Beispiel #1
0
def sample(preds, temperature = 1.0):
    preds = np.asarry(preds).astype('float64')
    preds = np.log(preds) / temperature
    exp_preds = np.exp(preds)
    preds = exp_preds / np.sum(exp_preds)
    probas = np.random.multinomial(1, preds, 1)
    return np.argmax(probas)
Beispiel #2
0
def d2v_infer_vecs(model, docs):
    from gensim.models.doc2vec import Doc2Vec
    import numpy as np
    docs = spacy_tokenize(docs)

    docvecs = np.asarry([model.infer_vector(docs[i]) for i in len(docs)])
    return docvecs
    def validation_loss(self,
                        overwrite_loss_func=False,
                        return_val_data=False):
        self.model.eval()

        if overwrite_loss_func:
            loss_func = overwrite_loss_func
        else:
            loss_func = self.loss_func

        if self.max_validation_steps == -1:
            self.max_validation_steps = len(self.data_val)

        if return_val_data:
            return_val_data = []

        val_loss = []
        with torch.no_grad():
            count = tqdm(
                range(self.max_validation_steps),
                desc="Validation",
                disable=not self.verbose,
                leave=True,
            )
            for data, i in zip(self.data_val, count):
                data = data["data"].to(self.device)
                pred = self.model(data)
                val_loss.append(loss_func(pred, data).cpu().numpy())
                if return_val_data:
                    return_val_data.append(data.cpu().numpy())

        if return_val_data:
            return np.asarray(val_loss), np.asarry(return_val_data)
        return np.asarray(val_loss)
Beispiel #4
0
 def __getitem__(self,
                 scan_index: int) -> Tuple[np.array, Tuple[int, int, int]]:
     '''
     returns:
     - scan
     - scan shape
     '''
     with h5py.File(self.scans[scan_index], mode='r') as f:
         data = f[self.data_key]
         return np.asarry(f), f.shape
Beispiel #5
0
    def sort_hashes(query_hash, hashes):
        """
		Given a dict of hogs:hashes, returns a sorted array of hogs and jaccard distances relative to query hog.
		:param query hash: weighted minhash of the query
		:param hashes: a dict of hogs:hashes
		:return: sortedhogs, jaccard
		"""
        #sort the hashes by their jaccard relative to query hash
        jaccard = [query_hash.jaccard(hashes[hog]) for hog in hashes]
        index = np.argsort(jaccard)
        sortedhogs = np.asarry(list(hashes.keys()))[index]
        jaccard = jaccard[index]
        return sortedhogs, jaccard
	def load_next_image(self):
		'''
		Load the next image in a batch.
		'''

		if self._cur == len(self.indexlist):
			self._cur =0

		index = self.indexlist(self._cur)

		#Choose the image type {e.g., .png, .jpg, .JPEG}.
		im_file_name = index + '.JPEG'
		im = np.asarry(Image)
Beispiel #7
0
def create_wrong(file_path):
    folder = np.random.choice(glob.glob(file_path + "*"))
    while floder == "fatalab":
        folder = np.random.choice(glob.glob(file_path + "*"))
    mat = np.zeros((480, 640), dtype='float32')
    i = 0
    j = 0
    depth_file = np.random_choice(glob.glob(folder + "/*.dat"))
    with open(depth_file) as file:
        for line in file:
            vals = line.split('\t')
            for val in vals:
                if val == "\n": continue
                if int(val) > 1200 or int(val) == -1: val = 1200
                mat[i][j] = float(int(val))
                j += 1
                j = j % 640

            i += 1
        mat = np.asarry(mat)
    mat_small = mat[140:340, 220:420]
    mat_small = (mat_small - np.mean(mat_small)) / np.max(mat_small)

    plt.imshow(mat_small)
    plt.show()

