, cv2.COLOR_RGB2GRAY)
        new_img = cv2.GaussianBlur(new_img, (3, 3), 0)  
        edges = cv2.Canny(new_img, 50, 150, apertureSize=3)  
        lines = cv2.HoughLines(edges, 1, np.pi / 180, 200)
        if lines is not None:
            for line in lines[0]:  
                rho = line[0]  # 第一个元素是距离rho  
                theta = line[1]  # 第二个元素是角度theta  
                if  (theta > (np.pi / 4.)) or (theta < (3.*np.pi / 4.0)):  
                    # 该直线与第一列的交点  
                    pt1 = (0, int(rho / np.sin(theta)))  
                    # 该直线与最后一列的交点  
                    pt2 = (chileIm.shape[1], int((rho - chileIm.shape[1] * np.cos(theta)) / np.sin(theta)))  
                    M = (pt2[1] - pt1[1]) * 1.0 / (pt2[0] - pt1[0])
                    pi_angle = math.atan(M)
                    ang = pi_angle * 180 / np.pi
                    break
        else :
            ang = ang - 270
        if r[0] < 30 or r[1] < 50 or center[1] > h / 2:
            continue
        rate = r[1] / 175.8019256591797
        return center, rate, ang
 def _get_alpha(self):
     if abs(self.dec) + self.radius > 89.9:
         return 180
     return math.degrees(
         abs(
             math.atan(
                 math.sin(math.radians(self.radius)) / np.sqrt(
                     abs(
                         math.cos(math.radians(self.dec - self.radius)) *
                         math.cos(math.radians(self.dec + self.radius)))))))
def get_alpha(radius, dec):
    if abs(dec) + radius > 89.9:
        return 180
    return math.degrees(
        abs(
            math.atan(
                math.sin(math.radians(radius)) / np.sqrt(
                    abs(
                        math.cos(math.radians(dec - radius)) *
                        math.cos(math.radians(dec + radius)))))))
    def draw_line(self, pos):
        if self.viewer._ocr and self.x_clicked or self.y_clicked:
            img_line = cv.line(self.image.copy(),
                               (self.x_clicked, self.y_clicked),
                               (pos.x(), pos.y()), (0, 0, 0), 2)
            image_height, image_width, image_depth = img_line.shape
            QIm = cv.cvtColor(img_line, cv.COLOR_BGR2RGB)
            QIm = QImage(QIm.data, image_width, image_height,
                         image_width * image_depth, QImage.Format_RGB888)
            self.viewer.setPhoto(QPixmap.fromImage(QIm))
        # 终止画线
        if self.x_released or self.y_released:
            self.choosePoints = []  # 初始化存储点组
            inf = float("inf")
            if self.x_released or self.y_released:
                if (self.x_released - self.x_clicked) == 0:
                    slope = inf
                else:
                    slope = (self.y_released - self.y_clicked) / (
                        self.x_released - self.x_clicked)

                siteLenth = 0.5 * math.sqrt(
                    square(self.y_released - self.y_clicked) +
                    square(self.x_released - self.x_clicked))

                mySiteLenth = 2 * siteLenth
                self.siteLenth = ("%.2f" % mySiteLenth)
                self.editSiteLenth.setText(self.siteLenth)
                radian = math.atan(slope)
                self.siteSlope = ("%.2f" % radian)
                self.editSiteSlope.setText(self.siteSlope)
                x_bas = math.ceil(math.fabs(0.5 * siteLenth *
                                            math.sin(radian)))
                y_bas = math.ceil(math.fabs(0.5 * siteLenth *
                                            math.cos(radian)))

                if slope <= 0:
                    self.choosePoints.append([(self.x_clicked - x_bas),
                                              (self.y_clicked - y_bas)])
                    self.choosePoints.append([(self.x_clicked + x_bas),
                                              (self.y_clicked + y_bas)])
                    self.choosePoints.append([(self.x_released + x_bas),
                                              (self.y_released + y_bas)])
                    self.choosePoints.append([(self.x_released - x_bas),
                                              (self.y_released - y_bas)])
                elif slope > 0:
                    self.choosePoints.append([(self.x_clicked + x_bas),
                                              (self.y_clicked - y_bas)])
                    self.choosePoints.append([(self.x_clicked - x_bas),
                                              (self.y_clicked + y_bas)])
                    self.choosePoints.append([(self.x_released - x_bas),
                                              (self.y_released + y_bas)])
                    self.choosePoints.append([(self.x_released + x_bas),
                                              (self.y_released - y_bas)])
            self.viewer._ocr = False
Beispiel #5
0
def XYZ2BL(x, y, z):
    blh = zeros(2)
    t = math.sqrt(x * x + y * y)
    eps = 1.0E-10
    if math.fabs(t) < eps:
        if z > 0:
            blh[0] = 90.0
            blh[1] = 0.0
        elif z < 0:
            blh[0] = -90
            blh[1] = 0.0
    else:
        blh[0] = math.atan(z / t) * 180.0 / math.pi
        # -90 to 90
        # 0-360
        blh[1] = math.atan2(y, x) * 180.0 / math.pi
        if blh[1] < 0.0:
            blh[1] = blh[1] + 360.0

