def build_plot(self, usePCA):
        import pylab

        self.normaliser = MorphologyForRenderingOperator(self.morph, usePCA=usePCA)

        # Find the Point that is the furthest distance way from
        # the centre when the cell is centred and rotated:
        rotator = lambda s: self.normaliser(s.get_distal_npa3())

        rotated_section_dict = DictBuilderSectionVisitorHomo(morph=self.morph, functor=rotator)()

        # Add in the parents manually:
        dummy_scetion = self.morph._dummysection
        rotated_section_dict[dummy_scetion] = self.normaliser(dummy_scetion.get_distal_npa3())

        max_axis = max([numpy.linalg.norm(rotated_section_pt) for rotated_section_pt in rotated_section_dict.values()])
        plot_lims = (max_axis * -1.1, max_axis * 1.1)

        max_x = max([numpy.fabs(rotated_section_pt[0]) for rotated_section_pt in rotated_section_dict.values()])
        max_y = max([numpy.fabs(rotated_section_pt[1]) for rotated_section_pt in rotated_section_dict.values()])
        max_z = max([numpy.fabs(rotated_section_pt[2]) for rotated_section_pt in rotated_section_dict.values()])

        maxes = [max_x, max_y, max_z]

        # allMax = max(maxes)
        for i in self.plot_views:
            maxes[i] = maxes[i] + 0.2 * max([max_x, max_y, max_z])

        self.fig = pylab.figure(**self.fig_kwargs)  # figsize=(7, 7))
        self.fig.subplots_adjust(left=0.05, top=0.95, right=0.95, bottom=0.05, wspace=0.15, hspace=0.15)

        self.subplots = {}
        for i in self.plot_views:
            self.subplots[i] = self.build_draw_sub_plot(rotated_section_dict, self.fig, i, plot_lims)
def create_mock_sample(data,dfc,trueVsolar,spiral=False):
    if spiral:
        #Read spiral vlos field
        spvlos= galpy_simulations.vlos('../sim/bar_rect_alpha0.015_hivres.sav')
        potscale= 0.85
        xgrid= numpy.linspace(_RCXMIN,_RCXMAX-_RCDX,19)
        ygrid= numpy.linspace(_RCYMIN,_RCYMAX-_RCDX,19)
    ndata= len(data)
    mockvel= numpy.empty(ndata)
    dphil= data['RC_GALPHI']+data['GLON']/180.*numpy.pi
    cosdphil= numpy.cos(dphil)
    sindphil= numpy.sin(dphil)
    cosl= numpy.cos(data['GLON']/180.*numpy.pi)
    sinl= numpy.sin(data['GLON']/180.*numpy.pi)
    for ii in range(ndata):
        vrvt= dfc.sampleVRVT(data['RC_GALR'][ii]/8.,n=1.)
        mockvel[ii]= -vrvt[0,0]*cosdphil[ii]\
            +vrvt[0,1]*sindphil[ii]\
            -10.5*cosl[ii]/220.\
            -(1.+trueVsolar)*sinl[ii]
        if spiral:
            #Find which pixel this sample is in
            pixIndxX= numpy.argmin(numpy.fabs(data['RC_GALR'][ii]\
                                                  *numpy.cos(data['RC_GALPHI'][ii])\
                                                  -xgrid))
            pixIndxY= numpy.argmin(numpy.fabs(data['RC_GALR'][ii]\
                                                  *numpy.sin(data['RC_GALPHI'][ii])\
                                                  -ygrid))
            spiraldev= spvlos[pixIndxX,pixIndxY]
            mockvel[ii]+= spiraldev*potscale
    data['VHELIO_AVG']= mockvel*220.
    return data
    def getStepsize(self, mix_den, ht):
        mix_den_fil = np.fabs(mix_den) > 1.E-7
        a = ht[mix_den_fil] / mix_den[mix_den_fil]
        b = 1.0 + a
        b_fil = np.fabs(b) > 1.E-7
        w = self.w
        sl = w * ht[b_fil] / b[b_fil]
        s11 = sl.sum()
        s0 = (w * ht).sum()

        step, oldstep = 0., 0.
        for i in range(50):
            grad1, grad2 = 0., 0.
            for j in range(self.n):
                a = mix_den[j] + step * ht[j]
            if math.fabs(a) > 1.E-7:
                b = ht[j] / a
                grad1 = grad1 + w * b
                grad2 = grad2 - w * b * b
            if math.fabs(grad2) > 1.E-10:
                step = step - grad1 / grad2
            if oldstep > 1.0 and step > oldstep:
                step = 1.
                break
            if grad1 < 1.E-7:
                break
            oldstep = step
        if step > 1.0:
            return 1.0
        return step
    def ActionNodeStd(self, o):
        print
        print repr(o)
        print '-' * len(repr(o))
        ann = self.annotations.annotations[o]
        print ann

        # Lets go symmetrical, about 0:
        vmin = ann.val_min.float_in_si()
        vmax = ann.val_max.float_in_si()
        ext = max( [np.abs(vmin),np.abs(vmax) ] )   
        if ext != 0.0:
            #Include some padding:
            upscaling_pow = int( np.ceil( np.log2(ext ) ) )
        else:
            upscaling_pow = 0

        # Lets remap the limits:
        upscaling_val = 2 ** (-upscaling_pow)
        vmin_scaled  = vmin * upscaling_val
        vmax_scaled  = vmax * upscaling_val

        print 'vMin, vMax', vmin, vmax
        print 'Scaling:', '2**', upscaling_pow, ' ->', upscaling_val
        print 'vMin_scaled, vMax_scaled', vmin_scaled, vmax_scaled


        ann.fixed_scaling_power = upscaling_pow

        assert 0.1 < max( [np.fabs(vmin_scaled), np.fabs(vmax_scaled) ] ) <= 1.0 or  vmin_scaled == vmax_scaled == 0.0
    def setup_sampling(self, 
                       gradient, 
                       soln, 
                       linear_randomization,
                       quadratic_coef):

        self.accept_beta, self.total_beta = 0, 0

        random_direction = 2 * quadratic_coef * soln + linear_randomization 
        negative_subgrad = gradient + random_direction

        self.active_set = (soln != 0)
        self.initial_parameters = np.empty(1, self.dtype)
        self.initial_parameters['signs'] = np.sign(soln[self.active_set])
        abs_l1part = np.fabs(soln[self.active_set])
        l1norm_ = abs_l1part.sum()

        self.initial_parameters['simplex'] = (abs_l1part / l1norm_)[:-1]
        subgrad = -negative_subgrad[self.inactive_set]
        supnorm_ = np.fabs(negative_subgrad).max()

        if self.lagrange is not None: 
            self.initial_parameters['cube'] = subgrad / self.lagrange
            self.initial_parameters['scale'] = l1norm_
        else:
            if self._active_set.sum() != self.shape:
                self.initial_parameters['cube'] = subgrad / supnorm_
                self.initial_parameters['scale'] = supnorm_
        
        if self.lagrange is None:
            raise NotImplementedError("only lagrange form is implemented")

        return soln[self.active_set], subgrad
Beispiel #6
0
    def _calc_shift_ranges(self, x_shift, y_shift):
        '''Calculate shift indices for input and output arrays.
        '''
        LOGGER.debug("Calculating shift ranges.")
        # width of the portion to be moved
        width = self._img_shape[1] - int(np.fabs(x_shift))
        # height of the portion to be moved
        height = self._img_shape[0] - int(np.fabs(y_shift))

        # Calculate the corner indices of the area to be moved
        if x_shift < 0:
            n_x1, n_x2 = 0, width
            o_x1, o_x2 = -1*x_shift, -1*x_shift+width
        else:
            n_x1, n_x2 = x_shift, x_shift+width
            o_x1, o_x2 = 0, width
        if y_shift < 0:
            n_y1, n_y2 = 0, height
            o_y1, o_y2 = -1*y_shift, -1*y_shift+height
        else:
            n_y1, n_y2 = y_shift, y_shift+height
            o_y1, o_y2 = 0, height

        output_ranges = ((n_x1, n_x2), (n_y1, n_y2))
        input_ranges = ((o_x1, o_x2), (o_y1, o_y2))

        return (output_ranges[0], output_ranges[1],
                input_ranges[0], input_ranges[1])
 def _findUSpace(self):
     """Find independent U components with respect to invariant
     rotations.
     """
     n = len(self.invariants)
     R6zall = numpy.tile(-numpy.identity(6, dtype=float), (n, 1))
     R6zall_iter = numpy.split(R6zall, n, axis=0)
     i6kl = ((0, (0, 0)), (1, (1, 1)), (2, (2, 2)),
             (3, (0, 1)), (4, (0, 2)), (5, (1, 2)))
     for op, R6z in zip(self.invariants, R6zall_iter):
         R = op.R
         for j, Ucj in enumerate(self.Ucomponents):
             Ucj2 = numpy.dot(R, numpy.dot(Ucj, R.T))
             for i, kl in i6kl:
                 R6z[i,j] += Ucj2[kl]
     Usp6 = nullSpace(R6zall)
     # normalize Usp6 by its maximum component
     mxcols = numpy.argmax(numpy.fabs(Usp6), axis=1)
     mxrows = numpy.arange(len(mxcols))
     Usp6 /= Usp6[mxrows,mxcols].reshape(-1, 1)
     Usp6 = numpy.around(Usp6, 2)
     # normalize again after rounding to get correct signs
     mxcols = numpy.argmax(numpy.fabs(Usp6), axis=1)
     Usp6 /= Usp6[mxrows,mxcols].reshape(-1, 1)
     self.Uspace = numpy.tensordot(Usp6, self.Ucomponents, axes=(1, 0))
     self.Uisotropy = (len(self.Uspace) == 1)
     return
Beispiel #8
0
def ransac(kernel, threshold):
    '''Robustly fit a model to data.

    >>> x = np.array([1., 2., 3.])
    >>> y = np.array([2., 4., 7.])
    >>> kernel = TestLinearKernel(x, y)
    >>> ransac(kernel, 0.1)
    (2.0, array([0, 1]), 0.10000000000000001)
    '''
    max_iterations = 1000
    best_error = float('inf')
    best_model = None
    best_inliers = []
    i = 0
    while i < max_iterations:
        try:
            samples = kernel.sampling()
        except AttributeError:
            samples = random.sample(range(kernel.num_samples()),
                                kernel.required_samples)
        models = kernel.fit(samples)
        for model in models:
            errors = kernel.evaluate(model)
            inliers = np.flatnonzero(np.fabs(errors) < threshold)
            error = np.fabs(errors).clip(0, threshold).sum()
            if len(inliers) and error < best_error:
                best_error = error
                best_model = model
                best_inliers = inliers
                max_iterations = min(max_iterations,
                    ransac_max_iterations(kernel, best_inliers, 0.01))
        i += 1
    return best_model, best_inliers, best_error
def test_actionConservation():

    #_____initialize some KKSPot_____
    Delta = 1.0
    pot = KuzminKutuzovStaeckelPotential(ac=20.,Delta=Delta,normalize=True)

    #_____initialize an orbit (twice)_____
    vxvv = [1.,0.1,1.1,0.01,0.1]
    o= Orbit(vxvv=vxvv)

    #_____integrate the orbit with C_____
    ts= numpy.linspace(0,101,100)
    o.integrate(ts,pot,method='leapfrog_c')

    #_____Setup ActionAngle object and calculate actions (Staeckel approximation)_____
    aAS = actionAngleStaeckel(pot=pot,delta=Delta,c=True)
    jrs,lzs,jzs = aAS(o.R(ts),o.vR(ts),o.vT(ts),o.z(ts),o.vz(ts))

    assert numpy.all(numpy.fabs(jrs - jrs[0]) < 10.**-8.), \
        'Radial action is not conserved along orbit.'

    assert numpy.all(numpy.fabs(lzs - lzs[0]) < 10.**-8.), \
        'Angular momentum is not conserved along orbit.'

    assert numpy.all(numpy.fabs(jzs - jzs[0]) < 10.**-8.), \
        'Vertical action is not conserved along orbit.'

    return None
Beispiel #10
0
def trazo(ini, fin, ancho):
    '''Recibe la coordenada de inicio del trazo, el final y el ancho del
    trazo, devuelve un arreglo con las coordenadas de los puntos que lo
    conformman. Sólo funciona para trazos rectos.
    (recibe los puntos más izquierdos, o más  abajo del trazo)'''
    ancho = int(ancho)+1
    actual = ini
    if es_horizontal(ini, fin):
        paso = np.array([1, 0])
        ancho_1 = np.array([0, 1])
        rango = int(np.fabs(fin[0]-ini[0]))+1
    else:
        paso = np.array([0, 1])
        ancho_1 = np.array([1, 0])
        rango = int(np.fabs(fin[1]-ini[1]))

    trazo = np.zeros([(rango)*(ancho), 2])
    for a in range(ancho):
        for i in range(rango):
            trazo[i+(rango)*a] = np.array([actual])
            actual += paso
        actual = ini
        actual += (a+1)*ancho_1
    
    return trazo
def test_orbitIntegrationC():

    #_____initialize some KKSPot_____
    Delta = 1.0
    pot = KuzminKutuzovStaeckelPotential(ac=20.,Delta=Delta,normalize=True)

    #_____initialize an orbit (twice)_____
    vxvv = [1.,0.1,1.1,0.,0.1]
    o_P= Orbit(vxvv=vxvv)
    o_C= Orbit(vxvv=vxvv)

    #_____integrate the orbit with python and C_____
    ts= numpy.linspace(0,100,101)
    o_P.integrate(ts,pot,method='leapfrog')  #python
    o_C.integrate(ts,pot,method='leapfrog_c')#C

    for ii in range(5):
        exp3= -1.7
        if   ii == 0: Python, CC, string, exp1, exp2 = o_P.R(ts) , o_C.R(ts) , 'R' , -5., -10.
        elif ii == 1: Python, CC, string, exp1, exp2 = o_P.z(ts) , o_C.z(ts) , 'z' , -3.25, -4.
        elif ii == 2: Python, CC, string, exp1, exp2 = o_P.vR(ts), o_C.vR(ts), 'vR', -3., -10.
        elif ii == 3: Python, CC, string, exp1, exp2, exp3 = o_P.vz(ts), o_C.vz(ts), 'vz', -3., -4., -1.3
        elif ii == 4: Python, CC, string, exp1, exp2 = o_P.vT(ts), o_C.vT(ts), 'vT', -5., -10.

        rel_diff = numpy.fabs((Python-CC)/CC) < 10.**exp1
        abs_diff = (numpy.fabs(Python-CC) < 10.**exp2) * (numpy.fabs(Python) < 10.**exp3)
        assert numpy.all(rel_diff+abs_diff), \
            'Orbit integration for '+string+' coordinate different in ' + \
            'C and Python implementation.'

    return None
Beispiel #12
0
    def weights(self, z):
        """
        Hampel weighting function for the IRLS algorithm

        The psi function scaled by z

        Parameters
        ----------
        z : array-like
            1d array

        Returns
        -------
        weights : array
            weights(z) = 1                            for \|z\| <= a

            weights(z) = a/\|z\|                        for a < \|z\| <= b

            weights(z) = a*(c - \|z\|)/(\|z\|*(c-b))      for b < \|z\| <= c

            weights(z) = 0                            for \|z\| > c

        """
        z = np.asarray(z)
        a = self.a; b = self.b; c = self.c
        t1, t2, t3 = self._subset(z)
        v = (t1 +
            t2 * a/np.fabs(z) +
            t3 * a*(c-np.fabs(z))/(np.fabs(z)*(c-b)))
        v[np.where(np.isnan(v))]=1. # for some reason 0 returns a nan?
        return v
def test_estimateDelta():

    #_____initialize some KKSPot_____
    Delta = 1.0
    pot = KuzminKutuzovStaeckelPotential(ac=20.,Delta=Delta,normalize=True)

    #_____initialize an orbit (twice)_____
    vxvv = [1.,0.1,1.1,0.01,0.1]
    o= Orbit(vxvv=vxvv)

    #_____integrate the orbit with C_____
    ts= numpy.linspace(0,101,100)
    o.integrate(ts,pot,method='leapfrog_c')


    #____estimate Focal length Delta_____
    #for each time step individually:
    deltas_estimate = numpy.zeros(len(ts))
    for ii in range(len(ts)):
        deltas_estimate[ii] = estimateDeltaStaeckel(pot,o.R(ts[ii]),o.z(ts[ii]))

    assert numpy.all(numpy.fabs(deltas_estimate - Delta) < 10.**-8), \
            'Focal length Delta estimated along the orbit is not constant.'