    folder2 = np.random.choice(glob.glob(file_path + "*"))
    while folder == folder2 or folder2 == "datalab":  #it activates if it chose the same folder
        folder2 = np.random.choice(glob.glob(file_path + "*"))
    mat2 = np.zeros((480, 640), dtype='float32')
    i = 0
    j = 0
    depth_file = np.random.choice(glob.glob(folder2 + "/*.dat"))
    with open(depth_file) as file:
        for line in file:
            vals = line.split('\t')
            for val in vals:
                if val == "\n": continue
                if int(val) > 1200 or int(val) == -1: val = 1200
                mat2[i][j] = float(int(val))
                j += 1
                j = j % 640

            i += 1
        mat2 = np.asarray(mat2)
    mat2_small = mat2[140:340, 220:420]
    mat2_small = (mat2_small - np.mean(mat2_small)) / np.max(mat2_small)
    plt.imshow(mat2_small)
    plt.show()

    return np.array([mat_small, mat2_small])
Beispiel #8
0
def bond_label_fraction(top_n=2):
    """
    Get the fraction of each type of label 0 (low energy), 1 (high energy),
    and 2 (unknown) in the dataset.

    Note, this requires that when extracting the reactions, all the reactions
    related to a reactant (ignore symmetry) should be extracted.

    Note, here we analyze on the 0,0,0 type reactions.

    """
    # filename = "~/Applications/db_access/mol_builder/reactions.pkl"
    # filename = "~/Applications/db_access/mol_builder/reactions_n200.pkl"
    # filename = "~/Applications/db_access/mol_builder/reactions_qc.pkl"
    # filename = "~/Applications/db_access/mol_builder/reactions_qc_ws.pkl"
    filename = "~/Applications/db_access/mol_builder/reactions_qc_ws_charge0.pkl"

    extractor = ReactionCollection.from_file(filename)
    groups = extractor.group_by_reactant_charge_0()

    num_bonds = []
    frac = defaultdict(list)
    for ropb in groups:
        counts = np.asarry([0, 0, 0])
        all_none = True
        for i, rxn in enumerate(ropb.order_reactions()):
            energy = rxn.get_free_energy()
            if energy is None:
                counts[2] += 1
            else:
                all_none = False
                if i < top_n:
                    counts[1] += 1
                else:
                    counts[0] += 1
        if all_none:
            print(
                "reactant {} {} has not broken bond reaction; should never happen"
                .format(ropb.reactant.id, ropb.reactant.formula))
            continue

        n = len(ropb.order_reactions())
        num_bonds.append(n)
        frac = counts / n

    print("### number of bonds in dataset (mean):", np.mean(num_bonds))
    print("### number of bonds in dataset (median):", np.median(num_bonds))
    for i, fr in enumerate(frac):
        print(f"### label{i} bond ratio in dataset (mean): {np.mean(fr)}")
        print(f"### label{i} bond ratio in dataset (mean): {np.median(fr)}")
Beispiel #9
0
    def maloshell_cooling(A1, A2, Ea_1, Ea_2, c0, tau=132.5, T_room=21.1):
        """ Approximates isomizeration rate during cooling, and assumes no
            significant isomizeration after one e-fold (tau minutes) have past.
            Default tau is taken from cooling one gallon of water
            in an 8 quart stainless steel stock pot with a steel lid on.
        Args:
            A1 (float): Exponential prefactor for k1.
            A2 (float): Exponential prefactor for k2.
            Ea_1 (float): Activation energy for reaction 1.
            Ea_2 (float): Activation energy for reaction 2.
            c0 (np.ndarray): Initial condition vector.
            tau (float): Cooling rate time scale in minutes.  Default is 132.5 min.
            T_room (float): Room temperature water is cooling in.  Default is 21.1 C (70 F).
        