    return blh
Beispiel #6
0
def fixedPositon(img):
    corners = findCorners(img)
    center = (sum(c[0] for c in corners) / 4, sum(c[1] for c in corners) / 4)
    p1 = np.float32((corners[0][0] + corners[3][0], corners[0][1] + corners[3][1]))
    p2 = np.float32((corners[1][0] + corners[2][0], corners[1][1] + corners[2][1]))
    p3 = np.float32((corners[0][0] + corners[1][0], corners[0][1] + corners[1][1]))
    p4 = np.float32((corners[2][0] + corners[3][0], corners[2][1] + corners[3][1]))
    width = math.sqrt((p2[0] - p1[0]) * (p2[0] - p1[0]) + (p2[1] - p1[1]) * (p2[1] - p1[1])) / 2
    height = math.sqrt((p3[0] - p4[0]) * (p3[0] - p4[0]) + (p3[1] - p4[1]) * (p3[1] - p4[1])) / 2
#             print corners
#             print signetCenter
    cv2.polylines(img, [np.array(corners, np.int32)], True, (0, 0, 0))
    wRate = width / 1195  # (560, 1196)
    hRate = height / 560  # (560, 1196)
    
    h, w = img.shape[:2]
    M = ((corners[1][1] + corners[2][1]) - (corners[0][1] + corners[3][1])) / ((corners[1][0] + corners[2][0]) - (corners[0][0] + corners[3][0])) 
    pi_angle = math.atan(M)
    ang = pi_angle * 180 / np.pi
    return center, wRate, hRate, ang
    raise Exception(_("无法定位发票"))
Beispiel #7
0
def odleglosc((x1,y1),(x2,y2)):
    dxKw = pow((x1-x2), 2)
    dyKw = pow((y1-y2), 2)
    return sqrt( dxKw + dyKw )

def ustalAlfa((x0,y0), (a,b)):
    dy = -(b-y0)
    dx = (a-x0)
    if dx == 0:
        if b > y0:
            alfa = 270
        else:
            alfa = 90
    else:
        alfa = math.atan( float(dy) / dx )
        if a < x0:
            alfa += math.pi
    if alfa<0:
        alfa += 2*math.pi
            
    '''
    if(dx!=0):
        print 'dy',dy,'dx',dx, 'dy/dx', float(dy)/dx
    alfa /= math.pi
    alfa *= 180
    print 'alfa=',alfa
    '''
    
    return alfa
        
    def Evolvent(self):
        '''Расчет эвольвенты зуба
        '''
        #Расчет эвольветы зуба 
        # Читаем данные из полей формы
        # z = Количество зубьев
        z = self.doubleSpinBox_Z.value() 
        # m = Модуль зуба
        m = self.doubleSpinBox_m.value() 
        # a = Угол главного профиля
        a = self.doubleSpinBox_a.value()
        #b = Угол наклона зубьев
        b = self.doubleSpinBox_b.value()
        #ha = Коэффициент высоты головки
        ha = self.doubleSpinBox_ha.value()
        #pf = К-т радиуса кривизны переходной кривой
        pf = self.doubleSpinBox_pf.value()
        #c = Коэффициент радиального зазора
        c = self.doubleSpinBox_c.value()
        #x = К-т смещения исходного контура
        x = self.doubleSpinBox_x.value()
        #y =Коэффициент уравнительного смещения
        y = self.doubleSpinBox_y.value()
        # n= Количество точек (точность построения)
        #n=int(self.doubleSpinBox_n.value())
        n=100
        # заполня переменные 
        # Делительный диаметр
        d = z * m
        # Высота зуба h=
        h = 2.25 * m
        # Высота головки ha =
        hav = m
        # Высота ножки hf=
        hf = 1.25 * m
        #Диаметр вершин зубьев
        #da = d + (2 * m)*(ha+x+y)
        da = d + 2 * (ha + x - y) * m
        #Диаметр впадин (справочно)
        #df = d -(2 * hf)
        df = d -2 * (ha + c - x) * m
        #Окружной шаг зубьев или Шаг зацепления по дуге делительной окружности: Pt или p
        pt = math.pi * m
        #Окружная толщина зуба или Толщина зуба по дуге делительной окружности: St или S
        #Суммарный коэффициент смещений: XΣ
        X = 0.60 + 0.12
       # St = 0.5 * pf
       # St = 0.5 * pt
        St = 0.5 * pt + 2 * x * m * math.tan(math.radians(a))
        #inv a 
        inva=math.tan(math.radians(a))-math.radians(a)
        #Угол зацепления invαw
        invaw= (2 * X - math.tan(math.radians(a))) / (10+26) + inva
        #Угол профиля
        at = math.ceil(math.degrees(math.atan(math.tan(math.radians(a))
            /math.cos( math.radians(b)))))
        # Диаметр основной окружности
        db = d * math.cos(math.radians(at)) 
        #Диаметр начала выкружки зуба
        D  = 2 * m * ( ( z/( 2 * math.cos(math.radians(b)) )-(1-x)) ** 2 +
            ((1-x)/math.tan(math.radians(at)))**2)**0.5
        #Промежуточные данные
        yi = math.pi/2-math.radians(at)

