Beispiel #1
0
def linspace(a, b, n, **kwargs):
    r"""Linearly-spaced values

    Create an array of linearly-spaced values. Accepts keyword arguments for
    numpy.linspace.

    Arguments:
        a (numeric): Smallest value
        b (numeric): Largest value
        n (int): Number of points

    Returns:
        numpy array: Array of requested values

    Notes:
        This is a symbolic alias for np.linspace(); you can use this in
        pipe-enabled functions.

    Examples:
        >>> import grama as gr
        >>> from grama.data import df_stang
        >>> DF = gr.Intention()
        >>> (
        >>>     df_stang
        >>>     >> gr.tf_mutate(c=gr.linspace(0, 1, gr.n(DF.index)))
        >>> )
    """
    return nplinspace(a, b, num=n, **kwargs)
Beispiel #2
0
def perfect_circle_data(radius: float, step: float):
    #half circle 1
    num_eles = _num_eles(radius, -radius, step)
    x1 = nplinspace(radius, -radius, num_eles)
    y1 = array([_circle(x_iter, radius) for x_iter in x1])
    #half circle 2
    num_eles = _num_eles(-(radius - step), radius, step)
    x2 = nplinspace(-(radius - step), radius, num_eles)
    y2 = array([-_circle(x_iter, radius) for x_iter in x2])
    #concat everything
    x = concatenate([x1, x2], axis=0)
    y = concatenate([y1, y2], axis=0)
    #calc the angle for each coordinate
    theta = array([_theta(x[i], y[i]) for i in range(0, len(x))])
    df = concat([Series(x), Series(y), Series(theta)], axis=1)
    df.columns = ["x", "y", "theta"]
    return df
 def _plot_xgrid(self, xticks):
     from numpy import linspace as nplinspace
     # X軸に平行な線を描画
     GL.glBegin(GL.GL_LINES)
     dxs = nplinspace(self.xmin, self.xmax, xticks)
     for x in dxs:
         GL.glVertex(x, self.ymin)
         GL.glVertex(x, self.ymax)
     GL.glEnd()
    def _plot_ygrid(self, yticks):
        from numpy import linspace as nplinspace
        # Y軸に平行な線を描画
        GL.glBegin(GL.GL_LINES)
        dys = nplinspace(self.ymin, self.ymax, yticks)

        for y in dys:
            GL.glVertex(self.xmin, y)
            GL.glVertex(self.xmax, y)
        GL.glEnd()
Beispiel #5
0
def animated_plot_1d(Frames):
    """
     create animation from simulation outputs
    :param Frames: simulation results
    :return: None
    """
    Nx = Frames[0].shape[0]
    X = nplinspace(0, Nx - 1, num=Nx)

    fig = plt.figure(figsize=(10, 10))
    ax = fig.add_subplot(111)
    line, = ax.plot([], [], lw=4)
    ax.set_xlim([X.min(), X.max()])
    ax.set_ylim([1.1*Frames[0].min(), 1.1*Frames[0].max()])
    ax.grid(color='r', linestyle='--', linewidth=2)
    ax.set_xlabel('x')
    ax.set_ylabel('y(x)')

    def init():
        line.set_data([], [])
        return line,

    def update_line(num):
        line.set_data(X, Frames[num])
        return line,

    idx = 0
    for f in Frames:
        if f.max() > 10000*Frames[0].max():
            print('Warning : growing instability detected')
            break
        idx += 1
    anim_length = min(idx, len(Frames)-1)
    anim = animation.FuncAnimation(fig, update_line,
                                   init_func=init,
                                   frames=anim_length,  blit=True)
    return anim
Beispiel #6
0
def bls_serial_pfind(
        times,
        mags,
        errs,
        magsarefluxes=False,
        startp=0.1,  # search from 0.1 d to...
        endp=100.0,  # ... 100.0 d -- don't search full timebase
        stepsize=5.0e-4,
        mintransitduration=0.01,  # minimum transit length in phase
        maxtransitduration=0.4,  # maximum transit length in phase
        ndurations=100,
        autofreq=True,  # figure out f0, nf, and df automatically
        blsobjective='likelihood',
        blsmethod='fast',
        blsoversample=10,
        blsmintransits=3,
        blsfreqfactor=10.0,
        periodepsilon=0.1,
        nbestpeaks=5,
        sigclip=10.0,
        endp_timebase_check=True,
        verbose=True,
        raiseonfail=False):
    '''Runs the Box Least Squares Fitting Search for transit-shaped signals.

    Based on the version of BLS in Astropy 3.1:
    `astropy.stats.BoxLeastSquares`. If you don't have Astropy 3.1, this module
    will fail to import. Note that by default, this implementation of
    `bls_serial_pfind` doesn't use the `.autoperiod()` function from
    `BoxLeastSquares` but uses the same auto frequency-grid generation as the
    functions in `periodbase.kbls`. If you want to use Astropy's implementation,
    set the value of `autofreq` kwarg to 'astropy'.