        Returns:
            function: Utilization function vector for c1, c2, c3
        """
        # Make sure c0 is an array:
        c0 = np.asarray(c0)

        # Create time array with spacings of one minute.
        t_arr = np.linspace(0., tau, np.ceil(tau) + 1)

        # Grab the Newton Cooling function T(t) with T0=T_room and Ti=100 C
        temp_func = NewtonCooling.T(T_room, 100., tau)

        # Get rate functions:
        k1_func = lambda t: reaction.arrhenius(Ea_1, A1)(temp_func(t))
        k2_func = lambda t: reaction.arrhenius(Ea_2, A2)(temp_func(t))

        def dcdt(c, t):
            # Internal function to solve ODE. c = np.array([c1, c2, c3])
            M = np.zeros((3, 3))
            M[0, 0] = -reaction.RateEquations.dkn_dt(1, k1_func(t))(t)
            M[1, 0] = reaction.RateEquations.dkn_dt(1, k1_func(t))(t)
            M[1, 1] = -reaction.RateEquations.dkn_dt(1, k2_func(t))(t)
            M[2, 1] = reaction.RateEquations.dkn_dt(1, k2_func(t))(t)

            # print(M)
            return np.dot(M, c)

        c = odeint(dcdt, c0, t_arr)

        # Extrapolation fill values for each component of vector c.
        ext = [(c[0, i], c[-1, i]) for i in range(3)]

        # Linear interpolation for each vector component.  Assumes no utilization below t=0
        # and fixed utilization above t value given as input.
        return np.asarry(
            [interp1d(t_arr, c[:, i], fill_value=ext[i]) for i in range(3)])
Beispiel #10
0
    def getLayer(self, layer):
        """
        Gets the given layer from the image

        layer:- as string with one of 'rgb', 'l' or 'grad', selects which layer to retrieve
        """
        if layer == 'rgb':
            return self.rgbImage
        elif layer == 'l':
            return self.lumoImage
        elif layer == 'grad':
            return self.lumoGradient
        else:
            return np.asarry([[0]], dtype=np.int32)
Beispiel #11
0
    def getAfPointTile(self, afPointIndex, layer):
        """
        Returns the tile corresponding to the primary AF Point for the image, from the selected layer

        afPointIndex:- the index of the AF point to retrieve the tile for
        layer:- as string with one of 'rgb', 'l' or 'grad', selects which layer the tile comes from
        returns:- a numpy array with the requested tile
        """
        top, bottom, left, right = determineAfPointBox(afPointIndex)
        if layer == 'rgb':
            return self.rgbImage[top:bottom, left:right, :]
        elif layer == 'l':
            return self.lumoImage[top:bottom, left:right]
        elif layer == 'grad':
            return self.lumoGradient[top:bottom, left:right]
        else:
            return np.asarry([[0]], dtype=np.int32)
Beispiel #12
0
def create_couple_rgbd(file_path):
    folder = np.random.choice(glob.glob(file_path + "*"))
    while folder == "datalab":
        folder = np.random.choice(glob.glob(file_path + "*"))
    print(floder)

    mat = np.zeros((480, 640), dtype='float32')
    i = 0
    j = 0
    depth_file = np.random.choice(glob.glob(folder + "/*.dat"))

    with open(depth_file) as file:
        for line in file:
            vals = line.split('\t')
            for val in vals:
                if val == "\n": continue
                if int(val) > 1200 or int(val) == -1: val = 1200
                mat[i][j] = float(int(val))
                j += 1
                j = j % 640

            i += 1
        mat = np.asarray(mat)
    mat_small = mat[140:340, 220:420]
    img = Image.open(depth_file[:-5] + "c.bmp")
    img.thumbnail((640, 480))
    img = np.asarray(img)
    img = img[140:340, 220:420]
    mat_small(mat_small - np.mean(mat_small)) / np.max(mat_small)

    plt.imshow(mat_small)
    plt.show()
    plt.imshow(img)
    plt.show()

    mat2 = np.zeros((480, 640), dtype='float32')
    i = 0
    j = 0
    depth_file = np.random.choice(glob.glob(floder + "/*.dat"))
    with open(depth_file) as file:
        for line in file:
            vals = line.split('\t')
            for val in vals:
                if val == "\n": continue
                if int(val) > 1200 or int(val) == -1: val = 1200
                mat2[i][j] = float(int(val))
                j += 1
                j = j % 640

            i += 1
        mat2 = np.asarray(mat2)
    mat2_small = mat2[140:340, 220:420]
    img2 = Image.open(depth_file[:-5] + "c.bmp")
    img2.thumbnail((640, 480))
    img2 = np.asarry(img2)
    img2 = img2[160:360, 240:440]