    #for all time steps together:
    delta_estimate = estimateDeltaStaeckel(pot,o.R(ts),o.z(ts))
    
    assert numpy.fabs(delta_estimate - Delta) < 10.**-8, \
            'Focal length Delta estimated from the orbit is not the same as the input focal length.'

    return None
Beispiel #14
0
def truncate_hist1( self, xmin, xmax ):
    buf   = get_buffer_hist1( self )
    sbuf  = get_err_buffer_hist1( self )
    edges, fixed = get_bin_edges_axis( self.GetXaxis(), type=True )

    e1 = numpy.fabs(edges[:-1]-xmin)<1.e-9
    e2 = numpy.fabs(edges[1:]-xmax)<1.e-9
    assert numpy.any( e1 ) and numpy.any( e2 ), 'Invalid new histogram limits'
    i1 = numpy.nonzero( e1 )[0][0]
    i2 = numpy.nonzero( e2 )[0][-1]+1

    if fixed:
        newhist = self.__class__( self.GetName(), self.GetTitle(), i2-i1, xmin, xmax )
    else:
        newhist = self.__class__( self.GetName(), self.GetTitle(), i2-i1, edges[i1:i2] )

    newbuf = get_buffer_hist1( newhist )
    if sbuf is None:
        newsbuf = None
    else:
        newhist.Sumw2()
        newsbuf = get_err_buffer_hist1( newhist )

    newbuf[:] = buf[i1:i2]
    if not sbuf is None:
        newsbuf[:] = sbuf[i1:i2]

    newhist.SetEntries( newhist.Integral() )

    return newhist
Beispiel #15
0
    def test_monopole_fluxpoints(self):
        """Tests monopole flux points."""

        field = ElectricField([PointCharge(2, [0, 0])])
        circle = GaussianCircle([0, 0], 10)

        fluxpoints = circle.fluxpoints(field, 4)
        self.assertEqual(len(fluxpoints), 4)
        self.assertTrue(isclose(fluxpoints,
                                [[10, 0], [0, 10], [-10, 0], [0, -10]]).all())

        fluxpoints = circle.fluxpoints(field, 14)
        self.assertEqual(len(fluxpoints), 14)
        self.assertTrue(isclose(fluxpoints[0], [10, 0]).all())
        self.assertTrue(isclose(fluxpoints[7], [-10, 0]).all())

        x1 = fluxpoints[1:7]
        x2 = fluxpoints[-1:7:-1]
        x2[:, 1] = fabs(x2[:, 1])
        self.assertTrue(isclose(x1, x2).all())

        x1 = append(fluxpoints[-3:], fluxpoints[:4], axis=0)
        x2 = fluxpoints[-4:3:-1]
        x2[:, 0] = fabs(x2[:, 0])
        self.assertEqual(len(x1), len(x2))
        self.assertTrue(isclose(x1, x2).all())
Beispiel #16
0
 def _get_edr(self, obs, expected, stddev, bandwidth=0.01, multiplier=3.0):
     """
     Calculated the Euclidean Distanced-Based Rank for a set of
     observed and expected values from a particular GMPE
     """
     nvals = len(obs)
     min_d = bandwidth / 2.
     kappa = self._get_kappa(obs, expected)
     mu_d = obs - expected
     d1c = np.fabs(obs - (expected - (multiplier * stddev)))
     d2c = np.fabs(obs - (expected + (multiplier * stddev)))
     dc_max = ceil(np.max(np.array([np.max(d1c), np.max(d2c)])))
     num_d = len(np.arange(min_d, dc_max, bandwidth))
     mde = np.zeros(nvals)
     for iloc in range(0, num_d):
         d_val = (min_d + (float(iloc) * bandwidth)) * np.ones(nvals)
         d_1 = d_val - min_d
         d_2 = d_val + min_d
         p_1 = norm.cdf((d_1 - mu_d) / stddev) -\
             norm.cdf((-d_1 - mu_d) / stddev)
         p_2 = norm.cdf((d_2 - mu_d) / stddev) -\
             norm.cdf((-d_2 - mu_d) / stddev)
         mde += (p_2 - p_1) * d_val
     inv_n = 1.0 / float(nvals)
     mde_norm = np.sqrt(inv_n * np.sum(mde ** 2.))
     edr = np.sqrt(kappa * inv_n * np.sum(mde ** 2.))
     return mde_norm, np.sqrt(kappa), edr
Beispiel #17
0
def find_nearest(array, value):
    """
    Return the array value that is closest to the input value (Abigail Stevens:
    Thanks StackOverflow!)

    Parameters
    ----------
    array : np.array of ints or floats
        1-D array of numbers to search through. Should already be sorted
        from low values to high values.

    value : int or float
        The value you want to find the closest to in the array.

    Returns
    -------
    array[idx] : int or float
        The array value that is closest to the input value.

    idx : int
        The index of the array of the closest value.

    """
    idx = np.searchsorted(array, value, side="left")
    if idx == len(array) or np.fabs(value - array[idx - 1]) < \
            np.fabs(value - array[idx]):
        return array[idx - 1], idx - 1
    else:
        return array[idx], idx
def deliverStim(currTime):
	global injectionCurrent	
	global spineVm
	global somaVm
	if numpy.fabs( currTime - baselineTime ) < frameRunTime/2.0 :
		#start
		eList = moose.wildcardFind( '/model/elec/#soma#' )
		assert( len(eList) > 0 )
		eList[0].inject = injectionCurrent
		#print "1. injected current = ", injectionCurrent
		injectionCurrent += deltaCurrent
		#print "del stim first ", moose.element('/clock').currentTime
	if numpy.fabs( currTime - baselineTime - currPulseTime) < frameRunTime/2.0 :
		#end
		eList = moose.wildcardFind( '/model/elec/#soma#' )
		assert( len(eList) > 0 )
		eList[0].inject = 0.0
		#print "2. injected current = ", injectionCurrent
		#print "del stim second ", moose.element('/clock').currentTime
	if runtime - currTime < frameRunTime * 2.0 :
		#print "3. reinit-ing"
		somaVm.append( moose.element( '/graphs/VmTab' ).vector )
		spineVm.append( moose.element( '/graphs/eSpineVmTab' ).vector )
		iList.append(injectionCurrent)
		if injectionCurrent < maxCurrent :
			moose.reinit()	
Beispiel #19
0
    def get_weights_cs2ll(self, dst, alpha, beta, panel, gids):
        cs_obj = self.cs_obj

        (a1,b1), (a2,b2), (a3,b3), (a4,b4) = \
                [cs_obj.alpha_betas[gid] for gid in gids]
        
        assert np.fabs(a1-a3)<1e-15
        assert np.fabs(a2-a4)<1e-15
        assert np.fabs(b1-b2)<1e-15
        assert np.fabs(b3-b4)<1e-15
        assert flge(a1,alpha,a2), "dst={}, a1={}, a2={}, alpha={}".format(dst,a1,a2,alpha)
        assert flge(b1,beta,b3), "dst={}, b1={}, b3={}, beta={}".format(dst,b1,b3,beta)

        panels = [cs_obj.gq_indices[gid,0] for gid in gids]
        for p in panels:
            if p != panel:
                print("(alpha,beta) ({},{})".foramt(alpha, beta))
                print("panel: {}, {}".format(panel, panels))
                print("dst: {}".format(dst))
                print("gids: {}".format(gids))
                sys.exit()

        # weights
        x, y = alpha, beta
        x1, x2 = a1, a2
        y1, y2 = b1, b3

        return self.get_bilinear_weights(dst, (x,y), (x1,y1), (x2,y2))
Beispiel #20
0
    def get_weights_ll2cs(self, dst, lat, lon, idxs):
        cs_obj = self.cs_obj
        ll_obj = self.ll_obj

        idx1, idx2, idx3, idx4 = idxs

        lat1, lon1 = ll_obj.latlons[idx1]
        lat2, lon2 = ll_obj.latlons[idx2]
        lat3, lon3 = ll_obj.latlons[idx3]
        lat4, lon4 = ll_obj.latlons[idx4]

        assert np.fabs(lon1-lon3)<1e-15
        assert np.fabs(lon2-lon4)<1e-15
        assert np.fabs(lat1-lat2)<1e-15
        assert np.fabs(lat3-lat4)<1e-15

        if lon2 < lon1: lon2 = lon1 + ll_obj.dlon
        if lon4 < lon3: lon4 = lon3 + ll_obj.dlon
        if np.fabs(lon-lon1) > np.pi: lon += 2*np.pi
        assert flge(lon1,lon,lon2), "dst={}, lon1={}, lon2={}, lon={}".format(dst,lon1,lon2,lon)
        assert flge(lat1,lat,lat3), "dst={}, lat1={}, lat3={}, lat={}".format(dst,lat1,lat2,lat)

        # weights
        x, y = lon, lat
        x1, x2 = lon1, lon2
        y1, y2 = lat1, lat3

        return self.get_bilinear_weights(dst, (x,y), (x1,y1), (x2,y2))
Beispiel #21
0
    def bartlettTest(self):
        M = -(self.n-1/2*(self.p+self.q+3))

        for i in range(len(self.s)):
            #有意水準を求める
            alf = self.sigAlf
            sig = sp.special.chdtri((self.p-i)*(self.q-i), alf)
            test = 1

            #ウィルクスのラムダ
            for j in range(len(self.s)-i):
                test = test*(1-self.s[len(self.s)-j-1])
            chi = M*math.log(test)

            #帰無仮説棄却/採用
            if chi > sig:
                print  "test["+str(i)+"]:"+str(chi) +" > sig("+str(alf)+"):"+str(sig)
                run = np.fabs(self.A[:,i:i+1])
                rvn = np.fabs(self.B[:,i:i+1])
                arg_u = np.argmax(run)
                arg_v = np.argmax(rvn)
                self.eigArray.append(str(i))
                val = [arg_u, arg_v]
                self.eigValArray.append(val)
                print "eigen:"+str(np.sqrt(self.s[i]))
                print "ru-max arg:"+str(arg_u)
                print "rv-max arg:"+str(arg_v)
            else:
                break
def plot(filename, x=0, y=1, x_abs=False, y_abs=False,
         xscale='linear', yscale='linear', xlabel='x', ylabel='y',
         scatter=False, size=12, title='', xmin=-np.inf, xmax=np.inf,
         ymin=-np.inf, ymax=np.inf):

    filtercols = (x, y)
    mins = (xmin, ymin)
    maxs = (xmax, ymax)
    data_filtered = __filter_outranged_x(filename, filtercols, mins, maxs)

    xs, ys = np.loadtxt(data_filtered, usecols=(x, y), unpack=True)

    if x_abs:
        xs = np.fabs(xs)
    if y_abs:
        ys = np.fabs(ys)

    f, ax = plt.subplots(1, 1)
    ax.set_xscale(xscale)
    ax.set_yscale(yscale)
    ax.set_xlabel(xlabel)
    ax.set_ylabel(ylabel)

    if title:
        plt.title(title)

    if scatter:
        ax.scatter(xs, ys, s=size)
    else:
        ax.plot(xs, ys, linewidth=size)

    plt.axis('tight')
    plt.show()
    plt.close()
def replicate_line_with_threshold(g_expr,  g_expr_c,  M,  K,  threshold):
    '''Compare whether two lines are the same lines.'''
    coeffi_1 = np.zeros((M,  K))
    coeffi_2 = np.zeros((M,  K))
    coeff1_constant = g_expr[-1]
    coeff2_constant = g_expr_c[-1]
    #calculate the sum of all coefficients
    sum_coeff1 = coeff1_constant
    sum_coeff2 = coeff2_constant
    for i in xrange(M):
        for j in xrange(K):
            coeffi_1[i][j] = g_expr[i*K + j]
            coeffi_2[i][j] = g_expr_c[i*K + j]
            sum_coeff1 += coeffi_1[i][j]
            sum_coeff2 += coeffi_2[i][j]
    
    #check constant
    if np.fabs(sum_coeff1 * coeff2_constant - sum_coeff2 * coeff1_constant) > threshold:
        return 0
    #check all other coefficients
    for i in xrange(M):
        for j in xrange(K):
            if np.fabs(sum_coeff1 * coeffi_2[i][j] - sum_coeff2 * coeffi_1[i][j]) > threshold:
                #sum_coeff1 * coeffi_2[i][j] != sum_coeff2 * coeffi_1[i][j]
                return 0 
    #1 represents the two lines are the same equation
    return 1
Beispiel #24
0
def weighted_mean(_line):
    max_weight = 50
    
    # print _line.shape
    
    median_2d = bottleneck.nanmedian(_line, axis=1).reshape(_line.shape[0],1).repeat(_line.shape[1], axis=1)
    std = bottleneck.nanstd(_line, axis=1)
    std_2d = std.reshape(_line.shape[0],1).repeat(_line.shape[1], axis=1)
    
    weight_2d = numpy.fabs(std_2d / (_line - median_2d))
#    weight_2d[weight_2d > max_weight] = max_weight
    weight_2d[numpy.isinf(weight_2d)] = max_weight
    
    for i in range(3):
        avg = bottleneck.nansum(_line*weight_2d, axis=1)/bottleneck.nansum(weight_2d, axis=1)
        avg_2d = avg.reshape(_line.shape[0],1).repeat(_line.shape[1], axis=1)
        
        std = numpy.sqrt(bottleneck.nansum(((_line - avg_2d)**2 * weight_2d), axis=1)/bottleneck.nansum(weight_2d, axis=1))
        std_2d = std.reshape(_line.shape[0],1).repeat(_line.shape[1], axis=1)
        
        weight_2d = numpy.fabs(std_2d / (_line - avg_2d))
        #weight_2d[weight_2d > max_weight] = max_weight
        weight_2d[numpy.isinf(weight_2d)] = max_weight
    
    return bottleneck.nansum(_line*weight_2d, axis=1)/bottleneck.nansum(weight_2d, axis=1)
Beispiel #25
0
    def __init__(self, num):
        global h, edge_times, edge_probs, state_density, states, Phdelta
        states, state_density, edge_probs, edge_times, Phdelta = [],[],[],[],[]
        
        h = (zmax-zmin)/float(num)
        self.tot_vert = num+1
        states = np.linspace(zmin, zmax, self.tot_vert)
        for s in states:
            c = process_var + h*np.fabs(self.drift(s))
            htime = h*h/c
            edge_times.append(htime)
        for i in range(self.tot_vert):
            s = states[i]
            c = process_var + h*np.fabs(self.drift(s))
            if (i != 0) and (i != self.tot_vert-1):
                edge_probs.append([(process_var/2 + h*np.fabs(self.drift(s)))/c, process_var/2/c])
            elif (i == self.tot_vert -1):
                edge_probs.append([1.0, 0.])
            elif (i == 0):
                edge_probs.append([0., 1.0])
        