    The dict returned from this function contains a `blsmodel` key, which is the
    generated model from Astropy's BLS. Use the `.compute_stats()` method to
    calculate the required stats like SNR, depth, duration, etc.

    Parameters
    ----------

    times,mags,errs : np.array
        The magnitude/flux time-series to search for transits.

    magsarefluxes : bool
        If the input measurement values in `mags` and `errs` are in fluxes, set
        this to True.

    startp,endp : float
        The minimum and maximum periods to consider for the transit search.

    stepsize : float
        The step-size in frequency to use when constructing a frequency grid for
        the period search.

    mintransitduration,maxtransitduration : float
        The minimum and maximum transitdurations (in units of phase) to consider
        for the transit search.

    ndurations : int
        The number of transit durations to use in the period-search.

    autofreq : bool or str
        If this is True, the values of `stepsize` and `nphasebins` will be
        ignored, and these, along with a frequency-grid, will be determined
        based on the following relations::

            nphasebins = int(ceil(2.0/mintransitduration))
            if nphasebins > 3000:
                nphasebins = 3000

            stepsize = 0.25*mintransitduration/(times.max()-times.min())

            minfreq = 1.0/endp
            maxfreq = 1.0/startp
            nfreq = int(ceil((maxfreq - minfreq)/stepsize))

        If this is False, you must set `startp`, `endp`, and `stepsize` as
        appropriate.

        If this is str == 'astropy', will use the
        `astropy.stats.BoxLeastSquares.autoperiod()` function to calculate the
        frequency grid instead of the kbls method.

    blsobjective : {'likelihood','snr'}
        Sets the type of objective to optimize in the `BoxLeastSquares.power()`
        function.

    blsmethod : {'fast','slow'}
        Sets the type of method to use in the `BoxLeastSquares.power()`
        function.

    blsoversample : {'likelihood','snr'}
        Sets the `oversample` kwarg for the `BoxLeastSquares.power()` function.

    blsmintransits : int
        Sets the `min_n_transits` kwarg for the `BoxLeastSquares.autoperiod()`
        function.

    blsfreqfactor : float
        Sets the `frequency_factor` kwarg for the `BoxLeastSquares.autperiod()`
        function.

    periodepsilon : float
        The fractional difference between successive values of 'best' periods
        when sorting by periodogram power to consider them as separate periods
        (as opposed to part of the same periodogram peak). This is used to avoid
        broad peaks in the periodogram and make sure the 'best' periods returned
        are all actually independent.

    nbestpeaks : int
        The number of 'best' peaks to return from the periodogram results,
        starting from the global maximum of the periodogram peak values.

    sigclip : float or int or sequence of two floats/ints or None
        If a single float or int, a symmetric sigma-clip will be performed using
        the number provided as the sigma-multiplier to cut out from the input
        time-series.

        If a list of two ints/floats is provided, the function will perform an
        'asymmetric' sigma-clip. The first element in this list is the sigma
        value to use for fainter flux/mag values; the second element in this
        list is the sigma value to use for brighter flux/mag values. For
        example, `sigclip=[10., 3.]`, will sigclip out greater than 10-sigma
        dimmings and greater than 3-sigma brightenings. Here the meaning of
        "dimming" and "brightening" is set by *physics* (not the magnitude
        system), which is why the `magsarefluxes` kwarg must be correctly set.

        If `sigclip` is None, no sigma-clipping will be performed, and the
        time-series (with non-finite elems removed) will be passed through to
        the output.

    endp_timebase_check : bool
        If True, will check if the ``endp`` value is larger than the time-base
        of the observations. If it is, will change the ``endp`` value such that
        it is half of the time-base. If False, will allow an ``endp`` larger
        than the time-base of the observations.

    verbose : bool
        If this is True, will indicate progress and details about the frequency
        grid used for the period search.

    raiseonfail : bool
        If True, raises an exception if something goes wrong. Otherwise, returns
        None.

    Returns
    -------

    dict
        This function returns a dict, referred to as an `lspinfo` dict in other
        astrobase functions that operate on periodogram results. This is a
        standardized format across all astrobase period-finders, and is of the
        form below::

            {'bestperiod': the best period value in the periodogram,
             'bestlspval': the periodogram peak associated with the best period,
             'nbestpeaks': the input value of nbestpeaks,
             'nbestlspvals': nbestpeaks-size list of best period peak values,
             'nbestperiods': nbestpeaks-size list of best periods,
             'lspvals': the full array of periodogram powers,
             'frequencies': the full array of frequencies considered,
             'periods': the full array of periods considered,
             'durations': the array of durations used to run BLS,
             'blsresult': Astropy BLS result object (BoxLeastSquaresResult),
             'blsmodel': Astropy BLS BoxLeastSquares object used for work,
             'stepsize': the actual stepsize used,
             'nfreq': the actual nfreq used,
             'durations': the durations array used,
             'mintransitduration': the input mintransitduration,
             'maxtransitduration': the input maxtransitdurations,
             'method':'bls' -> the name of the period-finder method,
             'kwargs':{ dict of all of the input kwargs for record-keeping}}