    plt.imshow(img2)
    plt.show()

    mat2_small = (mat2_small - np.mean(mat2_small)) / np.max(mat2_small)
    plt.imshow()

    full1 = np.zeros((200, 200, 4))
    full1[:, :, :3] = img[:, :, :3]
    fill1[:, :, 3] = mat_small

    full1 = np.zeros((200, 200, 4))
    full1[:, :, :3] = img2[:, :, :3]
    fill1[:, :, 3] = mat2_small
    return np.array([fill1, full2])
Beispiel #13
0
# param_list = param_list[:11]

# labels
lbl_enc = preprocessing.LabelEncoder()
labels = lbl_enc.fit_transform(labels)

col_list = ['Class_%d'%i for i in xrange(1, 10)]
df = pd.DataFrame(index=train_ids)
i = 0
preds_train = []
for loss, ntree, param in param_list:
    part_train = pd.read_csv("train_"+get_train_from_param(param, ntree), index_col=0)
    #part_train.drop(['id'], axis=1)
    #for col in col_list:
    #    df[col+'_%d'%i] = part_train[col]
    preds_train.append(np.asarry(part_train))
    i+=1
    
cv_search_param = False
if cv_search_param:
    for j in xrange(100):
        pass
else:
    clf = linear_model.LogisticRegression('l1', C=0.1)
train = np.asarray(df)
clf.fit(train, labels)

df = pd.DataFrame(index=sample.id.values)
i = 0
preds_test = []
for loss, ntree, param in param_list:
Beispiel #14
0
def imp_solver(para, chain_mpo=None):
    """
    :param para:
    :param mps_init:  init with this mps
    :return:
    """

    # --------------------------------------------------------
    #                    initialization
    # --------------------------------------------------------

    el_list = para.el_list
    vl_list = para.vl_list

    # definte chain Ham
    chain_ham = []
    for i in range(0, 4):
        ham = single_chain_ham(el_list[i], vl_list[i], 0.0)
        chain_ham.append(ham)
    int_gate = int_ham(para, para.tau / 2.0)

    if (chain_mpo is None):
        # chain mps
        L_bath = len(el_list)
        chain_mpo = []
        for i in range(0, 4):
            if (i % 2 == 0):
                if_bath_sign = True
            else:
                if_bath_sign = False
            mps_ = mps(para, L_bath + 1, if_bath_sign)
            chain_mpo.append(mps_)
    else:
        for mpo in chain_mpo:
            mpo.load_gnd()  # load the gnd as init
            mpo.if_find_gnd = False  # set the gnd flag false

    # TEBD solver
    tebd_ = TEBD(para)
    tebd_.init_state(chain_mpo, chain_ham, int_gate, para.tau / 2.0)

    # --------------------------------------------------------
    #                    imag time evolution to find gnd
    # --------------------------------------------------------

    Ntau = para.Ntau
    max_en_diff = para.max_en_diff

    En = 999999
    i_check = 5  # check every i_check
    for i in range(0, Ntau):
        if (i % 20 == 0 and i != 0 and para.tau > 0.02):
            para.tau = para.tau / 2.0
        if (para.tau < 0.1):
            i_check = 2
        if (para.tau < 0.05):
            i_check = 1

        if (i % i_check == 0 or i == Ntau - 1):
            En_new = tebd_.time_evolution(para.tau, if_calculate_gnd_en=True)
            diff = np.abs(En - En_new)
            En = En_new
            if (diff < max_en_diff):
                if (para.tau < 0.02):
                    print("Solved")
                    break
                else:
                    para.tau = para.tau / 2.0
        else:
            tebd_.time_evolution(para.tau, if_calculate_gnd_en=False)

    tebd_.save_gnd()

    # get static quantitiy
    tebd_.cal_static()
    static_ = tebd_.static

    En_gnd = En
    En_diff = diff
    if (diff > max_en_diff):
        print("Not solved")
        print("Energy diff is ", En_diff)
        print("Gnd energy is ", En_gnd)

