Beispiel #1
0
 def __init__(self, curva_id, **kwargs):
     #variáveis básicas
     self.curva_id = curva_id
     self.titulo = ""
     self.descricao = ""
     self.title = ""
     self.description = ""
     self.ndim = 0
     self.tags = []
     # self.x = np.array()
     # TODO: abstrair melhor essa merda
     self.ue = []  # vetor de ue de acordo com os tags
     ue = {'original': '', 'used': ''}
     self.val = None
     # self.tags_ = tag
     self.metadata = []
     metadata = {
         'x_tag': None,
         'y_tag': None,
         'z_tag': None,
         'x_options': {},
         'y_options': {},
         'z_options': {}
     }
     self.x_values = np.Array()
     self.y_values = np.Array()
     self.z_values = np.Array()
     if (kwargs):
         for k, v in kwargs.items():
             setattr(self, k, v)
Beispiel #2
0
def sparse_pearsonr(a, b):
    length = a.shape[1]
    mean_a = a.mean()
    mean_b = b.mean()
    mean_product_ab = mean_a * mean_b
    mean_product_aa = mean_a ** 2
    mean_product_bb = mean_b ** 2
    am = a - np.Array([a.mean()] * length)
    bm = b - np.Array([b.mean()] * length)
    return cosine_similarity(am, bm)
Beispiel #3
0
 def _get_data(self):
     try:
         ret = self.section.data.data_points
         #self.pointsx = ret[:, 0]
         #self.pointsy = ret[:, 1]
         self.plotdata.set_data('x', ret[:, 0])
         self.plotdata.set_data('y', ret[:, 1])
         return ret
     except AttributeError:
         return numpy.Array([[], []])
Beispiel #4
0
 def __init__(self, *coeffs):
     """Creates a Polynomial with the coefficients, starting with the constant"""
     self.coeffs = np.Array(coeffs)
     self.order = len(self.coeffs) - 1
Beispiel #5
0
def main():
    arr, mode1 = load_img_arr('work/form1.1.npy')
    image_data_size = arr.size
    thread_x, thread_y, thread_z = GPU_ATTRIBUTES['MAX_THREADS_PER_BLOCK']/GPU_ATTRIBUTES['MULTIPROCESSOR_COUNT'], 1, 1
    block_size = (thread_x, thread_y, thread_z)
    
    # arr       <- all rows
    # arr[0]    <- pixels in first row
    # arr[0][0] <- first pixel in first row (RGB[A])
    
    #TODO:
    # make a strip of images up to max images, max grid dim, or max image count
    # if there are images left over, start making another strip (same conditions as above)
    # if we finished a whole strip, add the strip to the existing strips
    # repeat until all images are used up or we have more strips than that grid dim
    
    pairs_processed = 0
    total_image_pairs = 50
    while pairs_processed < total_image_pairs:
        free_memory = cuda.mem_get_info()[0]
        half_memory = free_memory / 2
        max_group_count = (half_memory / image_data_size) # number of image pairs that can be loaded
        y_strip_count = 0
        group_count = 0
        strip1 = numpy.Array()
        strip2 = numpy.Array()
        while group_count < max_group_count and y_strip_count < GPU_ATTRIBUTES['MAX_GRID_DIM_Y']:
            i1 = load_img_arr('work/form1.%d.npy' % (pairs_processed+1))
            i2 = load_img_arr('work/form2.%d.npy' % (pairs_processed+1))
            group_count += 1
            pairs_processed += 1
            x_strip_count = 0
            # make strip here
    
    
    
    
    