        """ 
        # get filtering one_step transition probabilities using matrices
        self.delta = min(edge_times)*0.999
        P1 = np.zeros((self.tot_vert, self.tot_vert))
        P0 = np.zeros((self.tot_vert, self.tot_vert))
        for i in range(self.tot_vert):
            pt = edge_times[i]/(self.delta + edge_times[i])
            if( (i!=0) and (i!=self.tot_vert-1)):
                P1[i,i-1] = edge_probs[i][0]*pt
                P1[i,i+1] = edge_probs[i][1]*pt
                P0[i,i-1] = edge_probs[i][0]*(1-pt)
                P0[i,i+1] = edge_probs[i][1]*(1-pt)
            elif(i ==0):
                P1[i,i+1] = edge_probs[i][1]*pt
                P0[i,i+1] = edge_probs[i][1]*(1-pt)
            else:
                P1[i,i-1] = edge_probs[i][0]*pt
                P0[i,i-1] = edge_probs[i][0]*(1-pt)
        Phdelta = np.linalg.inv(eye(self.tot_vert) - P0)*P1
        """

        self.delta = min(edge_times)*0.999
        #self.delta = 0.0001
        #print 'min_htime: ', min(edge_times),' delta: ', self.delta
        if(min(edge_times) < self.delta):
            print "Add less nodes"
            sys.exit(0)
        # explicit method
        Phdelta = np.zeros((self.tot_vert, self.tot_vert))
        for i in range(self.tot_vert):
            ps = 1 - self.delta/edge_times[i]
            Phdelta[i,i] = ps 
            if( (i!=0) and (i!=self.tot_vert-1)):
                Phdelta[i,i+1] = edge_probs[i][1]*(1- ps)
                Phdelta[i,i-1] = edge_probs[i][0]*(1- ps)
            elif(i ==0):
                Phdelta[i,i+1] = edge_probs[i][1]*(1- ps)
            else:
                Phdelta[i,i-1] = edge_probs[i][0]*(1- ps)
Beispiel #26
0
    def test_get_distance(self):
        """
        Test GridMol.get_distance.
        """
        self.mol.add_atom((1, 2, 1), 1.6)
        self.mol.add_atom((1, 1, 1), 1.6)
        distances = self.mol.get_distance()

        # confirm that negative values are inside atoms
        # this tests distance correspondence with occupancy
        mask = self.mol.get_occupancy()
        assert np.all(distances[mask] <= 0)
        assert np.all(distances[~mask] > 0)

        # check for sane positive distances
        assert np.amax(distances) < max(self.mol.get_real_shape())

        # check that negative distances are not too large
        # min should be no larger than the largest atom radius plus the probe
        # radius (by definition)
        assert np.fabs(np.amin(distances)) <= (
            self.mol.atoms[0].radius + self.mol.probe_radius)

        # check that most distances are significantly less than max
        threshold = max(self.mol.get_real_shape()) / 2.
        assert np.count_nonzero(np.fabs(distances) < threshold) > (
            0.9 * distances.size)
Beispiel #27
0
 def visiting(self, x, step, temperature):
     dim = x.size
     if step < dim:
         # Changing all coordinates with a new visting value
         visits = np.array([self.visit_fn(
             temperature) for _ in range(dim)])
         upper_sample = self.rs.random_sample()
         lower_sample = self.rs.random_sample()
         visits[visits > self.tail_limit] = self.tail_limit * upper_sample
         visits[visits < -self.tail_limit] = -self.tail_limit * lower_sample
         x_visit = visits + x
         a = x_visit - self.lower
         b = np.fmod(a, self.b_range) + self.b_range
         x_visit = np.fmod(b, self.b_range) + self.lower
         x_visit[np.fabs(
             x_visit - self.lower) < self.min_visit_bound] += 1.e-10
     else:
         # Changing only one coordinate at a time based on Markov chain step
         x_visit = np.copy(x)
         visit = self.visit_fn(temperature)
         if visit > self.tail_limit:
             visit = self.tail_limit * self.rs.random_sample()
         elif visit < -self.tail_limit:
             visit = -self.tail_limit * self.rs.random_sample()
         index = step - dim
         x_visit[index] = visit + x[index]
         a = x_visit[index] - self.lower[index]
         b = np.fmod(a, self.b_range[index]) + self.b_range[index]
         x_visit[index] = np.fmod(b, self.b_range[
             index]) + self.lower[index]
         if np.fabs(x_visit[index] - self.lower[
                 index]) < self.min_visit_bound:
             x_visit[index] += self.min_visit_bound
     return x_visit
Beispiel #28
0
    def remove_duplicate_candidates(self, verbosity=1):
        """Remove lower-significance 'duplicate' (i.e. same period)
            candidates from a list of candidates.  For the highest
            significance candidate, include a list of the DMs (and SNRs)
            of all the other detections.

            Inputs:
                verbosity: Verbosity level. (Default: 1)

            Ouputs:
                None
        """
        if verbosity >= 1:
            print "  Sorting the %d candidates by frequency..." % \
                        self.get_numcands()
        self.cands.sort(cmp_freq)
        if verbosity >= 1:
            print "  Searching for dupes..."
        ii = 0
        # Find any match
        while ii < self.get_numcands():
            jj = ii + 1
            if jj < self.get_numcands() and \
                        Num.fabs(self.cands[ii].r-self.cands[jj].r) < r_err:
                # Find others that match
                jj += 1
                while jj < self.get_numcands() and \
                        Num.fabs(self.cands[ii].r-self.cands[jj].r) < r_err:
                    jj += 1
                matches = self.cands[ii:jj]
                matches.sort(cmp_sigma)
                bestindex = self.cands.index(matches[0])
                #sigmas = [c.sigma for c in matches]
                #bestindex = Num.argmax(sigmas)+ii
                # flag the duplicates
                bestcand = self.cands[bestindex]
                # Add other matching cands as hit of highest-sigma cand
                for matchind in reversed(range(ii, jj)):
                    if matchind == bestindex:
                        # The current candidate is the highest-sigma cand
                        # Don't remove it
                        continue
                    match = self.cands[matchind]
                    bestcand.add_as_hit(match)
                    match.note = "This candidate is a duplicate of %s:%d" % \
                                (bestcand.filename, bestcand.candnum)
                    self.duplicate_cands.append(self.cands.pop(matchind))
                    if verbosity >= 2:
                        print "Removing %s:%d (index: %d)" % \
                                (match.filename, match.candnum, matchind)
                        print "    %s" % match.note
                # If the best candidate isn't at the same freq
                # as ii, then it's possible even more hits should
                # be added. So we don't increment the index
                # (note that the best cand has moved into position ii).
            else:
                ii += 1 # No candidates to be added as hits, move on
        if verbosity >= 1:
            print "Found %d candidates.\n" % self.get_numcands()
        self.cands.sort(cmp_sigma)
Beispiel #29
0
def fresnelR(n1, n2, theta):
    temp1 = np.sqrt(1.0-((n1/n2)*np.sin(theta))**2)
    temp2 = np.cos(theta)
    R_s = np.fabs( (n1*temp2-n2*temp1)/(n1*temp2+n2*temp1) )**2
    R_p = np.fabs( (n1*temp1-n2*temp2)/(n1*temp1+n2*temp2) )**2
    R = (R_s + R_p)/2
    return R
Beispiel #30
0
def geigen(Amat, Bmat, Cmat):
    """
    generalized eigenvalue problem of the form

    max tr L'AM / sqrt(tr L'BL tr M'CM) w.r.t. L and M

    :param Amat numpy ndarray of shape (M,N)
    :param Bmat numpy ndarray of shape (M,N)
    :param Bmat numpy ndarray of shape (M,N)

    :rtype: numpy ndarray
    :return values: eigenvalues
    :return Lmat: left eigenvectors
    :return Mmat: right eigenvectors

    """
    if Bmat.shape[0] != Bmat.shape[1]:
        print("BMAT is not square.\n")
        sys.exit(1)

    if Cmat.shape[0] != Cmat.shape[1]:
        print("CMAT is not square.\n")
        sys.exit(1)

    p = Bmat.shape[0]
    q = Cmat.shape[0]

    s = min(p, q)
    tmp = fabs(Bmat - Bmat.transpose())
    tmp1 = fabs(Bmat)
    if tmp.max() / tmp1.max() > 1e-10:
        print("BMAT not symmetric..\n")
        sys.exit(1)

    tmp = fabs(Cmat - Cmat.transpose())
    tmp1 = fabs(Cmat)
    if tmp.max() / tmp1.max() > 1e-10:
        print("CMAT not symmetric..\n")
        sys.exit(1)

    Bmat = (Bmat + Bmat.transpose()) / 2.
    Cmat = (Cmat + Cmat.transpose()) / 2.
    Bfac = cholesky(Bmat)
    Cfac = cholesky(Cmat)
    Bfacinv = inv(Bfac)
    Bfacinvt = Bfacinv.transpose()
    Cfacinv = inv(Cfac)
    Dmat = Bfacinvt.dot(Amat).dot(Cfacinv)
    if p >= q:
        u, d, v = svd(Dmat)
        values = d
        Lmat = Bfacinv.dot(u)
        Mmat = Cfacinv.dot(v.transpose())
    else:
        u, d, v = svd(Dmat.transpose())
        values = d
        Lmat = Bfacinv.dot(u)
        Mmat = Cfacinv.dot(v.transpose())

    return values, Lmat, Mmat
Beispiel #31
0
def to_offset(freq):
    """
    Return DateOffset object from string or tuple representation
    or datetime.timedelta object

    Parameters
    ----------
    freq : str, tuple, datetime.timedelta, DateOffset or None

    Returns
    -------
    delta : DateOffset
        None if freq is None

    Raises
    ------
    ValueError
        If freq is an invalid frequency

    See Also
    --------
    pandas.DateOffset

    Examples
    --------
    >>> to_offset('5min')
    <5 * Minutes>

    >>> to_offset('1D1H')
    <25 * Hours>

    >>> to_offset(('W', 2))
    <2 * Weeks: weekday=6>

    >>> to_offset((2, 'B'))
    <2 * BusinessDays>

    >>> to_offset(datetime.timedelta(days=1))
    <Day>

    >>> to_offset(Hour())
    <Hour>
    """
    if freq is None:
        return None

    if isinstance(freq, DateOffset):
        return freq

    if isinstance(freq, tuple):
        name = freq[0]
        stride = freq[1]
        if isinstance(stride, compat.string_types):
            name, stride = stride, name
        name, _ = _base_and_stride(name)
        delta = get_offset(name) * stride

    elif isinstance(freq, timedelta):
        delta = None
        freq = Timedelta(freq)
        try:
            for name in freq.components._fields:
                offset = _name_to_offset_map[name]
                stride = getattr(freq.components, name)
                if stride != 0:
                    offset = stride * offset
                    if delta is None:
                        delta = offset
                    else:
                        delta = delta + offset
        except Exception:
            raise ValueError(_INVALID_FREQ_ERROR.format(freq))

    else:
        delta = None
        stride_sign = None
        try:
            splitted = re.split(opattern, freq)
            if splitted[-1] != '' and not splitted[-1].isspace():
                # the last element must be blank
                raise ValueError('last element must be blank')
            for sep, stride, name in zip(splitted[0::4], splitted[1::4],
                                         splitted[2::4]):
                if sep != '' and not sep.isspace():
                    raise ValueError('separator must be spaces')
                prefix = _lite_rule_alias.get(name) or name
                if stride_sign is None:
                    stride_sign = -1 if stride.startswith('-') else 1
                if not stride:
                    stride = 1
                if prefix in Resolution._reso_str_bump_map.keys():
                    stride, name = Resolution.get_stride_from_decimal(
                        float(stride), prefix)
                stride = int(stride)
                offset = get_offset(name)
                offset = offset * int(np.fabs(stride) * stride_sign)
                if delta is None:
                    delta = offset
                else:
                    delta = delta + offset
        except Exception:
            raise ValueError(_INVALID_FREQ_ERROR.format(freq))

    if delta is None:
        raise ValueError(_INVALID_FREQ_ERROR.format(freq))

    return delta
Beispiel #32
0
 def test_compute_gradient(self):
     for y, y_pred in zip(self.y_list, self.predict_list):
         fair_grad = self.fair_loss.compute_grad(y, y_pred)
         diff = y_pred - y
         grad = self.c * diff / (np.abs(diff) + self.c)
         self.assertTrue(np.fabs(fair_grad - grad) < consts.FLOAT_ZERO)
Beispiel #33
0
 def test_compute_gradient(self):
     for y, y_pred in zip(self.y_list, self.predict_list):
         lse_grad = self.lse_loss.compute_grad(y, y_pred)
         grad = 2 * (y_pred - y)
         self.assertTrue(np.fabs(lse_grad - grad) < consts.FLOAT_ZERO)
Beispiel #34
0
 def test_predict(self):
     for y in self.y_list:
         y_pred = self.lse_loss.predict(y)
         self.assertTrue(np.fabs(y_pred - y) < consts.FLOAT_ZERO)
Beispiel #35
0
 def test_compute_gradient(self):
     for y, y_pred in zip(self.y_list, self.predict_list):
         tweedie_grad = self.tweedie_loss.compute_grad(y, y_pred)
         grad = -y * np.exp(1 - self.rho) * y_pred + np.exp(
             2 - self.rho) * y_pred
         self.assertTrue(np.fabs(tweedie_grad - grad) < consts.FLOAT_ZERO)
Beispiel #36
0
 def test_compute_hess(self):
     for y, y_pred in zip(self.y_list, self.predict_list):
         log_cosh_hess = self.log_cosh_loss.compute_hess(y, y_pred)
         diff = y_pred - y
         hess = 1 - np.tanh(diff)**2
         self.assertTrue(np.fabs(log_cosh_hess - hess) < consts.FLOAT_ZERO)
Beispiel #37
0
 def test_compute_gradient(self):
     for y, y_pred in zip(self.y_list, self.predict_list):
         log_cosh_grad = self.log_cosh_loss.compute_grad(y, y_pred)
         diff = y_pred - y
         grad = np.tanh(diff)
         self.assertTrue(np.fabs(log_cosh_grad - grad) < consts.FLOAT_ZERO)
Beispiel #38
0
 def test_compute_hess(self):
     for y, y_pred in zip(self.y_list, self.predict_list):
         fair_hess = self.fair_loss.compute_hess(y, y_pred)
         diff = y_pred - y
         hess = self.c**2 / (np.abs(diff) + self.c)**2
         self.assertTrue(np.fabs(fair_hess - hess) < consts.FLOAT_ZERO)
Beispiel #39
0
 def test_compute_gradient(self):
     for y, y_pred in zip(self.y_list, self.predict_list):
         huber_grad = self.huber_loss.compute_grad(y, y_pred)
         diff = y_pred - y
         grad = diff / np.sqrt(diff * diff / self.delta**2 + 1)
         self.assertTrue(np.fabs(huber_grad - grad) < consts.FLOAT_ZERO)
Beispiel #40
0
 def test_compute_hess(self):
     for y, y_pred in zip(self.y_list, self.predict_list):
         huber_hess = self.huber_loss.compute_hess(y, y_pred)
         diff = y_pred - y
         hess = 1.0 / (1 + diff * diff / self.delta**2)**1.5
         self.assertTrue(np.fabs(huber_hess - hess) < consts.FLOAT_ZERO)
Beispiel #41
0
    gene_fixation_positions = {}
    for snp_change in (mutations + reversions):
        gene_name = snp_change[0]
        position = snp_change[2]

        if gene_name not in gene_fixation_positions:
            gene_fixation_positions[gene_name] = []
        gene_fixation_positions[gene_name].append(position)

    for gene_name in gene_fixation_positions:
        if len(gene_fixation_positions[gene_name]) >= 2:
            # Calculate max position difference between SNPs.

            positions = numpy.array(gene_fixation_positions[gene_name])

            max_distance = numpy.fabs(positions[:, None] -
                                      positions[None, :]).max()

            if max_distance > 100:

                print gene_name

                highlighted_gene_set.add(gene_name)

    for snp_change in (mutations + reversions):
        if snp_change[0] in highlighted_gene_set:
            print snp_change

    highlighted_gene_names[pair_idx] = highlighted_gene_set

final_line_number = 0
while final_line_number >= 0:
Beispiel #42
0
 def test_compute_loss(self):
     sklearn_loss = metrics.mean_absolute_error(self.y_list,
                                                self.predict_list)
     lae_loss = self.lae_loss.compute_loss(self.y, self.predict)
     self.assertTrue(np.fabs(lae_loss - sklearn_loss) < consts.FLOAT_ZERO)
Beispiel #43
0
def get_body_heliographic_stonyhurst(body,
                                     time='now',
                                     observer=None,
                                     *,
                                     include_velocity=False):
    """
    Return a `~sunpy.coordinates.frames.HeliographicStonyhurst` frame for the location of a
    solar-system body at a specified time.  The location can be corrected for light travel time
    to an observer.