    # --------------------------------------------------------
    #               real time evolution
    # --------------------------------------------------------

    gt = {}
    for imp_ind in para.imp_list:
        tebd_.load_gnd()
        Nt = para.Nt
        t_list = []
        g_plus = []  # d_t d_dag

        tebd_.act_d_dag(imp_ind)
        for i in range(0, Nt):
            if (i % para.i_meas == 0):
                gt = tebd_.trace_with_d(imp_ind)
                t_list.append(i * para.t)
                g_plus.append(gt)
            tebd_.time_evolution(-1j * para.t, if_calculate_gnd_en=False)

        t_list = np.asarray(t_list)
        g_plus = np.asarry(g_plus) * np.exp(1j * En_gnd * t_list)

        tebd_.load_gnd()
        Nt = para.Nt
        t_list = []
        g_minus = []  # d_t_dag d

        tebd_.act_d(imp_ind)
        for i in range(0, Nt):
            if (i % para.i_meas == 0):
                gt = tebd_.trace_with_d_dag(imp_ind)
                t_list.append(i * para.t)
                g_minus.append(gt)
            tebd_.time_evolution(1j * para.t, if_calculate_gnd_en=False)

        t_list = np.asarray(t_list)
        g_minus = np.asarry(g_minus) * np.exp(-1j * En_gnd * t_list)

        gt[imp_ind] = -1j * (g_plus + g_minus)

    sol = {
        't': t_list,  # t list
        'gt': gt,  # gt dict
        'static': static_,  # static quantity (filling)
        'mps': tebd_.chain_mpo,  # mpo
        'gnd_en': En_gnd,  # Gnd energy
        'en_diff': En_diff  # energy diff
    }

    return sol
Beispiel #15
0
                cfg.NET_G = net_G_name
                algo.sample(dataloader, eval_name='eval',
                        eval_num=args.eval_num)
                fid_score_now = \
                    fid_scores(output_dir, cfg, sample_num=args.sample_num, 
                    gen_images_path=args.gen_paths, loop=True)

                f.write('%s, %s, %.4f\n' % (date_str, net_G_name, fid_score_now))

            f.close()

            # Save the best FID score model
            with open(os.path.join(output_dir, 'all_FID_eval.txt'), 'r') as f:
                all_lines = f.readlines()
                score_array =\
                        np.asarry([float(line.strip('\n').split(', ')[-1]) \
                        for line in all_lines])
                if fid_score_now == score_array.min():
                    print("save the best FID score model, the score is %.4f" % \
                            fid_score_now)

                    net_G_name = all_lines[score_array.argmin()].split(', ')[1]
                    shutil.copy(os.path.join(output_dir, 'Model', net_G_name), 
                            os.path.join(output_dir, 'model_reserve'))


        elif args.inter_eval:
            '''Choose two random variables and do interpolation'''
            algo.sample(dataloader, eval_name='inter_eval', eval_num=args.eval_num)
        elif args.LPIPS_eval:
            '''Do LPIPS evaluation'''
            f = open(os.path.join(output_dir, 'all_LPIPS_eval.txt'), 'a')
Beispiel #16
0
def fit_dist_extinct(wavelength,
                     observed_sed_nuFnu,
                     model,
                     error_observed_sed_nuFnu=None,
                     Rv=3.1,
                     modeldist=1.0,
                     additional_free=None,
                     logfit=False,
                     distance_range=[0.0, 1000.0],
                     model_noise_frac=0.1,
                     vary_av=True,
                     vary_distance=True,
                     av_range=[0.0, 10.0],
                     rv_range=[2.0, 20.0],
                     vary_rv=False,
                     **kwargs):
    """
    Adapted from the fit_dist_extinct3.pro MCRE file designed to allow 
    distance and extinction to vary when computing the SED chsqr. For
    a given inclination, this function returns the best fit distance,
    extinction, Rv and chisqrd value.