        hy = yi/(n-1)

        x0 = math.pi/(4*math.cos(math.radians(b))
             )+pf*math.cos(math.radians(at))+math.tan(math.radians(at))

        y0 = 1-pf*math.sin(math.radians(at))-x

        C  = (math.pi/2+2*x*math.tan(math.radians(a))
             )/z+math.tan(math.radians(at))-math.radians(at)
        #Расчетный шаг точек эвольвенты
        hdy = (da-D)/(n-1)
        dyi = da
        fi = 2*math.cos(math.radians(b))/z*(x0+y0*math.tan(yi))
        #Заполняем текстовые поля в форме
        # Делительный диаметр
    #    self.lineEdit_d.setText(str(d))
        # Высота зуба h=
    #    self.lineEdit_h.setText(str(h))
        # Высота головки ha =
    #    self.lineEdit_ha.setText(str(hav))
        # Высота ножки hf=
    #    self.lineEdit_hf.setText(str(hf))
        # Диаметр вершин зубьев
    #    self.lineEdit_da.setText(str(da))
        # Диаметр впадин (справочно)
    #    self.lineEdit_df.setText(str(df))
        # Окружной шаг зубьев Pt=
    #    self.lineEdit_Pt.setText(str(math.ceil(pt)))
        # Окружная толщина зуба St=
    #    self.lineEdit_St.setText(str(math.ceil(St)))
        # Угол профиля
    #    self.lineEdit_at.setText(str(at))
        # Диаметр основной окружности
    #    self.lineEdit_db.setText(str(math.ceil(db)))
        
        # Создаем списки 
        List_dyi=[]
        List_Di=[]
        List_Yei=[]
        List_Xei=[]
        List_Minus_Xei=[]
        List_Xdai=[]
        List_Ydai=[]
        List_yi=[]
        List_Ai=[]
        List_Bi=[]
        List_fi=[]
        List_Ypki=[]
        List_Xpki=[]
        List_Minus_Xpki=[]
        # Заполняем нуливой (первый )индекс списка значениями
        List_dyi.append(dyi)
        List_Di.append( math.acos( db/ List_dyi[0] ) - math.tan( math.acos( db / List_dyi[0] ) ) + C )
        List_Yei.append(dyi / 2*math.cos( List_Di[0]))
        List_Xei.append(List_Yei[0]*math.tan(List_Di[0]))
        List_Minus_Xei.append(-List_Xei[0])
        List_Xdai.append(-List_Xei[0])
        List_Ydai.append(((da/2)**2-List_Xdai[0]**2)**0.5)
        hda=(List_Xei[0]-List_Minus_Xei[0])/(n-1)
        # Заполняем первый (второй по счету )индекс списка значениями 
        List_dyi.append(dyi-hdy)
        List_Di.append( math.acos(db/List_dyi[1])-math.tan(math.acos(db/List_dyi[1]))+C)
        List_Yei.append( List_dyi[1]/2*math.cos(List_Di[1]))
        List_Xei.append( List_Yei[1]* math.tan(List_Di[1]))
        List_Minus_Xei.append(-List_Xei[1])
        List_Xdai.append(List_Xdai[0]+hda)
        List_Ydai.append(((da/2)**2-List_Xdai[1]**2)**0.5)
        Xdai=List_Xdai[1]
        dyi=dyi-hdy
        # Начинаем  заполнять списки в цикле 
        i=0
        while i < n-2:  
            i=i+1
            dyi=dyi-hdy
            List_Di.append(math.acos(db/dyi)-math.tan(math.acos(db/dyi))+C)
            Di=math.acos(db/dyi)-math.tan(math.acos(db/dyi))+C
            Yei=dyi/2*math.cos(Di)
            Xei=Yei*math.tan(Di) 
            List_dyi.append(dyi) 
            List_Yei.append(dyi/2*math.cos(Di))
            List_Xei.append(Yei*math.tan(Di))
            List_Minus_Xei.append(-Xei) 
            Xdai=Xdai+hda
            List_Xdai.append(Xdai)
            List_Ydai.append(((da/2)**2-Xdai**2)**0.5)
        #Заполняем последний индекс  списка    
        List_dyi[n-1]=D
        # Заполняем нуливой (первый )индекс списка значениями
        List_yi.append(yi)
        List_Ai.append(z/(2*math.cos(math.radians(b)))-y0-pf*math.cos(List_yi[0]) )
        List_Bi.append(y0*math.tan(List_yi[0])+pf*math.sin(List_yi[0]))
        List_fi.append(fi)
        List_Ypki.append((List_Ai[0] * math.cos(fi)+List_Bi[0] * math.sin(fi)) * m)
        List_Xpki.append((List_Ai[0] * math.sin(fi)-List_Bi[0] * math.cos(fi)) * m)
        List_Minus_Xpki.append(-List_Xpki[0])
        # Начинаем  заполнять списки в цикле 
        i=0
        while i < n-2:
            i=i+1
            yi=yi-hy
            List_yi.append(yi)
            Ai = z / (2 * math.cos(math.radians(b)))-y0-pf*math.cos(yi)
            List_Ai.append( z / (2 * math.cos(math.radians(b)))-y0-pf*math.cos(yi))
            Bi =y0*math.tan(yi)+pf*math.sin(yi)
            List_Bi.append(y0*math.tan(yi)+pf*math.sin(yi))
            fi = 2*math.cos(math.radians(b))/z*(x0+y0*math.tan(yi))
            List_fi.append(2*math.cos(math.radians(b))/z*(x0+y0*math.tan(yi)))
            List_Ypki.append((Ai*math.cos(fi)+Bi*math.sin(fi))*m)
            Ypki=(Ai*math.cos(fi)+Bi*math.sin(fi))*m
            Xpki=(Ai*math.sin(fi)-Bi*math.cos(fi))*m
            List_Xpki.append((Ai*math.sin(fi)-Bi*math.cos(fi))*m)
            List_Minus_Xpki.append(-Xpki)
        #Заполняем последний индекс  списка  
        List_yi.append(yi-yi)
        List_Ai.append(z/(2*math.cos(math.radians(b)))-y0-pf*math.cos(List_yi[n-1]) )  
        List_Bi.append(y0*math.tan(List_yi[n-1])+pf*math.sin(List_yi[n-1])) 
        List_fi.append(2*math.cos(math.radians(b))/z*(x0+y0*math.tan(List_yi[n-1])))
        List_Ypki.append((List_Ai[n-1] * math.cos(fi)+List_Bi[n-1] * math.sin(List_fi[n-1])) * m)
        List_Xpki.append((List_Ai[n-1] * math.sin(fi)-List_Bi[n-1] * math.cos(List_fi[n-1])) * m)
        List_Minus_Xpki.append(-List_Xpki[n-1])

