def predict_range(X, y, model, conf=2.58):

    from numpy import sum as arraysum

    # Obtain predictions
    yhat = model.predict(X)

    # Compute standard deviation
    sum_errs = arraysum((y - yhat)**2)
    stdev = np.sqrt(1 / (len(y) - 2) * sum_errs)

    interval = conf * stdev

    lower = []
    upper = []

    for i in yhat:
        lower.append(i - interval)
        upper.append(i + interval)

    return lower, upper, interval
Beispiel #2
0
errs = (y - yhat)
pyplot.hist(errs, bins=200)
pyplot.show()

# %%
from numpy import sum as arraysum
from numpy import sqrt
# define new input, expected value and prediction
x_in = x[0]
y_out = y[0]
yhat_out = yhat[0]
# estimate stdev of yhat
#%%[markdown]
## Ver la diferencia entre el cálculo de esta std donde se toman las diferencias (errores) reales respecto de los valor reales de y: https://machinelearningmastery.com/prediction-intervals-for-machine-learning/
## VS el cálculo típico de la std en una distribución, que es respecto del valor medio de los valres: https://en.wikipedia.org/wiki/Standard_deviation
sum_errs = arraysum((y - yhat)**2)
stdev = sqrt(1 / (len(y) - 2) * sum_errs)
# We will use the significance level of 95%, which is 1.96 standard deviations.
# Once the interval is calculated, we can summarize the bounds on the prediction to the user.
# calculate prediction interval
interval = 1.96 * stdev
print('Prediction Interval: %.3f' % interval)
lower, upper = y_out - interval, y_out + interval
print('95%% likelihood that the true value is between %.3f and %.3f' %
      (lower, upper))
print('True value: %.3f' % yhat_out)
# plot dataset and prediction with interval
pyplot.scatter(x, y)
pyplot.plot(x, yhat, color='red')
pyplot.errorbar(x_in, yhat_out, yerr=interval, color='black', fmt='o')
pyplot.show()
Beispiel #3
0
def contact_defence_node(contact_pairs, enm, ntdm, sem, elements, M, R, v, dt, t):
    """Calculate the global contact force vector using the defence node algorithm

    Normal contact only (no frictional effects).

    Parameters
    ----------
    contact_pairs : list of NodeNodePair/NodeSegmentPair
        List of all NodeSegmentPairs that are currently considered active
    enm : array
        Element Node Map
    ntdm : array
        Node Translational DOF map
    sem : array
        Segment Element Map
    elements : list of Element
        List of elements to consider
    M : array
        Global mass vector
    R : array
        Global residual vector (sum of internal and external forces)
    v : array
        Global velocity vector
    dt : float
        Time-step

    Returns
    -------
    fcont : array
        Global contact force vector

    Notes
    -----
    See sections 9.5.1 to 9.5.3.
    """

    fcont = zeros(len(R))

    for pair in contact_pairs:

        # Hitting (slave) node mass, residual and velocity in normal direction
        hitting_node_mass = M[ntdm[pair.slave_id][0]]
        hitting_node_R = dot(R[ntdm[pair.slave_id]], pair.normal)
        hitting_node_v = dot(v[ntdm[pair.slave_id]], pair.normal)

        # NODE -> SEGMENT CONTACT
        # Need to calculate target node properties
        if isinstance(pair, NodeSegmentPair):
            # Get element
            element_id, element_segment_id = sem[pair.master_id]
            element = elements[element_id]
            local_segment_nodes = element.get_segment_local_nodes(element_segment_id)

            # Get the target nodes for this segment
            target_nodes = [enm[element_id][i] for i in local_segment_nodes]

            # Calculate shape function weights
            weights = element.calc_N(*pair.xi)

            # Shape function weights for the segment
            phi = array([weights[i] for i in local_segment_nodes])

            # Calculate phi_bar
            # See section 9.5.2, equation (9.5.14). Here k = 2, as in equation (9.5.17)
            phi_bar = sum([v**2 for v in phi])