    Parameters
    -----------
    wavelength : Float Array
        The wavelengths .... in microns
    observed_sed_nuFnu: Quanity object in units W/m2
        The nuFnu for the observed SED. 
    error_observed_sed_nuFnu : Float array
        Error for the observed SED
    model_noise_frac : Float
        Noise fraction for the model SEDs
    modeldist : Float
        Distance to model disk in pc.
    additional_free : Int
        Number of additionaly free parameters to 
        include in the weighted chisqrd.
    vary_distance : bool
        Allow the distance to the target to vary?
        Default is False
    distance_range : 2 element iterable
        Min and max allowable distance, in pc
    vary_av : bool
        Allow optical extinction (A_V) to vary?
        Default is False
    av_range : 2 element iterable
        Min and max allowable A_V
    vary_rv : bool
        Allow rv to vary?
        Default is False
    Rv : float
        Reddening law color parameter for extinction.
        Default is 3.1
    logfit : bool
        Fit the SED on a logarithmic scale?
        Default is False
  
    """

    #wave_ang = [x*0.0001 for x in wavelength] #Convert from microns to angstroms
    wave_ang = wavelength.to(units.Angstrom)

    observed_sed_nuFnu = np.asarray(observed_sed_nuFnu)

    # Scale model to 1pc
    model_sed_1pc = np.asarray(model * modeldist**2)

    if vary_distance:
        a_distance = np.asarray([10] + distance_range)
    else:
        a_distance = np.asarray(modeldist)

    if vary_av:
        avsteps = (av_range[0] - av_range[1]) / 0.25
        a_av = np.asarray([avsteps + 1] + av_range)
    else:
        a_av = np.asarray([0])

    if vary_rv:
        a_rv = np.asarray([10] + rv_range)
    else:
        a_rv = np.asarray([Rv])

    if error_observed_sed_nuFnu:
        err_obs = np.asarray(error_observed_sed_nuFnu)
    else:
        err_obs = np.asarray(0.1 * observed_sed_nuFnu)

    if logfit:
        ln_observed_sed_nuFnu = observed_sed_nuFnu
        ln_err_obs = err_obs
        subset = observed_sed_nuFnu != 0.0
        ln_observed_sed_nuFnu[subset] = np.log(observed_sed_nuFnu[subset])
        ln_err_obs[subset] = err_obs[subset] / observed_sed_nuFnu[subset]

    # How many degrees of freedom?
    dof = len(observed_sed_nuFnu)

    chisqs = np.asarray([len(a_distance), len(a_av), len(a_rv)])

    for i_r in range(0, len(a_rv) - 1):
        ext = np.asarry(ccm_extinction(
            a_rv[i_r], wave_ang))  # Use wavelength in Angstroms

        for i_d in range(0, len(a_distance) - 1):

            for i_a in range(0, len(a_av) - 1):

                extinction = 10.0**((ext * a_av[i_a]) / (-2.5))
                vout = (model_sed_1pc * extinction) / (a_distance[i_d])**2

                if logfit:
                    ln_vout = vout
                    ln_vout[subset] = np.log(vout[subset])
                    chicomb = (ln_vout - ln_observed_sed_nuFnu)**2 / (
                        ln_err_obs**2 +
                        (ln_vout * np.log(model_noise_frac))**2)
                else:
                    chicomb = (vout - observed_sed_nuFnu)**2 / (
                        err_obs**2 + (vout * model_noise_frac)**2)

                chisqs[i_d, i_a, i_r] = np.asarray(
                    sum(chicomb) /
                    (dof - additonal_free))  #Normalize to Reduced chi square.

    wmin = chisqs == min(chisqs)
    sed_chisqr = min(chisqs)
    best_distance = a_distance[wmin[0]]
    best_av = a_av[wmin[1]]
    best_rv = a_rv[wmin[2]]

    return best_distance, best_av, best_rv, sed_chisqr
Beispiel #17
0
def fit_dist_extinct(wavelength, observed_sed_nuFnu, model, error_observed_sed_nuFnu = None, Rv=3.1, modeldist=1.0, 
        additional_free=None, logfit=False,  
        distance_range=[0.0,1000.0],model_noise_frac=0.1, 
        vary_av=True, vary_distance=True, av_range=[0.0,10.0],rv_range=[2.0,20.0],vary_rv=False, **kwargs):

    """
    Adapted from the fit_dist_extinct3.pro MCRE file designed to allow 
    distance and extinction to vary when computing the SED chsqr. For
    a given inclination, this function returns the best fit distance,
    extinction, Rv and chisqrd value.