    Parameters
    ----------
    body : `str`
        The solar-system body for which to calculate positions
    time : {parse_time_types}
        Time to use in a parse_time-compatible format
    observer : `~astropy.coordinates.SkyCoord`
        If None, the returned coordinate is the instantaneous or "true" location.
        If not None, the returned coordinate is the astrometric location (i.e., accounts for light
        travel time to the specified observer)

    Keyword Arguments
    -----------------
    include_velocity : `bool`
        If True, include the body's velocity in the output coordinate.  Defaults to False.

    Returns
    -------
    out : `~sunpy.coordinates.frames.HeliographicStonyhurst`
        Location of the solar-system body in the `~sunpy.coordinates.HeliographicStonyhurst` frame

    Notes
    -----
    There is no correction for aberration due to observer motion.  For a body close to the Sun in
    angular direction relative to the observer, the correction can be negligible because the
    apparent location of the body will shift in tandem with the Sun.

    Examples
    --------
    >>> from sunpy.coordinates.ephemeris import get_body_heliographic_stonyhurst

    Obtain the location of Venus

    >>> get_body_heliographic_stonyhurst('venus', '2012-06-06 04:07:29')
    <HeliographicStonyhurst Coordinate (obstime=2012-06-06T04:07:29.000, rsun=695700.0 km): (lon, lat, radius) in (deg, deg, AU)
        (0.07349535, 0.05223575, 0.72605496)>

    Obtain the location of Venus as seen from Earth when adjusted for light travel time

    >>> earth = get_body_heliographic_stonyhurst('earth', '2012-06-06 04:07:29')
    >>> get_body_heliographic_stonyhurst('venus', '2012-06-06 04:07:29', observer=earth)
    INFO: Apparent body location accounts for 144.07 seconds of light travel time [sunpy.coordinates.ephemeris]
    <HeliographicStonyhurst Coordinate (obstime=2012-06-06T04:07:29.000, rsun=695700.0 km): (lon, lat, radius) in (deg, deg, AU)
        (0.07084926, 0.0520573, 0.72605477)>

    Obtain the location and velocity of Mars

    >>> mars = get_body_heliographic_stonyhurst('mars', '2001-02-03', include_velocity=True)
    >>> mars
    <HeliographicStonyhurst Coordinate (obstime=2001-02-03T00:00:00.000, rsun=695700.0 km): (lon, lat, radius) in (deg, deg, AU)
        (63.03105777, -5.20656151, 1.6251161)
     (d_lon, d_lat, d_radius) in (arcsec / s, arcsec / s, km / s)
        (-0.02323686, 0.00073376, -1.4798387)>

    Transform that same location and velocity of Mars to a different frame using
    `~astropy.coordinates.SkyCoord`.

    >>> from astropy.coordinates import SkyCoord
    >>> from sunpy.coordinates import Helioprojective
    >>> SkyCoord(mars).transform_to(Helioprojective(observer=earth))
    <SkyCoord (Helioprojective: obstime=2001-02-03T00:00:00.000, rsun=695700.0 km, observer=<HeliographicStonyhurst Coordinate (obstime=2012-06-06T04:07:29.000, rsun=695700.0 km): (lon, lat, radius) in (deg, deg, AU)
        (7.835757e-15, -0.00766698, 1.01475668)>): (Tx, Ty, distance) in (arcsec, arcsec, AU)
        (-298029.94625805, -21753.50941181, 1.40010091)
     (d_Tx, d_Ty, d_distance) in (arcsec / s, arcsec / s, km / s)
        (-0.01652981, -0.00059216, -15.14320414)>
    """
    obstime = parse_time(time)

    if observer is None:
        # If there is no observer, there is not adjustment for light travel time
        emitted_time = obstime
    else:
        observer_icrs = SkyCoord(observer).icrs.cartesian

        # This implementation is modeled after Astropy's `_get_apparent_body_position`
        light_travel_time = 0. * u.s
        emitted_time = obstime
        delta_light_travel_time = 1. * u.s  # placeholder value
        while np.any(np.fabs(delta_light_travel_time) > 1.0e-8 * u.s):
            body_icrs = get_body_barycentric(body, emitted_time)
            distance = (body_icrs - observer_icrs).norm()
            delta_light_travel_time = light_travel_time - distance / speed_of_light
            light_travel_time = distance / speed_of_light
            emitted_time = obstime - light_travel_time

        if light_travel_time.isscalar:
            ltt_string = f"{light_travel_time.to_value('s'):.2f}"
        else:
            ltt_string = f"{light_travel_time.to_value('s')}"
        log.info(
            f"Apparent body location accounts for {ltt_string} seconds of light travel time"
        )

    if include_velocity:
        pos, vel = get_body_barycentric_posvel(body, emitted_time)
        body_icrs = pos.with_differentials(
            vel.represent_as(CartesianDifferential))
    else:
        body_icrs = get_body_barycentric(body, emitted_time)

    body_hgs = ICRS(body_icrs).transform_to(
        HeliographicStonyhurst(obstime=obstime))

    return body_hgs
Beispiel #44
0
    def apply_forces(self, system, time=0.0):

        # calculate axial and rolling directions
        plane_response_force_mag, no_contact_point_idx = self.apply_normal_force(system)
        normal_plane_collection = np.repeat(
            self.plane_normal.reshape(3, 1), plane_response_force_mag.shape[0], axis=1
        )
        # First compute component of rod tangent in plane. Because friction forces acts in plane not out of plane. Thus
        # axial direction has to be in plane, it cannot be out of plane. We are projecting rod element tangent vector in
        # to the plane. So friction forces can only be in plane forces and not out of plane.
        tangent_along_normal_direction = np.einsum(
            "ij, ij->j", system.tangents, normal_plane_collection
        )
        tangent_perpendicular_to_normal_direction = system.tangents - np.einsum(
            "j, ij->ij", tangent_along_normal_direction, normal_plane_collection
        )
        tangent_perpendicular_to_normal_direction_mag = np.einsum(
            "ij, ij->j",
            tangent_perpendicular_to_normal_direction,
            tangent_perpendicular_to_normal_direction,
        )
        # Normalize tangent_perpendicular_to_normal_direction. This is axial direction for plane. Here we are adding
        # small tolerance (1e-10) for normalization, in order to prevent division by 0.
        axial_direction = np.einsum(
            "ij, j-> ij",
            tangent_perpendicular_to_normal_direction,
            1 / (tangent_perpendicular_to_normal_direction_mag + 1e-14),
        )
        element_velocity = 0.5 * (
            system.velocity_collection[..., :-1] + system.velocity_collection[..., 1:]
        )

        # first apply axial kinetic friction
        velocity_mag_along_axial_direction = np.einsum(
            "ij,ij->j", element_velocity, axial_direction
        )
        velocity_along_axial_direction = np.einsum(
            "j, ij->ij", velocity_mag_along_axial_direction, axial_direction
        )
        # Friction forces depends on the direction of velocity, in other words sign
        # of the velocity vector.
        velocity_sign_along_axial_direction = np.sign(
            velocity_mag_along_axial_direction
        )
        # Check top for sign convention
        kinetic_mu = 0.5 * (
            self.kinetic_mu_forward * (1 + velocity_sign_along_axial_direction)
            + self.kinetic_mu_backward * (1 - velocity_sign_along_axial_direction)
        )
        # Call slip function to check if elements slipping or not
        slip_function_along_axial_direction = find_slipping_elements(
            velocity_along_axial_direction, self.slip_velocity_tol
        )
        kinetic_friction_force_along_axial_direction = -(
            (1.0 - slip_function_along_axial_direction)
            * kinetic_mu
            * plane_response_force_mag
            * velocity_sign_along_axial_direction
            * axial_direction
        )
        # If rod element does not have any contact with plane, plane cannot apply friction
        # force on the element. Thus lets set kinetic friction force to 0.0 for the no contact points.
        kinetic_friction_force_along_axial_direction[..., no_contact_point_idx] = 0.0
        system.external_forces[..., :-1] += (
            0.5 * kinetic_friction_force_along_axial_direction
        )
        system.external_forces[..., 1:] += (
            0.5 * kinetic_friction_force_along_axial_direction
        )

        # Now rolling kinetic friction
        rolling_direction = _batch_cross(axial_direction, normal_plane_collection)
        torque_arm = -system.radius * normal_plane_collection
        velocity_along_rolling_direction = np.einsum(
            "ij ,ij ->j ", element_velocity, rolling_direction
        )
        directors_transpose = np.einsum("ijk -> jik", system.director_collection)
        # w_rot = Q.T @ omega @ Q @ r
        rotation_velocity = _batch_matvec(
            directors_transpose,
            _batch_cross(
                system.omega_collection,
                _batch_matvec(system.director_collection, torque_arm),
            ),
        )
        rotation_velocity_along_rolling_direction = np.einsum(
            "ij,ij->j", rotation_velocity, rolling_direction
        )
        slip_velocity_mag_along_rolling_direction = (
            velocity_along_rolling_direction + rotation_velocity_along_rolling_direction
        )
        slip_velocity_along_rolling_direction = np.einsum(
            "j, ij->ij", slip_velocity_mag_along_rolling_direction, rolling_direction
        )
        slip_velocity_sign_along_rolling_direction = np.sign(
            slip_velocity_mag_along_rolling_direction
        )
        slip_function_along_rolling_direction = find_slipping_elements(
            slip_velocity_along_rolling_direction, self.slip_velocity_tol
        )
        kinetic_friction_force_along_rolling_direction = -(
            (1.0 - slip_function_along_rolling_direction)
            * self.kinetic_mu_sideways
            * plane_response_force_mag
            * slip_velocity_sign_along_rolling_direction
            * rolling_direction
        )
        # If rod element does not have any contact with plane, plane cannot apply friction
        # force on the element. Thus lets set kinetic friction force to 0.0 for the no contact points.
        kinetic_friction_force_along_rolling_direction[..., no_contact_point_idx] = 0.0
        system.external_forces[..., :-1] += (
            0.5 * kinetic_friction_force_along_rolling_direction
        )
        system.external_forces[..., 1:] += (
            0.5 * kinetic_friction_force_along_rolling_direction
        )
        # torque = Q @ r @ Fr
        system.external_torques += _batch_matvec(
            system.director_collection,
            _batch_cross(torque_arm, kinetic_friction_force_along_rolling_direction),
        )

        # now axial static friction
        nodal_total_forces = system.internal_forces + system.external_forces
        element_total_forces = nodes_to_elements(nodal_total_forces)
        force_component_along_axial_direction = np.einsum(
            "ij,ij->j", element_total_forces, axial_direction
        )
        force_component_sign_along_axial_direction = np.sign(
            force_component_along_axial_direction
        )
        # check top for sign convention
        static_mu = 0.5 * (
            self.static_mu_forward * (1 + force_component_sign_along_axial_direction)
            + self.static_mu_backward * (1 - force_component_sign_along_axial_direction)
        )
        max_friction_force = (
            slip_function_along_axial_direction * static_mu * plane_response_force_mag
        )
        # friction = min(mu N, pushing force)
        static_friction_force_along_axial_direction = -(
            np.minimum(
                np.fabs(force_component_along_axial_direction), max_friction_force
            )
            * force_component_sign_along_axial_direction
            * axial_direction
        )
        # If rod element does not have any contact with plane, plane cannot apply friction
        # force on the element. Thus lets set static friction force to 0.0 for the no contact points.
        static_friction_force_along_axial_direction[..., no_contact_point_idx] = 0.0
        system.external_forces[..., :-1] += (
            0.5 * static_friction_force_along_axial_direction
        )
        system.external_forces[..., 1:] += (
            0.5 * static_friction_force_along_axial_direction
        )

        # now rolling static friction
        # there is some normal, tangent and rolling directions inconsitency from Elastica
        total_torques = _batch_matvec(
            directors_transpose, (system.internal_torques + system.external_torques)
        )
        # Elastica has opposite defs of tangents in interaction.h and rod.cpp
        total_torques_along_axial_direction = np.einsum(
            "ij,ij->j", total_torques, axial_direction
        )
        force_component_along_rolling_direction = np.einsum(
            "ij,ij->j", element_total_forces, rolling_direction
        )
        noslip_force = -(
            (
                system.radius * force_component_along_rolling_direction
                - 2.0 * total_torques_along_axial_direction
            )
            / 3.0
            / system.radius
        )
        max_friction_force = (
            slip_function_along_rolling_direction
            * self.static_mu_sideways
            * plane_response_force_mag
        )
        noslip_force_sign = np.sign(noslip_force)
        static_friction_force_along_rolling_direction = (
            np.minimum(np.fabs(noslip_force), max_friction_force)
            * noslip_force_sign
            * rolling_direction
        )
        # If rod element does not have any contact with plane, plane cannot apply friction
        # force on the element. Thus lets set plane static friction force to 0.0 for the no contact points.
        static_friction_force_along_rolling_direction[..., no_contact_point_idx] = 0.0
        system.external_forces[..., :-1] += (
            0.5 * static_friction_force_along_rolling_direction
        )
        system.external_forces[..., 1:] += (
            0.5 * static_friction_force_along_rolling_direction
        )
        system.external_torques += _batch_matvec(
            system.director_collection,
            _batch_cross(torque_arm, static_friction_force_along_rolling_direction),
        )
Beispiel #45
0
def mad(x):
    return np.fabs(x - x.mean()).mean()
Beispiel #46
0
    def update(self, space: Space, iteration: int, n_iterations: int) -> None:
        """Wraps Whale Optimization Algorithm over all agents and variables.