       # self.WiPfileZub(List_Yei,List_Xei,List_Minus_Xei,List_Ypki,List_Xpki,List_Minus_Xpki,List_Ydai,List_Xdai)
        self.GragEvolvent(List_Minus_Xei+List_Minus_Xpki,List_Yei+List_Ypki,n)

        DFreza = self.lineEditDFreza.text()
        VisotaYAxis = self.lineEditVisota.text()
        Diametr = self.lineEditDiametr.text()
        if DFreza and VisotaYAxis:
            E30 = (int(DFreza)/2) +float(VisotaYAxis)
        else:
            E30 = 0
        angi_B=0
        if ValkosZub:
            angie_A:float = 90# угол А треугольника по высоте детали 
            angie_B:float = float(b) #угол B треугольника по высоте детали ( угол наклона зуба по чертежу)
            angie_Y:float = 180 - (angie_A + angie_B) # трерий уго треугольника по высоте детали 
            side_c:float = float(E30)# высота детали первая сторона треугольника 
            side_a = side_c * math.sin(math.radians(angie_A)) / math.sin(math.radians(angie_Y))# вторая сторона треугольника 
            side_b = side_c * math.sin(math.radians(angie_B)) / math.sin(math.radians(angie_Y))# третия сторона треугольника ( ось Х)
            sid_a:float = float(Diametr)/2 # радиус детали первая и вторая тророны треугольника по торцу
           # sid_a:float = float(self.lineEdit_da.text())/2 # радиус детали первая и вторая тророны треугольника по торцу
            sid_c:float = sid_a
            if sid_c < 10 :
                sid_a:float = 10
                sid_c:float = 10
                angi_B = float('{:.3f}'.format(math.degrees(math.acos((sid_a**2+sid_c**2-side_b**2)/(2*sid_a*sid_c)))))
                QMessageBox.about (self, "Ошибка " , "Диаметр шестерни задан меньше 20 мм. \n Введите риальный диаметр шестерни " )
            else:
                angi_B = float('{:.3f}'.format(math.degrees(math.acos((sid_a**2+sid_c**2-side_b**2)/(2*sid_a*sid_c)))))# результат угол поворота стола 


        self.label_da.setText(str(round(da,1)))
        self.label_d.setText(str(round(d,1)))
        self.label_at.setText(str(round(at,1)))
        self.label_db.setText(str(round(db,1)))
        self.label_df.setText(str(round(df,1)))
        self.label_St.setText(str(round(St,1)))
        self.label_Pt.setText(str(round(pt,1)))
        self.label_hf.setText(str(round(hf,1)))
        self.label_ha.setText(str(round(ha,1)))
        self.label_h.setText(str(round(h,1)))
        self.lineEditDiametr.setText(str(da))
        self.lineEditUgol.setText(str(angi_B))
Beispiel #9
0
def get_line_data(pixels, x1, y1, x2, y2, line_w=2, the_z=0, the_c=0, the_t=0):
    """
    Grabs pixel data covering the specified line, and rotates it horizontally
    so that x1,y1 is to the left,
    Returning a numpy 2d array. Used by Kymograph.py script.
    Uses PIL to handle rotating and interpolating the data. Converts to numpy
    to PIL and back (may change dtype.)