    Parameters
    -----------
    wavelength : Float Array
        The wavelengths .... in microns
    observed_sed_nuFnu: Quanity object in units W/m2
        The nuFnu for the observed SED. 
    error_observed_sed_nuFnu : Float array
        Error for the observed SED
    model_noise_frac : Float
        Noise fraction for the model SEDs
    modeldist : Float
        Distance to model disk in pc.
    additional_free : Int
        Number of additionaly free parameters to 
        include in the weighted chisqrd.
    vary_distance : bool
        Allow the distance to the target to vary?
        Default is False
    distance_range : 2 element iterable
        Min and max allowable distance, in pc
    vary_av : bool
        Allow optical extinction (A_V) to vary?
        Default is False
    av_range : 2 element iterable
        Min and max allowable A_V
    vary_rv : bool
        Allow rv to vary?
        Default is False
    Rv : float
        Reddening law color parameter for extinction.
        Default is 3.1
    logfit : bool
        Fit the SED on a logarithmic scale?
        Default is False
  
    """

    #wave_ang = [x*0.0001 for x in wavelength] #Convert from microns to angstroms
    wave_ang = wavelength.to(units.Angstrom)

    observed_sed_nuFnu = np.asarray(observed_sed_nuFnu)

    # Scale model to 1pc
    model_sed_1pc = np.asarray(model * modeldist**2)

    if vary_distance:
        a_distance = np.asarray([10] + distance_range)
    else:
        a_distance = np.asarray(modeldist)
    

    if vary_av:
        avsteps = (av_range[0] - av_range[1])/0.25
        a_av = np.asarray([avsteps+1]+av_range)
    else:
        a_av = np.asarray([0])
            
    if vary_rv:
        a_rv = np.asarray([10] + rv_range)
    else:
        a_rv = np.asarray([Rv])

    if error_observed_sed_nuFnu:
        err_obs = np.asarray(error_observed_sed_nuFnu)
    else:
        err_obs = np.asarray(0.1*observed_sed_nuFnu)

    if logfit:
        ln_observed_sed_nuFnu = observed_sed_nuFnu
        ln_err_obs = err_obs
        subset = observed_sed_nuFnu != 0.0  
        ln_observed_sed_nuFnu[subset] = np.log(observed_sed_nuFnu[subset])
        ln_err_obs[subset] = err_obs[subset]/observed_sed_nuFnu[subset]

    # How many degrees of freedom?
    dof = len(observed_sed_nuFnu) 
    
    chisqs = np.asarray([len(a_distance),len(a_av),len(a_rv) ])

    for i_r in range(0, len(a_rv)-1):
        ext = np.asarry(ccm_extinction(a_rv[i_r],wave_ang)) # Use wavelength in Angstroms

        for i_d in range(0, len(a_distance)-1):
            
            for i_a in range(0, len(a_av)-1):
                
                extinction = 10.0**((ext*a_av[i_a])/(-2.5))
                vout = (model_sed_1pc*extinction)/(a_distance[i_d])**2 
                
                if logfit:
                    ln_vout = vout
                    ln_vout[subset] = np.log(vout[subset])
                    chicomb = (ln_vout-ln_observed_sed_nuFnu)**2/(ln_err_obs**2 + (ln_vout*np.log(model_noise_frac))**2)
                else:   
                    chicomb = (vout-observed_sed_nuFnu)**2/(err_obs**2 + (vout*model_noise_frac)**2)

                chisqs[i_d, i_a, i_r] = np.asarray(sum(chicomb)/(dof-additonal_free)) #Normalize to Reduced chi square.