        Args:
            space: Space containing agents and update-related information.
            iteration: Current iteration.
            n_iterations (int): Maximum number of iterations

        """

        # Linearly decreases the coefficient
        coefficient = 2 - 2 * iteration / (n_iterations - 1)

        # Iterates through all agents
        for agent in space.agents:
            # Generates an uniform random number
            r1 = r.generate_uniform_random_number()

            # Calculates the `A` coefficient
            A = 2 * coefficient * r1 - coefficient

            # Calculates the `C` coefficient
            C = 2 * r1

            # Generates a random number between 0 and 1
            p = r.generate_uniform_random_number()

            # If `p` is smaller than 0.5
            if p < 0.5:
                # If `A` is smaller than 1
                if np.fabs(A) < 1:
                    # Calculates the distance coefficient
                    D = np.fabs(C * space.best_agent.position - agent.position)

                    # Updates the agent's position
                    agent.position = space.best_agent.position - A * D

                # If `A` is bigger or equal to 1
                else:
                    # Generates a random-based agent
                    a = self._generate_random_agent(agent)

                    # Calculates the distance coefficient
                    D = np.fabs(C * a.position - agent.position)

                    # Updates the agent's position
                    agent.position = a.position - A * D

            # If `p` is bigger or equal to 1
            else:
                # Generates a random number between -1 and 1
                l = r.generate_gaussian_random_number()

                # Calculates the distance coefficient
                D = np.fabs(space.best_agent.position - agent.position)

                # Updates the agent's position
                agent.position = (
                    D * np.exp(self.b * l) * np.cos(2 * np.pi * l)
                    + space.best_agent.position
                )
Beispiel #47
0
 def test_compute_hess(self):
     for y, y_pred in zip(self.y_list, self.predict_list):
         hess = 2
         lse_hess = self.lse_loss.compute_hess(y, y_pred)
         self.assertTrue(np.fabs(lse_hess - hess) < consts.FLOAT_ZERO)
Beispiel #48
0
x = y = 0
wsp_x = [0]
wsp_y = [0]

for i in range(0, n):
    #Wylosuj kąt i zamień go na radiany
    rad = math.radians(float(random.randint(0, 360)))
    x = x + np.cos(rad)  # wyliczamy współrzędne x i y
    y = y + np.sin(rad)
    print(x, y)
    wsp_x.append(x)
    wsp_y.append(y)
    c = np.sqrt((wsp_x[i] - wsp_x[i - 1])**2 + (wsp_y[i] - wsp_y[i - 1])**2)
print(wsp_x, wsp_y)

# Obliczamy wektor końcowego przesunięcia
s = np.fabs(np.sqrt(x**2 + y**2))
w_x = [0, wsp_x[len(wsp_x) - 1]]
w_y = [0, wsp_y[len(wsp_y) - 1]]
print("Wektor przesunięcia: ", s)

plt.plot(wsp_x, wsp_y, "o:", color="green", linewidth=3, alpha=0.5)
plt.plot(wsp_x, wsp_y, c, "r:", color="blue", linewidth=1, alpha=0.2)
plt.plot(w_x, w_y, s, "o:", color="blue", linewidth=2, alpha=1)
plt.legend(["Dane x, y\nPrzemieszczenie: " + str(s)], loc="upper left")
plt.xlabel("Wsp_x")
plt.ylabel("Wsp_y")
plt.title("Ruchy Browna")
plt.grid(True)
plt.show()
Beispiel #49
0
def draw_boxes(im,
               bboxes,
               is_display=True,
               color=None,
               caption="Image",
               wait=True):
    """
        boxes: bounding boxes
    """
    text_recs = np.zeros((len(bboxes), 8), np.int)

    im = im.copy()
    index = 0
    for box in bboxes:
        if color == None:
            if len(box) == 8 or len(box) == 9:
                c = tuple(cm.jet([box[-1]])[0, 2::-1] * 255)
            else:
                c = tuple(np.random.randint(0, 256, 3))
        else:
            c = color

        b1 = box[6] - box[7] / 2
        b2 = box[6] + box[7] / 2
        x1 = box[0]
        y1 = box[5] * box[0] + b1
        x2 = box[2]
        y2 = box[5] * box[2] + b1
        x3 = box[0]
        y3 = box[5] * box[0] + b2
        x4 = box[2]
        y4 = box[5] * box[2] + b2

        disX = x2 - x1
        disY = y2 - y1
        width = np.sqrt(disX * disX + disY * disY)
        fTmp0 = y3 - y1
        fTmp1 = fTmp0 * disY / width
        x = np.fabs(fTmp1 * disX / width)
        y = np.fabs(fTmp1 * disY / width)
        if box[5] < 0:
            x1 -= x
            y1 += y
            x4 += x
            y4 -= y
        else:
            x2 += x
            y2 += y
            x3 -= x
            y3 -= y
        cv2.line(im, (int(x1), int(y1)), (int(x2), int(y2)), c, 2)
        cv2.line(im, (int(x1), int(y1)), (int(x3), int(y3)), c, 2)
        cv2.line(im, (int(x4), int(y4)), (int(x2), int(y2)), c, 2)
        cv2.line(im, (int(x3), int(y3)), (int(x4), int(y4)), c, 2)
        text_recs[index, 0] = x1
        text_recs[index, 1] = y1
        text_recs[index, 2] = x2
        text_recs[index, 3] = y2
        text_recs[index, 4] = x3
        text_recs[index, 5] = y3
        text_recs[index, 6] = x4
        text_recs[index, 7] = y4
        index = index + 1
        #cv2.rectangle(im, tuple(box[:2]), tuple(box[2:4]), c,2)
    if is_display:
        cv2.imshow('result', im)
        #if wait:
        #cv2.waitKey(0)
    return text_recs
Beispiel #50
0
    #print a

uvar = file.variables["UGRD_P0_L100_GLC0"][:, :, :]
uvar = numpy.squeeze(uvar[-1, :, :])
dim = numpy.shape(uvar)
print dim
vvar = file.variables["VGRD_P0_L100_GLC0"][:, :, :]
vvar = numpy.squeeze(vvar[-1, :, :])

lat = file.variables["gridlat_0"][:, :]
lon = file.variables["gridlon_0"][:, :]
#Find the index of the origin
print "want lat lon", Latorg, Lonorg
for i in range(dim[0]):
    for j in range(dim[1]):
        if numpy.fabs(lat[i, j] - Latorg) < tol and numpy.fabs(lon[i, j] -
                                                               Lonorg) < tol:
            print 'closest we can get is', lat[i, j], lon[i, j]
            print i, j
            iorg = i
            jorg = j

u = 3.6 * uvar
v = 3.6 * vvar

umax = numpy.max(u)
vmax = numpy.max(v)
print "Max u", umax
print "Max v", vmax

space0 = gridspacing * (dim[0] - iorg - 1)
def mape_vectorized_v2(a, b): 
    mask = a != 0
    return (np.fabs(a[mask] - b[mask])/a[mask]).mean()
import numpy as np

x = 1.0  #define a float
y = 2.0  #define another float

#exponents and logarithms

print(np.exp(x))  #e^x
print(np.log(x))  #ln x
print(np.log10(x))  #log_10 x
print(np.log2(x))  #log_2 x

#min/max/misc
print(np.fabs(x))  #absolute value as a float
print(np.fmin(x, y))  #min of x and y
print(np.fmax(x, y))  #max of x and y

#populate arrays
n = 100
z = np.arange(n, dtype=float)  #get an array [0,0,n-1.]
z *= 2.0 * np.pi / float(n - 1)  #z = [0,2*pi]
sin_z = np.sin(z)  #get an array sin(z)

#interpolation
print(np.interp(0.75, z, sin_z))  #interpolate sin(0.75)
print(np.sin(0.75))
def dic_constr(data3d, groundtruth, win_size, cluster_num, K,
               selected_dic_percent, target_dic_num):
    """
    :param data3d: the original 3D hyperpsectral image 
    :param groundtruth:  a 2D matrix reflect the label of corresponding pixels 
    :param win_size: the size of window, such as 3X3, 5X5, 7X7
    :param cluster_num: the number of classters such as 5, 10, 15, 20
    :param K: the level of sparsity
    :param selected_dic_percent: the selected percent of the atoms to build the background dictionary
    :param target_dic_num: the selected number to build the anomaly dictionary
    :return: data2d:  the normalized data
             bg_dic:  the background dictionary
             tg_dic:  the anomaly dictionary
             bg_dic_ac_label:  the index of background dictionary atoms 
             tg_dic_label: the index of anomaly dictionary atoms      
    """
    data2d = hyper.hyperconvert2d(data3d)
    rows, cols, bands = data3d.shape
    data2d = hyper.hypernorm(data2d, "L2_norm")
    sio.savemat("data2d.mat", {'data2d': data2d})
    data3d = hyper.hyperconvert3d(data2d, rows, cols, bands)
    pca = decomposition.PCA(n_components=20, copy=True, whiten=False)
    dim_data = pca.fit_transform(data2d.transpose())
    data3d_dim = hyper.hyperconvert3d(dim_data.transpose(), rows, cols, 10)
    win_dim = hyper.hyperwincreat(data3d_dim, win_size)
    cluster_assment = hyper.Kmeans_win(win_dim, cluster_num)
    sio.savemat("cluster_assment.mat", {'cluster_assment': cluster_assment})
    win_matrix = hyper.hyperwincreat(data3d, win_size)
    sio.savemat("win_matrix.mat", {'win_matrix': win_matrix})
    wm_rows, wm_cols, wm_n = win_matrix.shape
    resdiual_stack = np.zeros((bands, win_size * win_size, wm_n))
    save_num = 0
    bg_dic_tuple = []
    bg_dic_ac_tuple = []
    bg_dic_fc_tuple = []
    class_order_data_index_tuple = []
    anomaly_weight_tuple = []
    for i in range(cluster_num):
        print("current calculate cluster  {0}  ...".format(i))
        tmp = np.where(cluster_assment == i)
        if tmp[0].size == 0:
            continue
        else:
            class_data = win_matrix[:, :, tmp[0]]
            cd_rows, cd_cols, cd_n = class_data.shape
            dictionary = class_data[:, int((win_size * win_size + 1) / 2), :]
            dic_rows, dic_cols = dictionary.shape
            class_alpha = np.zeros((K, cd_cols, cd_n))
            class_index = np.zeros((K, cd_n))
            for j in range(cd_n):
                X = class_data[:, :, j]
                dictionary[:, (j * cd_cols):(j * cd_cols + cd_cols - 1)] = 0
                alpha, index, chosen_atom, resdiual = hyper.somp(
                    dictionary, X, K)
                class_alpha[:, :, j] = alpha
                class_index[:, j] = index.transpose()
                resdiual_stack[:, :, save_num + j] = resdiual

            save_num = save_num + cd_n
            class_index = class_index.astype('int')
            class_global_alpha = np.zeros((dic_cols, cd_cols, cd_n))
            class_global_frequency = np.zeros((dic_cols, cd_cols, cd_n))
            for n_index in range(cd_n):
                class_global_alpha[class_index[:, n_index], :,
                                   n_index] = class_alpha[:, :, n_index]
                class_global_frequency[class_index[:, n_index], :, n_index] = 1

            posti_class_global_alpha = np.fabs(class_global_alpha)
            data_frequency = class_global_frequency[:, 0, :]
            frequency = np.sum(data_frequency, axis=1)
            sum_frequency = np.sum(frequency)
            norm_frequency = frequency / sum_frequency
            data_mean_alpha = np.mean(posti_class_global_alpha, axis=1)
            sum_alpha_2 = np.sum(data_mean_alpha, axis=1)
            norm_tmp = np.linalg.norm(sum_alpha_2)
            sparsity_score = sum_alpha_2 / norm_tmp
            anomaly_weight = norm_frequency
            anomaly_weight[frequency > 0] = sparsity_score[
                frequency > 0] / frequency[frequency > 0]
            # sparsity_score = sparsity_score * norm_frequency
            sparsity_sort_index = np.argsort(-sparsity_score)
            sparsity_sort_index = sparsity_sort_index.astype('int')
            frequency_sort_index = np.argsort(-norm_frequency)
            frequency_sort_index = frequency_sort_index.astype('int')
            tmp_class_dic_label = np.array(tmp[0])
            class_order_data_index_tuple.append(tmp_class_dic_label)
            selected_dic_num = np.round(selected_dic_percent * cd_n)
            selected_dic_num = selected_dic_num.astype('int')
            bg_dic_ac_tuple.append(
                tmp_class_dic_label[sparsity_sort_index[0:selected_dic_num]])
            bg_dic_fc_tuple.append(
                tmp_class_dic_label[frequency_sort_index[0:selected_dic_num]])
            anomaly_weight_tuple.append(anomaly_weight)
            bg_dic_tuple.append(
                dictionary[:, sparsity_sort_index[0:selected_dic_num]])

            # sio.savemat(result_path + "dic_{0}_frequency.mat".format(i), {'dic_frequency': frequency})
            # sio.savemat(result_path + "dic_{0}_reflect.mat".format(i), {'dic_reflect': sum_alpha_2})

    bg_dic = np.column_stack(bg_dic_tuple)
    bg_dic_ac_label = np.hstack(bg_dic_ac_tuple)
    bg_dic_fc_label = np.hstack(bg_dic_fc_tuple)
    anomaly_weight = np.hstack(anomaly_weight_tuple)
    class_order_data_index = np.hstack(class_order_data_index_tuple)
    norm_res = np.zeros((wm_n, win_size * win_size))
    for i in range(wm_n):
        norm_res[i, :] = np.linalg.norm(resdiual_stack[:, :, i], axis=0)
    mean_norm_res = np.mean(norm_res, axis=1) * anomaly_weight.transpose()
    anomaly_level = mean_norm_res / np.linalg.norm(mean_norm_res)
    tg_sort_index = np.argsort(-anomaly_level)
    tg_dic = data2d[:, class_order_data_index[tg_sort_index[0:target_dic_num]]]
    print("successs!!")

    sio.savemat("bg_dic.mat", {'bg_dic': bg_dic})
    sio.savemat("bg_dic_ac_label.mat", {'bg_dic_ac_label': bg_dic_ac_label})
    sio.savemat("bg_dic_fc_label.mat", {'bg_dic_fc_label': bg_dic_fc_label})
    sio.savemat("tg_dic.mat", {'tg_dic': tg_dic})
    tg_dic_label = class_order_data_index[tg_sort_index[0:target_dic_num]]
    sio.savemat("tg_dic_label.mat", {'tg_dic_label': tg_dic_label})
    return data2d, bg_dic, tg_dic, bg_dic_ac_label, tg_dic_label
Beispiel #54
0
def find_steady_states(dataframe,
                       min_n_samples=2,
                       stateThreshold=15,
                       noise_level=70):
    """
    Finds steady states given a DataFrame of power

    Parameters
    ----------

    dataframe: pd.DataFrame with DateTimeIndex
    min_n_samples(int): number of samples to consider constituting a
             steady state.
    stateThreshold: maximum difference between highest and lowest 
        value in steady state.
    noise_level: the level used to define significant 
        appliances, transitions below this level will be ignored. 
        See Hart 1985. p27.