    @param pixels:          PixelsWrapper object
    @param x1, y1, x2, y2:  Coordinates of line
    @param line_w:          Width of the line we want
    @param the_z:           Z index within pixels
    @param the_c:           Channel index
    @param the_t:           Time index
    """

    size_x = pixels.getSizeX()
    size_y = pixels.getSizeY()

    line_x = x2 - x1
    line_y = y2 - y1

    rads = math.atan(float(line_x) / line_y)

    # How much extra Height do we need, top and bottom?
    extra_h = abs(math.sin(rads) * line_w)
    bottom = int(max(y1, y2) + extra_h / 2)
    top = int(min(y1, y2) - extra_h / 2)

    # How much extra width do we need, left and right?
    extra_w = abs(math.cos(rads) * line_w)
    left = int(min(x1, x2) - extra_w)
    right = int(max(x1, x2) + extra_w)

    # What's the larger area we need? - Are we outside the image?
    pad_left, pad_right, pad_top, pad_bottom = 0, 0, 0, 0
    if left < 0:
        pad_left = abs(left)
        left = 0
    x = left
    if top < 0:
        pad_top = abs(top)
        top = 0
    y = top
    if right > size_x:
        pad_right = right - size_x
        right = size_x
    w = int(right - left)
    if bottom > size_y:
        pad_bottom = bottom - size_y
        bottom = size_y
    h = int(bottom - top)
    tile = (x, y, w, h)

    # get the Tile
    plane = pixels.getTile(the_z, the_c, the_t, tile)

    # pad if we wanted a bigger region
    if pad_left > 0:
        data_h, data_w = plane.shape
        pad_data = zeros((data_h, pad_left), dtype=plane.dtype)
        plane = hstack((pad_data, plane))
    if pad_right > 0:
        data_h, data_w = plane.shape
        pad_data = zeros((data_h, pad_right), dtype=plane.dtype)
        plane = hstack((plane, pad_data))
    if pad_top > 0:
        data_h, data_w = plane.shape
        pad_data = zeros((pad_top, data_w), dtype=plane.dtype)
        plane = vstack((pad_data, plane))
    if pad_bottom > 0:
        data_h, data_w = plane.shape
        pad_data = zeros((pad_bottom, data_w), dtype=plane.dtype)
        plane = vstack((plane, pad_data))

    pil = script_utils.numpy_to_image(plane, (plane.min(), plane.max()), int32)

    # Now need to rotate so that x1,y1 is horizontally to the left of x2,y2
    to_rotate = 90 - math.degrees(rads)

    if x1 > x2:
        to_rotate += 180
    # filter=Image.BICUBIC see
    # http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2172449/
    rotated = pil.rotate(to_rotate, expand=True)
    # rotated.show()

    # finally we need to crop to the length of the line
    length = int(math.sqrt(math.pow(line_x, 2) + math.pow(line_y, 2)))
    rot_w, rot_h = rotated.size
    crop_x = (rot_w - length) / 2
    crop_x2 = crop_x + length
    crop_y = (rot_h - line_w) / 2
    crop_y2 = crop_y + line_w
    cropped = rotated.crop((crop_x, crop_y, crop_x2, crop_y2))
    return asarray(cropped)
Beispiel #10
0
def getLineData(pixels, x1, y1, x2, y2, lineW=2, theZ=0, theC=0, theT=0):
    """
    Grabs pixel data covering the specified line, and rotates it horizontally
    so that x1,y1 is to the left,
    Returning a numpy 2d array. Used by Kymograph.py script.
    Uses PIL to handle rotating and interpolating the data. Converts to numpy
    to PIL and back (may change dtype.)