            # Gather target node masses
            target_node_masses = array( [M[ntdm[node_id][0]] for node_id in target_nodes] )

            # Calculate defence node mass
            # See section 9.5.2, equation (9.5.19)
            defence_node_mass = sum(phi*target_node_masses / phi_bar)

            # Get target nodes residuals and velocities
            target_nodes_R =  vstack([ R[ntdm[node_id]] for node_id in target_nodes ])
            target_nodes_v =  vstack([ v[ntdm[node_id]] for node_id in target_nodes ])

            # Defence node residual in normal direction
            # See section 9.5.2, equation (9.5.6)
            defence_node_R = defence_node_mass * arraysum((target_nodes_R / target_node_masses) * phi[:, newaxis], axis = 0)
            defence_node_R = dot(defence_node_R, pair.normal)

            # Defence node velocity in normal direction
            # See section 9.5.2, equation (9.5.1)
            defence_node_v = arraysum(target_nodes_v * phi[:, newaxis], axis=0)
            defence_node_v = dot(defence_node_v, pair.normal)

        # NODE -> NODE CONTACT
        elif isinstance(pair, NodeNodePair):
            defence_node_mass = M[ntdm[pair.master_id][0]]
            defence_node_v = dot(v[ntdm[pair.master_id]], pair.normal)
            defence_node_R = dot(R[ntdm[pair.master_id]], pair.normal)


        # Match variables names in reference
        M2 = hitting_node_mass
        v2 = hitting_node_v
        F2 = hitting_node_R

        M1 = defence_node_mass
        v1 = defence_node_v
        F1 = defence_node_R

        p = -pair.d_min

        # Force increment at hitting node
        # Equation (9.5.35)
        delta_f = M1 * M2 * (  F2/M2 - F1/M1 + v2/dt - v1/dt - p/(dt*dt) ) / (M1 + M2)

        # Add contact increment to this pair
        try: pair.contact_force += -delta_f
        except AttributeError: pair.contact_force = -delta_f

        if (pair.contact_force < 0):
            pair.contact_force = 0

        # Distribute to contact force vector
        # Equations (9.5.8) and (9.5.17)
        fcont[ ntdm[pair.slave_id] ] += pair.contact_force*pair.normal

        # NODE -> SEGMENT CONTACT
        if isinstance(pair, NodeSegmentPair):
            for i, node_id in enumerate(target_nodes):
                fcont[ntdm[node_id]] +=  -phi[i]*target_node_masses[i]/phi_bar/defence_node_mass * pair.contact_force * pair.normal

        # NODE -> NODE CONTACT
        elif isinstance(pair, NodeNodePair):
            fcont[ ntdm[pair.master_id] ] += pair.contact_force*pair.normal


    return fcont
Beispiel #4
0
ninetyEightHP = m * 98.0 + b
print(str(ninetyEightHP))
sys.exit(0)
'''
#OLS table summary
X = sm.add_constant(x)
smModel = sm.OLS(y,X)
results = smModel.fit()
print(results.summary())
#95% confidence interval
print(results.conf_int(alpha=0.05, cols=None))
#prediction interval
x_in = x[0]
y_out = y[0]
yPred_out = yPred[0]
sum_errs = arraysum((y - yPred)**2)
stdev = sqrt(1/(len(y)-2) * sum_errs)
# calculate prediction interval
interval = 1.96 * stdev
print('Prediction Interval: %.3f' % interval)
lower, upper = y_out - interval, y_out + interval
print('95%% likelihood that the true value is between %.3f and %.3f' % (lower, upper))
print('True value: %.3f' % yPred_out)

plt.title("MPG vs Horsepower")
plt.xlabel("Horsepower")
plt.ylabel("MPG")
plt.scatter(x,y,color="blue")
plt.plot(x,yPred,'r',color="red", linewidth=3)
plt.show()