    Returns
    -------

    """
    # Tells whether we have both real and reactive power or only real power
    num_measurements = len(dataframe.columns)
    estimatedSteadyPower = np.array([0] * num_measurements)
    lastSteadyPower = np.array([0] * num_measurements)
    previousMeasurement = np.array([0] * num_measurements)

    # These flags store state of power

    instantaneousChange = False  # power changing this second
    ongoingChange = False  # power change in progress over multiple seconds

    index_transitions = []  # Indices to use in returned Dataframe
    index_steadystates = []
    transitions = []  # holds information on transitions
    steadyStates = []  # steadyStates to store in returned Dataframe
    N = 0  # N stores the number of samples in state
    time = dataframe.iloc[0].name  # first state starts at beginning

    # Iterate over the rows performing algorithm
    print("Finding Edges, please wait ...", end="\n")
    sys.stdout.flush()

    for row in dataframe.itertuples():

        # test if either active or reactive moved more than threshold
        # http://stackoverflow.com/questions/17418108/elegant-way-to-perform-tuple-arithmetic
        # http://stackoverflow.com/questions/13168943/expression-for-elements-greater-than-x-and-less-than-y-in-python-all-in-one-ret

        # Step 2: this does the threshold test and then we sum the boolean
        # array.
        thisMeasurement = row[1:3]
        # logging.debug('The current measurement is: %s' % (thisMeasurement,))
        # logging.debug('The previous measurement is: %s' %
        # (previousMeasurement,))

        stateChange = np.fabs(np.subtract(thisMeasurement,
                                          previousMeasurement))
        # logging.debug('The State Change is: %s' % (stateChange,))

        if np.sum(stateChange > stateThreshold):
            instantaneousChange = True
        else:
            instantaneousChange = False

        # Step 3: Identify if transition is just starting, if so, process it
        if (instantaneousChange and (not ongoingChange)):

            # Calculate transition size
            lastTransition = np.subtract(estimatedSteadyPower, lastSteadyPower)
            # logging.debug('The steady state transition is: %s' %
            # (lastTransition,))

            # Sum Boolean array to verify if transition is above noise level
            if np.sum(np.fabs(lastTransition) > noise_level):
                # 3A, C: if so add the index of the transition start and the
                # power information

                # Avoid outputting first transition from zero
                index_transitions.append(time)
                # logging.debug('The current row time is: %s' % (time))
                transitions.append(lastTransition)

                # I think we want this, though not specifically in Hart's algo notes
                # We don't want to append a steady state if it's less than min samples in length.
                # if N > min_n_samples:
                index_steadystates.append(time)
                # logging.debug('The ''time'' stored is: %s' % (time))
                # last states steady power
                steadyStates.append(estimatedSteadyPower)

            # 3B
            lastSteadyPower = estimatedSteadyPower
            # 3C
            time = row[0]

        # Step 4: if a new steady state is starting, zero counter
        if instantaneousChange:
            N = 0

        # Hart step 5: update our estimate for steady state's energy
        estimatedSteadyPower = np.divide(
            np.add(np.multiply(N, estimatedSteadyPower), thisMeasurement),
            (N + 1))
        # logging.debug('The steady power estimate is: %s' %
        #    (estimatedSteadyPower,))
        # Step 6: increment counter
        N = N + 1

        # Step 7
        ongoingChange = instantaneousChange

        # Step 8
        previousMeasurement = thisMeasurement

    print("Edge detection complete.")

    print("Creating transition frame ...")
    sys.stdout.flush()

    cols_transition = {
        1: ['active transition'],
        2: ['active transition', 'reactive transition']
    }

    cols_steady = {
        1: ['active average'],
        2: ['active average', 'reactive average']
    }

    if len(index_transitions) == 0:
        # No events
        return pd.DataFrame(), pd.DataFrame()
    else:
        transitions = pd.DataFrame(data=transitions,
                                   index=index_transitions,
                                   columns=cols_transition[num_measurements])
        print("Transition frame created.")

        print("Creating states frame ...")
        sys.stdout.flush()
        steadyStates = pd.DataFrame(data=steadyStates,
                                    index=index_steadystates,
                                    columns=cols_steady[num_measurements])
        print("States frame created.")
        print("Finished.")
        return steadyStates, transitions
Beispiel #55
0
def linear_regression(X, y, add_intercept=True, weights=None, coef_only=False,
                      alpha=0.05, as_dataframe=True, remove_na=False,
                      relimp=False):
    """(Multiple) Linear regression.

    Parameters
    ----------
    X : array_like
        Predictor(s), of shape *(n_samples, n_features)* or *(n_samples)*.
    y : array_like
        Dependent variable, of shape *(n_samples)*.
    add_intercept : bool
        If False, assume that the data are already centered. If True, add a
        constant term to the model. In this case, the first value in the
        output dict is the intercept of the model.

        .. note:: It is generally recommanded to include a constant term
            (intercept) to the model to limit the bias and force the residual
            mean to equal zero. Note that intercept coefficient and p-values
            are however rarely meaningful.
    weights : array_like
        An optional vector of sample weights to be used in the fitting
        process, of shape *(n_samples)*. Missing or negative weights are not
        allowed. If not null, a weighted least squares is calculated.

        .. versionadded:: 0.3.5
    coef_only : bool
        If True, return only the regression coefficients.
    alpha : float
        Alpha value used for the confidence intervals.
        :math:`\\text{CI} = [\\alpha / 2 ; 1 - \\alpha / 2]`
    as_dataframe : bool
        If True, returns a pandas DataFrame. If False, returns a dictionnary.
    remove_na : bool
        If True, apply a listwise deletion of missing values (i.e. the entire
        row is removed). Default is False, which will raise an error if missing
        values are present in either the predictor(s) or dependent
        variable.
    relimp : bool
        If True, returns the relative importance (= contribution) of
        predictors. This is irrelevant when the predictors are uncorrelated:
        the total :math:`R^2` of the model is simply the sum of each univariate
        regression :math:`R^2`-values. However, this does not apply when
        predictors are correlated. Instead, the total :math:`R^2` of the model
        is partitioned by averaging over all combinations of predictors,
        as done in the `relaimpo
        <https://cran.r-project.org/web/packages/relaimpo/relaimpo.pdf>`_
        R package (``calc.relimp(type="lmg")``).

        .. warning:: The computation time roughly doubles for each
            additional predictor and therefore this can be extremely slow for
            models with more than 12-15 predictors.

        .. versionadded:: 0.3.0

    Returns
    -------
    stats : :py:class:`pandas.DataFrame` or dict
        Linear regression summary:

        * ``'names'``: name of variable(s) in the model (e.g. x1, x2...)
        * ``'coef'``: regression coefficients
        * ``'se'``: standard errors
        * ``'T'``: T-values
        * ``'pval'``: p-values
        * ``'r2'``: coefficient of determination (:math:`R^2`)
        * ``'adj_r2'``: adjusted :math:`R^2`
        * ``'CI[2.5%]'``: lower confidence intervals
        * ``'CI[97.5%]'``: upper confidence intervals
        * ``'relimp'``: relative contribution of each predictor to the final\
                        :math:`R^2` (only if ``relimp=True``).
        * ``'relimp_perc'``: percent relative contribution

        In addition, the output dataframe comes with hidden attributes such as
        the residuals, and degrees of freedom of the model and residuals, which
        can be accessed as follow, respectively:

        >>> lm = pg.linear_regression() # doctest: +SKIP
        >>> lm.residuals_, lm.df_model_, lm.df_resid_ # doctest: +SKIP

        Note that to follow scikit-learn convention, these hidden atributes end
        with an "_". When ``as_dataframe=False`` however, these attributes
        are no longer hidden and can be accessed as any other keys in the
        output dictionnary:

        >>> lm = pg.linear_regression() # doctest: +SKIP
        >>> lm['residuals'], lm['df_model'], lm['df_resid'] # doctest: +SKIP

    See also
    --------
    logistic_regression, mediation_analysis, corr

    Notes
    -----
    The :math:`\\beta` coefficients are estimated using an ordinary least
    squares (OLS) regression, as implemented in the
    :py:func:`scipy.linalg.lstsq` function. The OLS method minimizes
    the sum of squared residuals, and leads to a closed-form expression for
    the estimated :math:`\\beta`:

    .. math:: \\hat{\\beta} = (X^TX)^{-1} X^Ty

    It is generally recommanded to include a constant term (intercept) to the
    model to limit the bias and force the residual mean to equal zero.
    Note that intercept coefficient and p-values are however rarely meaningful.

    The standard error of the estimates is a measure of the accuracy of the
    prediction defined as:

    .. math:: \\sigma = \\sqrt{\\text{MSE} \\cdot (X^TX)^{-1}}

    where :math:`\\text{MSE}` is the mean squared error,

    .. math::

        \\text{MSE} = \\frac{SS_{\\text{resid}}}{n - p - 1}
         = \\frac{\\sum{(\\text{true} - \\text{pred})^2}}{n - p - 1}

    :math:`p` is the total number of predictor variables in the model
    (excluding the intercept) and :math:`n` is the sample size.

    Using the :math:`\\beta` coefficients and the standard errors,
    the T-values can be obtained:

    .. math:: T = \\frac{\\beta}{\\sigma}

    and the p-values approximated using a T-distribution with
    :math:`n - p - 1` degrees of freedom.

    The coefficient of determination (:math:`R^2`) is defined as:

    .. math:: R^2 = 1 - (\\frac{SS_{\\text{resid}}}{SS_{\\text{total}}})

    The adjusted :math:`R^2` is defined as:

    .. math:: \\overline{R}^2 = 1 - (1 - R^2) \\frac{n - 1}{n - p - 1}

    The relative importance (``relimp``) column is a partitioning of the
    total :math:`R^2` of the model into individual :math:`R^2` contribution.
    This is calculated by taking the average over average contributions in
    models of different sizes. For more details, please refer to
    `Groemping et al. 2006 <http://dx.doi.org/10.18637/jss.v017.i01>`_
    and the R package `relaimpo
    <https://cran.r-project.org/web/packages/relaimpo/relaimpo.pdf>`_.

    Note that Pingouin will automatically remove any duplicate columns
    from :math:`X`, as well as any column with only one unique value
    (constant), excluding the intercept.

    Results have been compared against sklearn, R, statsmodels and JASP.

    Examples
    --------
    1. Simple linear regression

    >>> import numpy as np
    >>> import pingouin as pg
    >>> np.random.seed(123)
    >>> mean, cov, n = [4, 6], [[1, 0.5], [0.5, 1]], 30
    >>> x, y = np.random.multivariate_normal(mean, cov, n).T
    >>> lm = pg.linear_regression(x, y)
    >>> lm.round(2)
           names  coef    se     T  pval    r2  adj_r2  CI[2.5%]  CI[97.5%]
    0  Intercept  4.40  0.54  8.16  0.00  0.24    0.21      3.29       5.50
    1         x1  0.39  0.13  2.99  0.01  0.24    0.21      0.12       0.67

    2. Multiple linear regression

    >>> np.random.seed(42)
    >>> z = np.random.normal(size=n)
    >>> X = np.column_stack((x, z))
    >>> lm = pg.linear_regression(X, y)
    >>> print(lm['coef'].to_numpy())
    [4.54123324 0.36628301 0.17709451]

    3. Get the residuals

    >>> np.round(lm.residuals_, 2)
    array([ 1.18, -1.17,  1.32,  0.76, -1.25,  0.34, -1.54, -0.2 ,  0.36,
           -0.39,  0.69,  1.39,  0.2 , -1.14, -0.21, -1.68,  0.67, -0.69,
            0.62,  0.92, -1.  ,  0.64, -0.21, -0.78,  1.08, -0.03, -1.3 ,
            0.64,  0.81, -0.04])

    4. Using a Pandas DataFrame

    >>> import pandas as pd
    >>> df = pd.DataFrame({'x': x, 'y': y, 'z': z})
    >>> lm = pg.linear_regression(df[['x', 'z']], df['y'])
    >>> print(lm['coef'].to_numpy())
    [4.54123324 0.36628301 0.17709451]

    5. No intercept and return coef only

    >>> pg.linear_regression(X, y, add_intercept=False, coef_only=True)
    array([ 1.40935593, -0.2916508 ])

    6. Return a dictionnary instead of a DataFrame

    >>> lm_dict = linear_regression(X, y, as_dataframe=False)

    7. Remove missing values

    >>> X[4, 1] = np.nan
    >>> y[7] = np.nan
    >>> pg.linear_regression(X, y, remove_na=True, coef_only=True)
    array([4.64069731, 0.35455398, 0.1888135 ])

    8. Get the relative importance of predictors

    >>> lm = pg.linear_regression(X, y, remove_na=True, relimp=True)
    >>> lm[['names', 'relimp', 'relimp_perc']]
               names    relimp  relimp_perc
    0  Intercept       NaN          NaN
    1         x1  0.217265    82.202201
    2         x2  0.047041    17.797799

    The ``relimp`` column is a partitioning of the total :math:`R^2` of the
    model into individual contribution. Therefore, it sums to the :math:`R^2`
    of the full model. The ``relimp_perc`` is normalized to sum to 100%. See
    `Groemping 2006 <https://www.jstatsoft.org/article/view/v017i01>`_
    for more details.

    >>> lm[['relimp', 'relimp_perc']].sum()
    relimp           0.264305
    relimp_perc    100.000000
    dtype: float64

    9. Weighted linear regression

    >>> X = [1, 2, 3, 4, 5, 6]
    >>> y = [10, 22, 11, 13, 13, 16]
    >>> w = [1, 0.1, 1, 1, 0.5, 1]  # Array of weights. Must be >= 0.
    >>> lm = pg.linear_regression(X, y, weights=w)
    >>> lm.round(2)
           names  coef    se     T  pval    r2  adj_r2  CI[2.5%]  CI[97.5%]
    0  Intercept  9.00  2.03  4.42  0.01  0.51    0.39      3.35      14.64
    1         x1  1.04  0.50  2.06  0.11  0.51    0.39     -0.36       2.44
    """
    # Extract names if X is a Dataframe or Series
    if isinstance(X, pd.DataFrame):
        names = X.keys().tolist()
    elif isinstance(X, pd.Series):
        names = [X.name]
    else:
        names = []

    # Convert input to numpy array
    X = np.asarray(X)
    y = np.asarray(y)
    assert y.ndim == 1, 'y must be one-dimensional.'
    assert 0 < alpha < 1

    if X.ndim == 1:
        # Convert to (n_samples, n_features) shape
        X = X[..., np.newaxis]

    # Check for NaN / Inf
    if remove_na:
        X, y = rm_na(X, y[..., np.newaxis], paired=True, axis='rows')
        y = np.squeeze(y)
    y_gd = np.isfinite(y).all()
    X_gd = np.isfinite(X).all()
    assert y_gd, ("Target (y) contains NaN or Inf. Please remove them "
                  "manually or use remove_na=True.")
    assert X_gd, ("Predictors (X) contain NaN or Inf. Please remove them "
                  "manually or use remove_na=True.")

    # Check that X and y have same length
    assert y.shape[0] == X.shape[0], 'X and y must have same number of samples'

    if not names:
        names = ['x' + str(i + 1) for i in range(X.shape[1])]

    if add_intercept:
        # Add intercept
        X = np.column_stack((np.ones(X.shape[0]), X))
        names.insert(0, "Intercept")

    # FINAL CHECKS BEFORE RUNNING LEAST SQUARES REGRESSION
    # 1. Let's remove column(s) with only zero, otherwise the regression fails
    n_nonzero = np.count_nonzero(X, axis=0)
    idx_zero = np.flatnonzero(n_nonzero == 0)  # Find columns that are only 0
    if len(idx_zero):
        X = np.delete(X, idx_zero, 1)
        names = np.delete(names, idx_zero)

    # 2. We also want to make sure that there is no more than one constant
    # column (= intercept), otherwise the regression fails
    # This is equivalent, but much faster, to pd.DataFrame(X).nunique()
    idx_unique = np.where(np.all(X == X[0, :], axis=0))[0]
    if len(idx_unique) > 1:
        # We remove all but the first "Intercept" column.
        X = np.delete(X, idx_unique[1:], 1)
        names = np.delete(names, idx_unique[1:])
    # Is there a constant in our predictor matrix? Useful for dof and R^2.
    constant = 1 if len(idx_unique) > 0 else 0

    # 3. Finally, we want to remove duplicate columns
    if X.shape[1] > 1:
        idx_duplicate = []
        for pair in itertools.combinations(range(X.shape[1]), 2):
            if np.array_equal(X[:, pair[0]], X[:, pair[1]]):
                idx_duplicate.append(pair[1])
        if len(idx_duplicate):
            X = np.delete(X, idx_duplicate, 1)
            names = np.delete(names, idx_duplicate)

    # 4. Check that we have enough samples / features
    n, p = X.shape[0], X.shape[1]
    assert n >= 3, 'At least three valid samples are required in X.'
    assert p >= 1, 'X must have at least one valid column.'