    @param pixels:          PixelsWrapper object
    @param x1, y1, x2, y2:  Coordinates of line
    @param lineW:           Width of the line we want
    @param theZ:            Z index within pixels
    @param theC:            Channel index
    @param theT:            Time index
    """

    from numpy import asarray

    sizeX = pixels.getSizeX()
    sizeY = pixels.getSizeY()

    lineX = x2 - x1
    lineY = y2 - y1

    rads = math.atan(float(lineX) / lineY)

    # How much extra Height do we need, top and bottom?
    extraH = abs(math.sin(rads) * lineW)
    bottom = int(max(y1, y2) + extraH / 2)
    top = int(min(y1, y2) - extraH / 2)

    # How much extra width do we need, left and right?
    extraW = abs(math.cos(rads) * lineW)
    left = int(min(x1, x2) - extraW)
    right = int(max(x1, x2) + extraW)

    # What's the larger area we need? - Are we outside the image?
    pad_left, pad_right, pad_top, pad_bottom = 0, 0, 0, 0
    if left < 0:
        pad_left = abs(left)
        left = 0
    x = left
    if top < 0:
        pad_top = abs(top)
        top = 0
    y = top
    if right > sizeX:
        pad_right = right - sizeX
        right = sizeX
    w = int(right - left)
    if bottom > sizeY:
        pad_bottom = bottom - sizeY
        bottom = sizeY
    h = int(bottom - top)
    tile = (x, y, w, h)

    # get the Tile
    plane = pixels.getTile(theZ, theC, theT, tile)

    # pad if we wanted a bigger region
    if pad_left > 0:
        data_h, data_w = plane.shape
        pad_data = zeros((data_h, pad_left), dtype=plane.dtype)
        plane = hstack((pad_data, plane))
    if pad_right > 0:
        data_h, data_w = plane.shape
        pad_data = zeros((data_h, pad_right), dtype=plane.dtype)
        plane = hstack((plane, pad_data))
    if pad_top > 0:
        data_h, data_w = plane.shape
        pad_data = zeros((pad_top, data_w), dtype=plane.dtype)
        plane = vstack((pad_data, plane))
    if pad_bottom > 0:
        data_h, data_w = plane.shape
        pad_data = zeros((pad_bottom, data_w), dtype=plane.dtype)
        plane = vstack((plane, pad_data))

    pil = numpyToImage(plane)
    #pil.show()

    # Now need to rotate so that x1,y1 is horizontally to the left of x2,y2
    toRotate = 90 - math.degrees(rads)

    if x1 > x2:
        toRotate += 180
    # filter=Image.BICUBIC see
    # http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2172449/
    rotated = pil.rotate(toRotate, expand=True)
    #rotated.show()

    # finally we need to crop to the length of the line
    length = int(math.sqrt(math.pow(lineX, 2) + math.pow(lineY, 2)))
    rotW, rotH = rotated.size
    cropX = (rotW - length) / 2
    cropX2 = cropX + length
    cropY = (rotH - lineW) / 2
    cropY2 = cropY + lineW
    cropped = rotated.crop((cropX, cropY, cropX2, cropY2))
    #cropped.show()
    return asarray(cropped)
def getLineData(pixels, x1, y1, x2, y2, lineW=2, theZ=0, theC=0, theT=0):
    """
    Grabs pixel data covering the specified line, and rotates it horizontally
    so that x1,y1 is to the left,
    Returning a numpy 2d array. Used by Kymograph.py script.
    Uses PIL to handle rotating and interpolating the data. Converts to numpy
    to PIL and back (may change dtype.)

    @param pixels:          PixelsWrapper object
    @param x1, y1, x2, y2:  Coordinates of line
    @param lineW:           Width of the line we want
    @param theZ:            Z index within pixels
    @param theC:            Channel index
    @param theT:            Time index
    """

    from numpy import asarray

    sizeX = pixels.getSizeX()
    sizeY = pixels.getSizeY()

    lineX = x2-x1
    lineY = 1 if y2-y1 == 0 else y2-y1

    rads = math.atan(float(lineX) / lineY)

    # How much extra Height do we need, top and bottom?
    extraH = abs(math.sin(rads) * lineW)
    bottom = int(max(y1, y2) + extraH/2)
    top = int(min(y1, y2) - extraH/2)

    # How much extra width do we need, left and right?
    extraW = abs(math.cos(rads) * lineW)
    left = int(min(x1, x2) - extraW)
    right = int(max(x1, x2) + extraW)

    # What's the larger area we need? - Are we outside the image?
    pad_left, pad_right, pad_top, pad_bottom = 0, 0, 0, 0
    if left < 0:
        pad_left = abs(left)
        left = 0
    x = left
    if top < 0:
        pad_top = abs(top)
        top = 0
    y = top
    if right > sizeX:
        pad_right = right - sizeX
        right = sizeX
    w = int(right - left)
    if bottom > sizeY:
        pad_bottom = bottom - sizeY
        bottom = sizeY
    h = int(bottom - top)
    tile = (x, y, w, h)

    # get the Tile
    plane = pixels.getTile(theZ, theC, theT, tile)

    # pad if we wanted a bigger region
    if pad_left > 0:
        data_h, data_w = plane.shape
        pad_data = zeros((data_h, pad_left), dtype=plane.dtype)
        plane = hstack((pad_data, plane))
    if pad_right > 0:
        data_h, data_w = plane.shape
        pad_data = zeros((data_h, pad_right), dtype=plane.dtype)
        plane = hstack((plane, pad_data))
    if pad_top > 0:
        data_h, data_w = plane.shape
        pad_data = zeros((pad_top, data_w), dtype=plane.dtype)
        plane = vstack((pad_data, plane))
    if pad_bottom > 0:
        data_h, data_w = plane.shape
        pad_data = zeros((pad_bottom, data_w), dtype=plane.dtype)
        plane = vstack((plane, pad_data))

    pil = numpyToImage(plane)
    # pil.show()