    
    
    
    images_processed = 0
    image_count = 50
    block_y = 1
    while images_processed < image_count:
        free_memory = cuda.mem_get_info()[0]
        half_memory = free_memory / 2
        image_group_count = (half_memory / image_data_size) - 1 # number of image pairs that can be loaded
        
        block1 = load_img_arr('work/form1.%d.npy'%(images_processed+1))[0]
        block2 = load_img_arr('work/form2.%d.npy'%(images_processed+1))[0]
        count = 1
        for i in xrange(images_processed+1, images_processed+image_group_count):
            if i > image_count:
                break
            
            i1 = load_img_arr('work/form1.%d.npy'%i)[0]
            i2 = load_img_arr('work/form2.%d.npy'%i)[0]
            
            h, w, d = len(block1), len(block1[0]), len(block1[0][0])
            new_block_x = (block1.size + i1.size) / thread_x
            if (block1.size + i1.size) % thread_x:
                new_block_x += 1
            new_block_y = block_y
            if new_block_x > GPU_ATTRIBUTES['MAX_GRID_DIM_X']:
                new_block_y += 1
                if new_block_y > GPU_ATTRIBUTES['MAX_GRID_DIM_Y']:
                    raise Exception('Grid getting too big')
                block1 = numpy.concatenate((block1,i1), axis=1)
                block2 = numpy.concatenate((block2,i2), axis=1)
                block_y = new_block_y
            else:
                block1 = numpy.concatenate((block1,i1), axis=0)
                block2 = numpy.concatenate((block2,i2), axis=0)
                block_x = new_block_x
            count += 1
        
        grid_size = (block_x, block_y)
        print grid_size
        
        save_image_arr(block1, mode1, 'grid_out.%d.png' % images_processed)
        
        images_processed += image_group_count
Beispiel #6
0
#!/bin/python

import sys
import numpy

n = int(raw_input().strip())
unsorted = []
unsorted_i = 0
final = []
for unsorted_i in xrange(n):
    unsorted_t = str(raw_input().strip())
    unsorted.append(unsorted_t)
max = numpy.Array(unsorted)

print sorted(max)
# for i in range(n):
#     for j in range(n-i-1):
#         if long(unsorted[j])>long(unsorted[j+1]):
#             t=unsorted[j]
#             unsorted[j]=unsorted[j+1]
#             unsorted[j+1]=t
#
# for i in unsorted:
#     print i
Beispiel #7
0
  56: >>> b[2] = AFC_east
  57: >>> b
['spam',
 2.0,
 ['New England Patriots', 'Buffalo Bills', 'New York Giants', 'New York Jets'],
 10]
  58: >>> len(b)
4
  59: >>> a  = [1, 2, 3]
  60: >>> b = [4, 5, 6]
  61: >>> c = a + b
  62: >>> c
[1, 2, 3, 4, 5, 6]
  63: >>> import numpy as np
  64: >>> a = np.Arry([1, 2, 3])
  65: >>> a = np.Array([1, 2, 3])
  66: >>> [0] * 4
[0, 0, 0, 0]
  67: >>> ['Tom Brady', 'Bill Belichick']*3
['Tom Brady',
 'Bill Belichick',
 'Tom Brady',
 'Bill Belichick',
 'Tom Brady',
 'Bill Belichick']
  68: >>> t = ['a', 'b', 'c', 'd', 'e', 'f']
  69: >>> t[1:2]
['b']
  70: >>> t[1:3]
['b', 'c']
  71: >>> t[0:5]
d =[array([10,  1,  7,  3]),
 array([ 0, 14, 12, 13]),
 array([ 3, 10,  7,  8]),
 array([7, 5]),
 array([ 5, 12,  3]),
 array([14,  8, 10])]
d =pd.Array([10,  1,  7,  3],
    [ 0, 14, 12, 13],
 [ 3, 10,  7,  8],
 [7, 5],
 [ 5, 12,  3],
[14,  8, 10])
import numpy as np
d =np.Array([10,  1,  7,  3],
    [ 0, 14, 12, 13],
 [ 3, 10,  7,  8],
 [7, 5],
 [ 5, 12,  3],
[14,  8, 10])
dir(np)
dir(np.array)
d =np.array([10,  1,  7,  3],
    [ 0, 14, 12, 13],
 [ 3, 10,  7,  8],
 [7, 5],
 [ 5, 12,  3],
[14,  8, 10])
d =np.array([[10,  1,  7,  3],
    [ 0, 14, 12, 13],
 [ 3, 10,  7,  8],
 [7, 5],
 [ 5, 12,  3],
import numpy as np
mynumber = 65
myList = [67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113]
myArray = np.Array(myList)