    # 5. Handle weights
    if weights is not None:
        if relimp:
            raise ValueError("relimp = True is not supported when using "
                             "weights.")
        w = np.asarray(weights)
        assert w.ndim == 1, 'weights must be a 1D array.'
        assert w.size == n, 'weights must be of shape n_samples.'
        assert not np.isnan(w).any(), 'Missing weights are not accepted.'
        assert not (w < 0).any(), 'Negative weights are not accepted.'
        # Do not count weights == 0 in dof
        # This gives similar results as R lm() but different from statsmodels
        n = np.count_nonzero(w)
        # Rescale (whitening)
        wts = np.diag(np.sqrt(w))
        Xw = wts @ X
        yw = wts @ y
    else:
        # Set all weights to one, [1, 1, 1, ...]
        w = np.ones(n)
        Xw = X
        yw = y

    # FIT (WEIGHTED) LEAST SQUARES REGRESSION USING SCIPY.LINALG.LSTST
    coef, ss_res, rank, _ = lstsq(Xw, yw)
    if coef_only:
        return coef

    # Degrees of freedom
    df_model = rank - constant
    df_resid = n - p

    # Calculate predicted values and (weighted) residuals
    pred = Xw @ coef
    resid = yw - pred
    # ss_res = (resid ** 2).sum()

    # Calculate total (weighted) sums of squares and R^2
    ss_tot = yw @ yw
    ss_wtot = np.sum(w * (y - np.average(y, weights=w))**2)
    if constant:
        r2 = 1 - ss_res / ss_wtot
    else:
        r2 = 1 - ss_res / ss_tot
    adj_r2 = 1 - (1 - r2) * (n - constant) / df_resid

    # Compute mean squared error, variance and SE
    mse = ss_res / df_resid
    beta_var = mse * (np.linalg.pinv(Xw.T @ Xw).diagonal())
    beta_se = np.sqrt(beta_var)

    # Compute T and p-values
    T = coef / beta_se
    pval = 2 * t.sf(np.fabs(T), df_resid)

    # Compute confidence intervals
    crit = t.ppf(1 - alpha / 2, df_resid)
    marg_error = crit * beta_se
    ll = coef - marg_error
    ul = coef + marg_error

    # Rename CI
    ll_name = 'CI[%.1f%%]' % (100 * alpha / 2)
    ul_name = 'CI[%.1f%%]' % (100 * (1 - alpha / 2))

    # Create dict
    stats = {'names': names, 'coef': coef, 'se': beta_se, 'T': T,
             'pval': pval, 'r2': r2, 'adj_r2': adj_r2, ll_name: ll,
             ul_name: ul}

    # Relative importance
    if relimp:
        data = pd.concat([pd.DataFrame(y, columns=['y']),
                          pd.DataFrame(X, columns=names)], sort=False, axis=1)
        if 'Intercept' in names:
            # Intercept is the first column
            reli = _relimp(data.drop(columns=['Intercept']).cov())
            reli['names'] = ['Intercept'] + reli['names']
            reli['relimp'] = np.insert(reli['relimp'], 0, np.nan)
            reli['relimp_perc'] = np.insert(reli['relimp_perc'], 0, np.nan)
        else:
            reli = _relimp(data.cov())
        stats.update(reli)

    if as_dataframe:
        stats = pd.DataFrame(stats)
        stats.df_model_ = df_model
        stats.df_resid_ = df_resid
        stats.residuals_ = 0  # Trick to avoid Pandas warning
        stats.residuals_ = resid  # Residuals is a hidden attribute
    else:
        stats['df_model'] = df_model
        stats['df_resid'] = df_resid
        stats['residuals'] = resid
    return stats
Beispiel #56
0
def fidnet_doRecon2D(model_weights,
                     file,
                     ss_file,
                     max_points,
                     outfile,
                     f1180='y',
                     shift='n'):

    if f1180.lower() in ['y', 'n']:
        if f1180.lower() == 'y':
            f1180 = True
        else:
            f1180 = False

    if shift.lower() in ['y', 'n']:
        if shift.lower() == 'y':
            shift = True
        else:
            shift = False

    dic, data = ng.pipe.read(file)

    model = build_model()
    model.load_weights(model_weights)

    ss = load_ss(ss_file, max_points)

    ind_points = data.shape[0]  # sampled points in indirect dim
    dir_points = data.shape[1]  # sampled points in direct dim

    if ind_points > 512:
        print('the input spectrum contains too many sampled points')
        print('the network can have a maximum of 256 complex points in the')
        print('reconstructed spectra. Please reduce the size of the input')
        print('aborting now...')
        sys.exit()

    if ss.shape[0] == ind_points // 2:
        print(
            'number of recorded points in indirect dimension matches sampling schedule'
        )
        print('proceeding with reconstruction...')
    else:
        print(
            'there is a mis-match between the sampling schedule and number of recorded points'
        )
        print(
            'in the indirect dimension. Please check the sampling schedule or your input spectrum'
        )
        print('may need to be transposed')
        print('aborting now...')
        sys.exit()

    if max_points > 256:
        print(
            'the maximum size of the final spectrum is 256 complex points in')
        print(
            'the indirect dimension. The output will be truncated at this point'
        )
        max_points = 256

    data = expand_data(data, ss, max_points, dir_points)
    data = tf.convert_to_tensor(data)

    dl_dic = make_dl_dic(dic, max_points)

    shape = tf.shape(data).numpy()
    max_val = tf.reduce_max(data)
    data = data / max_val

    Hpoints = shape[1]
    Npoints = shape[0]

    padding_2 = [[0, 512 - tf.shape(data)[0]], [0, 0]]

    data_samp = tf.pad(data, padding_2, 'Constant', constant_values=0.0)

    data_samp = tf.transpose(data_samp)

    padding_recon = [[3, 3], [0, 0]]
    data_samp = tf.pad(data_samp,
                       padding_recon,
                       'Constant',
                       constant_values=0.0)

    scale = np.array(
        [np.max(np.fabs(data_samp[i:i + 4, :])) for i in range((Hpoints + 3))])

    sampy = np.zeros((scale.shape[0], 4, tf.shape(data_samp)[1]))
    for i in range(scale.shape[0]):
        sampy[i, :, :] = data_samp[i:i + 4, :]

    samp_av = tf.convert_to_tensor(sampy)

    samp_av = tf.transpose(samp_av, perm=[1, 2, 0])

    samp_av = samp_av / scale
    samp_av = tf.transpose(samp_av, perm=[2, 1, 0])
    samp_av = tf.expand_dims(samp_av, axis=3)

    data = tf.expand_dims(data, axis=0)

    res = model.predict(samp_av)
    res = tf.convert_to_tensor(res[0])
    res = rescale_dat(res, scale)
    res_keep = copy.deepcopy(res)
    res = get_average_results(res, Hpoints)

    res = res[:, :Npoints, :, 0]

    res_ft = ft_second(res,
                       npoints1=Hpoints,
                       npoints2=Npoints,
                       f1180=f1180,
                       shift=shift)
    data_ft = ft_second(data,
                        npoints1=Hpoints,
                        npoints2=Npoints,
                        f1180=f1180,
                        shift=shift)

    data_ft = data_ft / tf.reduce_max(data_ft)
    res_ft = res_ft / tf.reduce_max(res_ft)
    ng.pipe.write(outfile, dl_dic, res.numpy()[0], overwrite=True)

    ax1 = plt.subplot(2, 2, 1)
    ax2 = plt.subplot(2, 2, 3)
    ax3 = plt.subplot(2, 2, 2)
    ax4 = plt.subplot(2, 2, 4)

    plot_contour(ax1, data)
    plot_contour(ax2, data_ft, invert=True)

    plot_contour(ax3, res)
    plot_contour(ax4, res_ft, invert=True)

    plt.show()

    get_ind_spectra(res_keep,
                    res_ft,
                    Hpoints,
                    Npoints,
                    dl_dic,
                    f1180=f1180,
                    shift=shift)
plt.ylabel('HSE ' r'$T_{m}$')

axHistx = plt.axes(rect_histx)
axHisty = plt.axes(rect_histy)

# no labels
axHistx.xaxis.set_major_formatter(nullfmt)
axHisty.yaxis.set_major_formatter(nullfmt)

# the scatter plot:
axScatter.scatter(x, y, s=6, facecolors='none', edgecolors='black', alpha=0.1)

# now determine nice limits by hand:
binwidth = 5
#binwidth = 0.25
xymax = np.max([np.max(np.fabs(x)), np.max(np.fabs(y))])
lim = (int(xymax / binwidth) + 1) * binwidth

axScatter.set_xlim((-lim, lim))
axScatter.set_ylim((-lim, lim))

#axScatter.set_xlim((min_Tm-10, max_Tm+10))
#axScatter.set_ylim((min_Tm-10, max_Tm+10))

bins = np.arange(-lim, lim + binwidth, binwidth)

#print bins

# histogram
axHistx.hist(x, bins=bins, color='grey')
axHisty.hist(y, bins=bins, orientation='horizontal', color='grey')
Beispiel #58
0
def logistic_regression(X, y, coef_only=False, alpha=0.05,
                        as_dataframe=True, remove_na=False, **kwargs):
    """(Multiple) Binary logistic regression.

    Parameters
    ----------
    X : np.array or list
        Predictor(s). Shape = (n_samples, n_features) or (n_samples,).
    y : np.array or list
        Dependent variable. Shape = (n_samples).
        ``y`` must be binary, i.e. only contains 0 or 1. Multinomial logistic
        regression is not supported.
    coef_only : bool
        If True, return only the regression coefficients.
    alpha : float
        Alpha value used for the confidence intervals.
        :math:`\\text{CI} = [\\alpha / 2 ; 1 - \\alpha / 2]`
    as_dataframe : bool
        If True, returns a pandas DataFrame. If False, returns a dictionnary.
    remove_na : bool
        If True, apply a listwise deletion of missing values (i.e. the entire
        row is removed). Default is False, which will raise an error if missing
        values are present in either the predictor(s) or dependent
        variable.
    **kwargs : optional
        Optional arguments passed to
        :py:class:`sklearn.linear_model.LogisticRegression` (see Notes).

    Returns
    -------
    stats : :py:class:`pandas.DataFrame` or dict
        Logistic regression summary:

        * ``'names'``: name of variable(s) in the model (e.g. x1, x2...)
        * ``'coef'``: regression coefficients (log-odds)
        * ``'se'``: standard error
        * ``'z'``: z-scores
        * ``'pval'``: two-tailed p-values
        * ``'CI[2.5%]'``: lower confidence interval
        * ``'CI[97.5%]'``: upper confidence interval

    See also
    --------
    linear_regression

    Notes
    -----
    This is a wrapper around the
    :py:class:`sklearn.linear_model.LogisticRegression` class. Importantly,
    Pingouin automatically disables the L2 regularization applied by
    scikit-learn. This can be modified by changing the ``penalty`` argument.

    The logistic regression assumes that the log-odds (the logarithm of the
    odds) for the value labeled "1" in the response variable is a linear
    combination of the predictor variables. The log-odds are given by the
    `logit <https://en.wikipedia.org/wiki/Logit>`_ function,
    which map a probability :math:`p` of the response variable being "1"
    from :math:`[0, 1)` to :math:`(-\\infty, +\\infty)`.

    .. math:: \\text{logit}(p) = \\ln \\frac{p}{1 - p} = \\beta_0 + \\beta X

    The odds of the response variable being "1" can be obtained by
    exponentiating the log-odds:

    .. math:: \\frac{p}{1 - p} = e^{\\beta_0 + \\beta X}

    and the probability of the response variable being "1" is given by:

    .. math:: p = \\frac{1}{1 + e^{-(\\beta_0 + \\beta X})}

    Note that the above function that converts log-odds to probability is
    called the `logistic function
    <https://en.wikipedia.org/wiki/Logistic_function>`_.

    The first coefficient is always the constant term (intercept) of
    the model. Scikit-learn will automatically add the intercept
    to your predictor(s) matrix, therefore, :math:`X` should not include a
    constant term. Pingouin will remove any constant term (e.g column with only
    one unique value), or duplicate columns from :math:`X`.

    The calculation of the p-values and confidence interval is adapted from a
    code found at
    https://gist.github.com/rspeare/77061e6e317896be29c6de9a85db301d

    Results have been compared against statsmodels, R, and JASP.

    Examples
    --------
    1. Simple binary logistic regression

    >>> import numpy as np
    >>> from pingouin import logistic_regression
    >>> np.random.seed(123)
    >>> x = np.random.normal(size=30)
    >>> y = np.random.randint(0, 2, size=30)
    >>> lom = logistic_regression(x, y)
    >>> lom.round(2)
           names  coef    se     z  pval  CI[2.5%]  CI[97.5%]
    0  Intercept -0.27  0.37 -0.74  0.46     -1.00       0.45
    1         x1  0.07  0.32  0.21  0.84     -0.55       0.68

    2. Multiple binary logistic regression

    >>> np.random.seed(42)
    >>> z = np.random.normal(size=30)
    >>> X = np.column_stack((x, z))
    >>> lom = logistic_regression(X, y)
    >>> print(lom['coef'].to_numpy())
    [-0.36736745 -0.04374684 -0.47829392]

    3. Using a Pandas DataFrame

    >>> import pandas as pd
    >>> df = pd.DataFrame({'x': x, 'y': y, 'z': z})
    >>> lom = logistic_regression(df[['x', 'z']], df['y'])
    >>> print(lom['coef'].to_numpy())
    [-0.36736745 -0.04374684 -0.47829392]

    4. Return only the coefficients

    >>> logistic_regression(X, y, coef_only=True)
    array([-0.36736745, -0.04374684, -0.47829392])

    5. Passing custom parameters to sklearn

    >>> lom = logistic_regression(X, y, solver='sag', max_iter=10000,
    ...                           random_state=42)
    >>> print(lom['coef'].to_numpy())
    [-0.36751796 -0.04367056 -0.47841908]


    **How to interpret the log-odds coefficients?**

    We'll use the `Wikipedia example
    <https://en.wikipedia.org/wiki/Logistic_regression#Probability_of_passing_an_exam_versus_hours_of_study>`_
    of the probability of passing an exam
    versus the hours of study:

    *A group of 20 students spends between 0 and 6 hours studying for an
    exam. How does the number of hours spent studying affect the
    probability of the student passing the exam?*

    >>> # First, let's create the dataframe
    >>> Hours = [0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 1.75, 2.00, 2.25, 2.50,
    ...          2.75, 3.00, 3.25, 3.50, 4.00, 4.25, 4.50, 4.75, 5.00, 5.50]
    >>> Pass = [0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1]
    >>> df = pd.DataFrame({'HoursStudy': Hours, 'PassExam': Pass})
    >>> # And then run the logistic regression
    >>> lr = logistic_regression(df['HoursStudy'], df['PassExam']).round(3)
    >>> lr
            names   coef     se      z   pval  CI[2.5%]  CI[97.5%]
    0   Intercept -4.078  1.761 -2.316  0.021    -7.529     -0.626
    1  HoursStudy  1.505  0.629  2.393  0.017     0.272      2.737

    The ``Intercept`` coefficient (-4.078) is the log-odds of ``PassExam=1``
    when ``HoursStudy=0``. The odds ratio can be obtained by exponentiating
    the log-odds:

    >>> np.exp(-4.078)
    0.016941314421496552

    i.e. :math:`0.017:1`. Conversely the odds of failing the exam are
    :math:`(1/0.017) \\approx 59:1`.

    The probability can then be obtained with the following equation

    .. math:: p = \\frac{1}{1 + e^{-(-4.078 + 0 * 1.505)}}

    >>> 1 / (1 + np.exp(-(-4.078)))
    0.016659087580814722

    The ``HoursStudy`` coefficient (1.505) means that for each additional hour
    of study, the log-odds of passing the exam increase by 1.505, and the odds
    are multipled by :math:`e^{1.505} \\approx 4.50`.