    # Now need to rotate so that x1,y1 is horizontally to the left of x2,y2
    toRotate = 90 - math.degrees(rads)

    if x1 > x2:
        toRotate += 180
    # filter=Image.BICUBIC see
    # http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2172449/
    rotated = pil.rotate(toRotate, expand=True)
    # rotated.show()

    # finally we need to crop to the length of the line
    length = int(math.sqrt(math.pow(lineX, 2) + math.pow(lineY, 2)))
    rotW, rotH = rotated.size
    cropX = (rotW - length)/2
    cropX2 = cropX + length
    cropY = (rotH - lineW)/2
    cropY2 = cropY + lineW
    cropped = rotated.crop((cropX, cropY, cropX2, cropY2))
    # cropped.show()
    return asarray(cropped)
Beispiel #12
0
    def vinc_dir(f, a, coordinate_a, alpha12, s):
        """

        Returns the lat and long of projected point and reverse azimuth
        given a reference point and a distance and azimuth to project.
        lats, longs and azimuths are passed in decimal degrees
        Returns ( phi2,  lambda2,  alpha21 ) as a tuple

        """

        phi1, lambda1 = coordinate_a.lat, coordinate_a.lon
        piD4 = math.atan(1.0)
        two_pi = piD4 * 8.0
        phi1 = phi1 * piD4 / 45.0
        lambda1 = lambda1 * piD4 / 45.0
        alpha12 = alpha12 * piD4 / 45.0
        if alpha12 < 0.0:
            alpha12 += two_pi
        if alpha12 > two_pi:
            alpha12 -= two_pi

        b = a * (1.0 - f)
        tan_u1 = (1 - f) * math.tan(phi1)
        u1 = math.atan(tan_u1)
        sigma1 = math.atan2(tan_u1, math.cos(alpha12))
        sin_alpha = math.cos(u1) * math.sin(alpha12)
        cos_alpha_sq = 1.0 - sin_alpha * sin_alpha
        u2 = cos_alpha_sq * (a * a - b * b) / (b * b)

        # @todo: look into replacing A and B with vincenty's amendment, see if speed/accuracy is good
        A = 1.0 + (u2 / 16384) * (4096 + u2 * (-768 + u2 * (320 - 175 * u2)))
        B = (u2 / 1024) * (256 + u2 * (-128 + u2 * (74 - 47 * u2)))

        # Starting with the approx
        sigma = (s / (b * A))
        last_sigma = 2.0 * sigma + 2.0  # something impossible

        # Iterate the following 3 eqs unitl no sig change in sigma
        # two_sigma_m , delta_sigma
        while abs((last_sigma - sigma) / sigma) > 1.0e-9:
            two_sigma_m = 2 * sigma1 + sigma
            delta_sigma = B * math.sin(sigma) * (math.cos(two_sigma_m) + (B / 4) * (math.cos(sigma) *
                                                                                    (-1 + 2 * math.pow(
                                                                                        math.cos(two_sigma_m), 2) -
                                                                                     (B / 6) * math.cos(two_sigma_m) *
                                                                                     (-3 + 4 * math.pow(math.sin(sigma),
                                                                                                        2)) *
                                                                                     (-3 + 4 * math.pow(
                                                                                         math.cos(two_sigma_m), 2)))))
            last_sigma = sigma
            sigma = (s / (b * A)) + delta_sigma

        phi2 = math.atan2((math.sin(u1) * math.cos(sigma) + math.cos(u1) * math.sin(sigma) * math.cos(alpha12)),
                          ((1 - f) * math.sqrt(math.pow(sin_alpha, 2) +
                                               pow(math.sin(u1) * math.sin(sigma) - math.cos(u1) * math.cos(
                                                   sigma) * math.cos(alpha12), 2))))

        lmbda = math.atan2((math.sin(sigma) * math.sin(alpha12)), (math.cos(u1) * math.cos(sigma) -
                                                                   math.sin(u1) * math.sin(sigma) * math.cos(alpha12)))

        C = (f / 16) * cos_alpha_sq * (4 + f * (4 - 3 * cos_alpha_sq))
        omega = lmbda - (1 - C) * f * sin_alpha * (sigma + C * math.sin(sigma) *
                                                   (math.cos(two_sigma_m) + C * math.cos(sigma) *
                                                    (-1 + 2 * math.pow(math.cos(two_sigma_m), 2))))

        lambda2 = lambda1 + omega
        alpha21 = math.atan2(sin_alpha, (-math.sin(u1) * math.sin(sigma) +
                                         math.cos(u1) * math.cos(sigma) * math.cos(alpha12)))

        alpha21 += two_pi / 2.0
        if alpha21 < 0.0:
            alpha21 += two_pi
        if alpha21 > two_pi:
            alpha21 -= two_pi

        phi2 = phi2 * 45.0 / piD4
        lambda2 = lambda2 * 45.0 / piD4
        alpha21 = alpha21 * 45.0 / piD4
        return Coordinate(lat=phi2, lon=lambda2), alpha21
Beispiel #13
0
    def vinc_inv(f, a, coordinate_a, coordinate_b):
        """