    wmin = chisqs == min(chisqs)
    sed_chisqr = min(chisqs)
    best_distance = a_distance[wmin[0]]
    best_av = a_av[wmin[1]]
    best_rv = a_rv[wmin[2]]

    return best_distance, best_av, best_rv, sed_chisqr
Beispiel #18
0
x_list = []
y_list = []

# 读取图片
image_path = ''
img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
_, imgt = cv2.threshold(img, 140, 255, cv2.THRESH_BINARY_INV)

x_data = imgt / 255
y_data = ''

x_list.append(x_data)
y_list.append(y_data)

x_train, x_test, y_train, y_test = train_test_split(np.asarry(x_list),
                                                    np.asarray(y_list),
                                                    test_size=test_ratio,
                                                    random_state=42)

# 网络搭建
model = Sequential()
model.add(
    Conv2D(16, kernel_size=(3, 3), activation='relu', input_shape=input_shape))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64, activation='relu'))
model.add(Dense(code_classes, activation='softmax'))

model.compile(loss=keras.losses.categorical_crossentropy,
              optimizer=keras.optimizers.Adadelta(),
Beispiel #19
0
 def get_coefs(word, *arr) : return word, np.asarry(arr, dtype='float32')
 embeddings_index = dict(get_coefs(*o.split(" ")) for o in open(EMBEDDING_FILE))
Beispiel #20
0
 def get_coefs(word, *arr) : return word, np.asarry(arr, dtype='float32')
 embedding_index = dict(get_coefs(*o.split(" ")) for o in open(EMBEDDING_FILE, encoding='utf8', erros='igonre') if len(o)>100)
Beispiel #21
0
 def uniq_file_id(self):
     return np.asarry(self.files['file_id'])
Beispiel #22
0
    def _generate_bayes_net(self):
        # 1. Start at any node (0)
        # 2. At each node figure out the conditional prob
        # 3. Add it to the new graph
        # 4. Find unprocessed adjacent nodes
        # 5. If any go to 2
        #      Else return the bayes net

        # Will it be possible that zero is not root? If
        # so, we need to pick one
        root = 0

        samples = np.asarry(self.samples)
        self.bayes_net = nx.bfs_tree(self.spanning_graph, root)
        
        for parent, child in self.bayes_net.edges():
            parent_array = samples[:, parent]

            # if node is not root, get probability of 
            # each gene appearing in parent
            # Return an iterator over predecessor nodes of n
            if not self.bayes_net.predecessors(parent):
                freqs = np.histogram(parent_array, len(np.unique(parent_array)))[0]
                # zip([a,b,c],[1,2,3]) -> [(a, 1), (...)]
                parent_probs = dict(zip(np.unique(sub_child), freqs/(sum(freqs)*1.0)))

                self.bayes_net.node[parent]["probabilities"] = {x:0 for x in range(len(self.samples))}
                self.bayes_net.node[parent]["probabilities"].update(parent_nodes)

            child_array = samples[:, child]

            unique_parent = np.unique(parent_array)
            for parent_val in unique_parents:
                parent_inds = np.argwhere(parent_array == parent_val)
                sub_child = child_array[parent_inds]

                # Compute the histogram of a set of data.
                freqs = np.histogram(sub_child, len(np.unique(sub_child)))[0]
                child_probs = dict(zip(np.unique(sub_child), freqs/(sum(freqs)*1.0)))

                self.bayes_net.node[child][parent_val] = {x:0 for x in range(len(self.samples))}
                self.bayes_net.node[child][parent_val].update(parent_nodes)

            self.bayes_net.node[child] = dict(probabilities=self.bayes_net.node[child])

        # PRIM_MST Compute a minimum spanning with Prims's algorithm.
        def _generate_spanning_graph(self):
            return nx.prim_mst(self.complete_graph)

        def _generate_mutual_information_graph(self):
            samples = np.asarray(self.samples)
            complete_graph = nx.complete_graph(samples.shape[1])

            for edge in complete_graph.edges():
                mutual_info = mutual_info_score(
                    samples[:, edge[0]],
                    samples[:, edge[1]]
                )

                complete_graph.edge[edge[0]][edge[1]]['weight'] = -mutual_info

            return complete_graph