    For example, a student who studies 2 hours has a probability of passing
    the exam of 25%:

    >>> 1 / (1 + np.exp(-(-4.078 + 2 * 1.505)))
    0.2557836148964987

    The table below shows the probability of passing the exam for several
    values of ``HoursStudy``:

    +----------------+----------+----------------+------------------+
    | Hours of Study | Log-odds | Odds           | Probability      |
    +================+==========+================+==================+
    | 0              | −4.08    | 0.017 ≈ 1:59   | 0.017            |
    +----------------+----------+----------------+------------------+
    | 1              | −2.57    | 0.076 ≈ 1:13   | 0.07             |
    +----------------+----------+----------------+------------------+
    | 2              | −1.07    | 0.34 ≈ 1:3     | 0.26             |
    +----------------+----------+----------------+------------------+
    | 3              | 0.44     | 1.55           | 0.61             |
    +----------------+----------+----------------+------------------+
    | 4              | 1.94     | 6.96           | 0.87             |
    +----------------+----------+----------------+------------------+
    | 5              | 3.45     | 31.4           | 0.97             |
    +----------------+----------+----------------+------------------+
    | 6              | 4.96     | 141.4          | 0.99             |
    +----------------+----------+----------------+------------------+
    """
    # Check that sklearn is installed
    from pingouin.utils import _is_sklearn_installed
    _is_sklearn_installed(raise_error=True)
    from sklearn.linear_model import LogisticRegression

    # Extract names if X is a Dataframe or Series
    if isinstance(X, pd.DataFrame):
        names = X.keys().tolist()
    elif isinstance(X, pd.Series):
        names = [X.name]
    else:
        names = []

    # Convert to numpy array
    X = np.asarray(X)
    y = np.asarray(y)
    assert y.ndim == 1, 'y must be one-dimensional.'
    assert 0 < alpha < 1, 'alpha must be between 0 and 1.'

    # Add axis if only one-dimensional array
    if X.ndim == 1:
        X = X[..., np.newaxis]

    # Check for NaN /  Inf
    if remove_na:
        X, y = rm_na(X, y[..., np.newaxis], paired=True, axis='rows')
        y = np.squeeze(y)
    y_gd = np.isfinite(y).all()
    X_gd = np.isfinite(X).all()
    assert y_gd, ("Target (y) contains NaN or Inf. Please remove them "
                  "manually or use remove_na=True.")
    assert X_gd, ("Predictors (X) contain NaN or Inf. Please remove them "
                  "manually or use remove_na=True.")

    # Check that X and y have same length
    assert y.shape[0] == X.shape[0], 'X and y must have same number of samples'

    # Check that y is binary
    if np.unique(y).size != 2:
        raise ValueError('Dependent variable must be binary.')

    if not names:
        names = ['x' + str(i + 1) for i in range(X.shape[1])]

    # We also want to make sure that there is no column
    # with only one unique value, otherwise the regression fails
    # This is equivalent, but much faster, to pd.DataFrame(X).nunique()
    idx_unique = np.where(np.all(X == X[0, :], axis=0))[0]
    if len(idx_unique):
        X = np.delete(X, idx_unique, 1)
        names = np.delete(names, idx_unique).tolist()

    # Finally, we want to remove duplicate columns
    if X.shape[1] > 1:
        idx_duplicate = []
        for pair in itertools.combinations(range(X.shape[1]), 2):
            if np.array_equal(X[:, pair[0]], X[:, pair[1]]):
                idx_duplicate.append(pair[1])
        if len(idx_duplicate):
            X = np.delete(X, idx_duplicate, 1)
            names = np.delete(names, idx_duplicate).tolist()

    # Initialize and fit
    if 'solver' not in kwargs:
        kwargs['solver'] = 'lbfgs'
    if 'multi_class' not in kwargs:
        kwargs['multi_class'] = 'auto'
    if 'penalty' not in kwargs:
        kwargs['penalty'] = 'none'
    lom = LogisticRegression(**kwargs)
    lom.fit(X, y)
    coef = np.append(lom.intercept_, lom.coef_)
    if coef_only:
        return coef

    # Design matrix -- add intercept
    names.insert(0, "Intercept")
    X_design = np.column_stack((np.ones(X.shape[0]), X))
    n, p = X_design.shape

    # Fisher Information Matrix
    denom = (2 * (1 + np.cosh(lom.decision_function(X))))
    denom = np.tile(denom, (p, 1)).T
    fim = (X_design / denom).T @ X_design
    crao = np.linalg.pinv(fim)

    # Standard error and Z-scores
    se = np.sqrt(np.diag(crao))
    z_scores = coef / se

    # Two-tailed p-values
    pval = 2 * norm.sf(np.fabs(z_scores))

    # Confidence intervals
    crit = norm.ppf(1 - alpha / 2)
    ll = coef - crit * se
    ul = coef + crit * se

    # Rename CI
    ll_name = 'CI[%.1f%%]' % (100 * alpha / 2)
    ul_name = 'CI[%.1f%%]' % (100 * (1 - alpha / 2))

    # Create dict
    stats = {'names': names, 'coef': coef, 'se': se, 'z': z_scores,
             'pval': pval, ll_name: ll, ul_name: ul}
    if as_dataframe:
        return pd.DataFrame(stats)
    else:
        return stats
Beispiel #59
0
class RandomLayer(BaseRandomLayer):
    """RandomLayer is a transformer that creates a feature mapping of the
    inputs that corresponds to a layer of hidden units with randomly
    generated components.

    The transformed values are a specified function of input activations
    that are a weighted combination of dot product (multilayer perceptron)
    and distance (rbf) activations:

      input_activation = alpha * mlp_activation + (1-alpha) * rbf_activation

      mlp_activation(x) = dot(x, weights) + bias
      rbf_activation(x) = rbf_width * ||x - center||/radius

      alpha and rbf_width are specified by the user

      weights and biases are taken from normal distribution of
      mean 0 and sd of 1

      centers are taken uniformly from the bounding hyperrectangle
      of the inputs, and radii are max(||x-c||)/sqrt(n_centers*2)

    The input activation is transformed by a transfer function that defaults
    to numpy.tanh if not specified, but can be any callable that returns an
    array of the same shape as its argument (the input activation array, of
    shape [n_samples, n_hidden]).  Functions provided are 'sine', 'tanh',
    'tribas', 'inv_tribas', 'sigmoid', 'hardlim', 'softlim', 'gaussian',
    'multiquadric', or 'inv_multiquadric'.

    Parameters
    ----------
    `n_hidden` : int, optional (default=20)
        Number of units to generate

    `alpha` : float, optional (default=0.5)
        Mixing coefficient for distance and dot product input activations:
        activation = alpha*mlp_activation + (1-alpha)*rbf_width*rbf_activation

    `rbf_width` : float, optional (default=1.0)
        multiplier on rbf_activation

    `user_components`: dictionary, optional (default=None)
        dictionary containing values for components that woud otherwise be
        randomly generated.  Valid key/value pairs are as follows:
           'radii'  : array-like of shape [n_hidden]
           'centers': array-like of shape [n_hidden, n_features]
           'biases' : array-like of shape [n_hidden]
           'weights': array-like of shape [n_features, n_hidden]

    `activation_func` : {callable, string} optional (default='tanh')
        Function used to transform input activation

        It must be one of 'tanh', 'sine', 'tribas', 'inv_tribas',
        'sigmoid', 'hardlim', 'softlim', 'gaussian', 'multiquadric',
        'inv_multiquadric' or a callable.  If None is given, 'tanh'
        will be used.

        If a callable is given, it will be used to compute the activations.

    `activation_args` : dictionary, optional (default=None)
        Supplies keyword arguments for a callable activation_func

    `random_state`  : int, RandomState instance or None (default=None)
        Control the pseudo random number generator used to generate the
        hidden unit weights at fit time.

    Attributes
    ----------
    `input_activations_` : numpy array of shape [n_samples, n_hidden]
        Array containing dot(x, hidden_weights) + bias for all samples

    `components_` : dictionary containing two keys:
        `bias_weights_`   : numpy array of shape [n_hidden]
        `hidden_weights_` : numpy array of shape [n_features, n_hidden]

    See Also
    --------
    """
    # triangular activation function
    _tribas = (lambda x: np.clip(1.0 - np.fabs(x), 0.0, 1.0))

    # inverse triangular activation function
    _inv_tribas = (lambda x: np.clip(np.fabs(x), 0.0, 1.0))

    # sigmoid activation function
    _sigmoid = (lambda x: 1.0 / (1.0 + np.exp(-x)))

    # hard limit activation function
    _hardlim = (lambda x: np.array(x > 0.0, dtype=float))

    _softlim = (lambda x: np.clip(x, 0.0, 1.0))

    # gaussian RBF
    _gaussian = (lambda x: np.exp(-pow(x, 2.0)))

    # multiquadric RBF
    _multiquadric = (lambda x: np.sqrt(1.0 + pow(x, 2.0)))

    # inverse multiquadric RBF
    _inv_multiquadric = (lambda x: 1.0 / (np.sqrt(1.0 + pow(x, 2.0))))

    # internal activation function table
    _internal_activation_funcs = {
        'sine': np.sin,
        'tanh': np.tanh,
        'tribas': _tribas,
        'inv_tribas': _inv_tribas,
        'sigmoid': _sigmoid,
        'softlim': _softlim,
        'hardlim': _hardlim,
        'gaussian': _gaussian,
        'multiquadric': _multiquadric,
        'inv_multiquadric': _inv_multiquadric,
    }

    def __init__(self,
                 n_hidden=20,
                 alpha=0.5,
                 random_state=None,
                 activation_func='tanh',
                 activation_args=None,
                 user_components=None,
                 rbf_width=1.0):

        super(RandomLayer, self).__init__(n_hidden=n_hidden,
                                          random_state=random_state,
                                          activation_func=activation_func,
                                          activation_args=activation_args)

        if (isinstance(self.activation_func, str)):
            func_names = self._internal_activation_funcs.keys()
            if (self.activation_func not in func_names):
                msg = "unknown activation function '%s'" % self.activation_func
                raise ValueError(msg)

        self.alpha = alpha
        self.rbf_width = rbf_width
        self.user_components = user_components

        self._use_mlp_input = (self.alpha != 0.0)
        self._use_rbf_input = (self.alpha != 1.0)

    def _get_user_components(self, key):
        """Look for given user component"""
        try:
            return self.user_components[key]
        except (TypeError, KeyError):
            return None

    def _compute_radii(self):
        """Generate RBF radii"""

        # use supplied radii if present
        radii = self._get_user_components('radii')

        # compute radii
        if (radii is None):
            centers = self.components_['centers']

            n_centers = centers.shape[0]
            max_dist = np.max(pairwise_distances(centers))
            radii = np.ones(n_centers) * max_dist / sqrt(2.0 * n_centers)

        self.components_['radii'] = radii

    def _compute_centers(self, X, sparse, rs):
        """Generate RBF centers"""

        # use supplied centers if present
        centers = self._get_user_components('centers')

        # use points taken uniformly from the bounding
        # hyperrectangle
        if (centers is None):
            n_features = X.shape[1]

            if (sparse):
                fxr = range(n_features)
                cols = [X.getcol(i) for i in fxr]

                min_dtype = X.dtype.type(1.0e10)
                sp_min = lambda col: np.minimum(min_dtype, np.min(col.data))
                min_Xs = np.array(map(sp_min, cols))

                max_dtype = X.dtype.type(-1.0e10)
                sp_max = lambda col: np.maximum(max_dtype, np.max(col.data))
                max_Xs = np.array(map(sp_max, cols))
            else:
                min_Xs = X.min(axis=0)
                max_Xs = X.max(axis=0)

            spans = max_Xs - min_Xs
            ctrs_size = (self.n_hidden, n_features)
            centers = min_Xs + spans * rs.uniform(0.0, 1.0, ctrs_size)

        self.components_['centers'] = centers

    def _compute_biases(self, rs):
        """Generate MLP biases"""

        # use supplied biases if present
        biases = self._get_user_components('biases')
        if (biases is None):
            b_size = self.n_hidden
            biases = rs.normal(size=b_size)

        self.components_['biases'] = biases

    def _compute_weights(self, X, rs):
        """Generate MLP weights"""

        # use supplied weights if present
        weights = self._get_user_components('weights')
        if (weights is None):
            n_features = X.shape[1]
            hw_size = (n_features, self.n_hidden)
            weights = rs.normal(size=hw_size)

        self.components_['weights'] = weights

    def _generate_components(self, X):
        """Generate components of hidden layer given X"""

        rs = check_random_state(self.random_state)
        if (self._use_mlp_input):
            self._compute_biases(rs)
            self._compute_weights(X, rs)

        if (self._use_rbf_input):
            self._compute_centers(X, sp.issparse(X), rs)
            self._compute_radii()

    def _compute_input_activations(self, X):
        """Compute input activations given X"""

        n_samples = X.shape[0]

        mlp_acts = np.zeros((n_samples, self.n_hidden))
        if (self._use_mlp_input):
            b = self.components_['biases']
            w = self.components_['weights']
            mlp_acts = self.alpha * (safe_sparse_dot(X, w) + b)

        rbf_acts = np.zeros((n_samples, self.n_hidden))
        if (self._use_rbf_input):
            radii = self.components_['radii']
            centers = self.components_['centers']
            scale = self.rbf_width * (1.0 - self.alpha)
            rbf_acts = scale * cdist(X, centers) / radii

        self.input_activations_ = mlp_acts + rbf_acts
Beispiel #60
0
    def get_field(self, x, y, z):
        """Calculates the magnetic field at point(s) x,y,z due to a 3D magnet
        The calculations are always performed in local coordinates with the centre of the magnet at origin and z magnetisation pointing along the local z' axis.

        The rotations and translations are performed first, and the internal field calculation functions are called.

        Args:
            x (ndarray): x co-ordinates
            y (ndarray): y co-ordinates
            z (ndarray): z co-ordinates

        Returns:
            tuple: Bx(ndarray), By(ndarray), Bz(ndarray) field vector
        """
        from ..utils._routines3D import _tile_arrays, _apply_mask

        # If any rotation angle is set, transform the data
        if _np.any(
                _np.fabs(
                    _np.array([
                        self.alpha_rad,
                        self.beta_rad,
                        self.gamma_rad,
                    ])) > Magnet.tol):

            forward_rotation, reverse_rotation = self._generate_rotation_quaternions(
            )

            # Generate 3xN array for quaternion rotation
            pos_vec = Quaternion._prepare_vector(x - self.center[0],
                                                 y - self.center[1],
                                                 z - self.center[2])

            # Rotate points
            x_rot, y_rot, z_rot = forward_rotation * pos_vec

            # Calls internal child method to calculate the field
            B_local = self._get_field_internal(x_rot, y_rot, z_rot)
            mask = self._generate_mask(x_rot, y_rot, z_rot)

            B_local = _apply_mask(self, B_local, mask)

            # Rearrange the field vectors in a 3xN array for quaternion rotation
            Bvec = Quaternion._prepare_vector(B_local.x, B_local.y, B_local.z)

            # Rotate the local fields back into the global frame using quaternions
            Bx, By, Bz = reverse_rotation * Bvec

            # finally return the fields
            return Bx, By, Bz

        else:
            # Otherwise directly calculate the magnetic fields
            B = self._get_field_internal(x - self.center[0],
                                         y - self.center[1],
                                         z - self.center[2])

            xloc, yloc, zloc = _tile_arrays(x - self.center[0],
                                            y - self.center[1],
                                            z - self.center[2])
            mask = self._generate_mask(xloc, yloc, zloc)
            B = _apply_mask(self, B, mask)

            return B.x, B.y, B.z