        Returns the distance between two geographic points on the ellipsoid
        and the forward and reverse azimuths between these points.
        lats, longs and azimuths are in radians, distance in metres

        :param f: flattening of the geodesic
        :param a: the semimajor axis of the geodesic
        :param coordinate_a: decimal coordinate given as named tuple coordinate
        :param coordinate_b: decimal coordinate given as named tuple coordinate
        Note: The problem calculates forward and reverse azimuths as: coordinate_a -> coordinate_b

        """
        phi1 = math.radians(coordinate_a.lat)
        lembda1 = math.radians(coordinate_a.lon)

        phi2 = math.radians(coordinate_b.lat)
        lembda2 = math.radians(coordinate_b.lon)

        if (abs(phi2 - phi1) < 1e-8) and (abs(lembda2 - lembda1) < 1e-8):
            return {'distance': 0.0, 'forward_azimuth': 0.0, 'reverse_azimuth': 0.0}

        two_pi = 2.0 * math.pi

        b = a * (1 - f)

        TanU1 = (1 - f) * math.tan(phi1)
        TanU2 = (1 - f) * math.tan(phi2)

        U1 = math.atan(TanU1)
        U2 = math.atan(TanU2)

        lembda = lembda2 - lembda1
        last_lembda = -4000000.0  # an impossibe value
        omega = lembda

        # Iterate the following equations,
        #  until there is no significant change in lembda

        while (last_lembda < -3000000.0 or lembda != 0 and abs((last_lembda - lembda) / lembda) > 1.0e-9):
            sqr_sin_sigma = pow(math.cos(U2) * math.sin(lembda), 2) + \
                            pow((math.cos(U1) * math.sin(U2) -
                                 math.sin(U1) * math.cos(U2) * math.cos(lembda)), 2)

            Sin_sigma = math.sqrt(sqr_sin_sigma)

            Cos_sigma = math.sin(U1) * math.sin(U2) + math.cos(U1) * math.cos(U2) * math.cos(lembda)

            sigma = math.atan2(Sin_sigma, Cos_sigma)

            Sin_alpha = math.cos(U1) * math.cos(U2) * math.sin(lembda) / math.sin(sigma)
            alpha = math.asin(Sin_alpha)

            Cos2sigma_m = math.cos(sigma) - (2 * math.sin(U1) * math.sin(U2) / pow(math.cos(alpha), 2))

            C = (f / 16) * pow(math.cos(alpha), 2) * (4 + f * (4 - 3 * pow(math.cos(alpha), 2)))

            last_lembda = lembda

            lembda = omega + (1 - C) * f * math.sin(alpha) * (sigma + C * math.sin(sigma) * \
                                                              (Cos2sigma_m + C * math.cos(sigma) * (
                                                                  -1 + 2 * pow(Cos2sigma_m, 2))))

        u2 = pow(math.cos(alpha), 2) * (a * a - b * b) / (b * b)

        A = 1 + (u2 / 16384) * (4096 + u2 * (-768 + u2 * (320 - 175 * u2)))

        B = (u2 / 1024) * (256 + u2 * (-128 + u2 * (74 - 47 * u2)))

        delta_sigma = B * Sin_sigma * (Cos2sigma_m + (B / 4) * \
                                       (Cos_sigma * (-1 + 2 * pow(Cos2sigma_m, 2)) - \
                                        (B / 6) * Cos2sigma_m * (-3 + 4 * sqr_sin_sigma) * \
                                        (-3 + 4 * pow(Cos2sigma_m, 2))))

        s = b * A * (sigma - delta_sigma)

        alpha12 = math.atan2((math.cos(U2) * math.sin(lembda)), \
                             (math.cos(U1) * math.sin(U2) - math.sin(U1) * math.cos(U2) * math.cos(lembda)))

        alpha21 = math.atan2((math.cos(U1) * math.sin(lembda)), \
                             (-math.sin(U1) * math.cos(U2) + math.cos(U1) * math.sin(U2) * math.cos(lembda)))

        if (alpha12 < 0.0):
            alpha12 += two_pi
        if (alpha12 > two_pi):
            alpha12 -= two_pi

        alpha21 += two_pi / 2.0
        if alpha21 < 0.0:
            alpha21 += alpha21 + two_pi
        if alpha21 > two_pi:
            alpha21 -= two_pi

        return {"distance": s, "forward_azimuth": alpha12, "reverse_azimuth": alpha21}