    '''

    # get rid of nans first and sigclip
    stimes, smags, serrs = sigclip_magseries(times,
                                             mags,
                                             errs,
                                             magsarefluxes=magsarefluxes,
                                             sigclip=sigclip)

    # make sure there are enough points to calculate a spectrum
    if len(stimes) > 9 and len(smags) > 9 and len(serrs) > 9:

        # if we're setting up everything automatically
        if isinstance(autofreq, bool) and autofreq:

            # use heuristic to figure out best timestep
            stepsize = 0.25 * mintransitduration / (stimes.max() -
                                                    stimes.min())

            # now figure out the frequencies to use
            minfreq = 1.0 / endp
            maxfreq = 1.0 / startp
            nfreq = int(npceil((maxfreq - minfreq) / stepsize))

            # say what we're using
            if verbose:
                LOGINFO('min P: %s, max P: %s, nfreq: %s, '
                        'minfreq: %s, maxfreq: %s' %
                        (startp, endp, nfreq, minfreq, maxfreq))
                LOGINFO('autofreq = True: using AUTOMATIC values for '
                        'freq stepsize: %s, ndurations: %s, '
                        'min transit duration: %s, max transit duration: %s' %
                        (stepsize, ndurations, mintransitduration,
                         maxtransitduration))

            use_autoperiod = False

        elif isinstance(autofreq, bool) and not autofreq:

            minfreq = 1.0 / endp
            maxfreq = 1.0 / startp
            nfreq = int(npceil((maxfreq - minfreq) / stepsize))

            # say what we're using
            if verbose:
                LOGINFO('min P: %s, max P: %s, nfreq: %s, '
                        'minfreq: %s, maxfreq: %s' %
                        (startp, endp, nfreq, minfreq, maxfreq))
                LOGINFO('autofreq = False: using PROVIDED values for '
                        'freq stepsize: %s, ndurations: %s, '
                        'min transit duration: %s, max transit duration: %s' %
                        (stepsize, ndurations, mintransitduration,
                         maxtransitduration))

            use_autoperiod = False

        elif isinstance(autofreq, str) and autofreq == 'astropy':

            use_autoperiod = True
            minfreq = 1.0 / endp
            maxfreq = 1.0 / startp

        else:

            LOGERROR("unknown autofreq kwarg encountered. can't continue...")
            return None

        # check the minimum frequency
        if ((minfreq < (1.0 / (stimes.max() - stimes.min())))
                and endp_timebase_check):

            LOGWARNING('the requested max P = %.3f is larger than '
                       'the time base of the observations = %.3f, '
                       ' will make minfreq = 2 x 1/timebase' %
                       (endp, stimes.max() - stimes.min()))
            minfreq = 2.0 / (stimes.max() - stimes.min())
            LOGWARNING('new minfreq: %s, maxfreq: %s' % (minfreq, maxfreq))

        # run BLS
        try:

            # astropy's BLS requires durations in units of time
            durations = nplinspace(mintransitduration * startp,
                                   maxtransitduration * startp, ndurations)

            # set up the correct units for the BLS model
            if magsarefluxes:

                blsmodel = BoxLeastSquares(stimes * u.day,
                                           smags * u.dimensionless_unscaled,
                                           dy=serrs * u.dimensionless_unscaled)

            else:

                blsmodel = BoxLeastSquares(stimes * u.day,
                                           smags * u.mag,
                                           dy=serrs * u.mag)

            # use autoperiod if requested
            if use_autoperiod:
                periods = nparray(
                    blsmodel.autoperiod(durations,
                                        minimum_period=startp,
                                        maximum_period=endp,
                                        minimum_n_transit=blsmintransits,
                                        frequency_factor=blsfreqfactor))
                nfreq = periods.size

                if verbose:
                    LOGINFO("autofreq = 'astropy', used .autoperiod() with "
                            "minimum_n_transit = %s, freq_factor = %s "
                            "to generate the frequency grid" %
                            (blsmintransits, blsfreqfactor))
                    LOGINFO(
                        'stepsize = %.5f, nfreq = %s, minfreq = %.5f, '
                        'maxfreq = %.5f, ndurations = %s' %
                        (abs(1.0 / periods[1] - 1.0 / periods[0]), nfreq, 1.0 /
                         periods.max(), 1.0 / periods.min(), durations.size))

            # otherwise, use kbls method
            else:
                frequencies = minfreq + nparange(nfreq) * stepsize
                periods = 1.0 / frequencies

            if nfreq > 5.0e5:
                if verbose:
                    LOGWARNING('more than 5.0e5 frequencies to go through; '
                               'this will take a while. '
                               'you might want to use the '
                               'abls.bls_parallel_pfind function instead')

            # run the periodogram
            blsresult = blsmodel.power(periods * u.day,
                                       durations * u.day,
                                       objective=blsobjective,
                                       method=blsmethod,
                                       oversample=blsoversample)

            # get the peak values
            lsp = nparray(blsresult.power)

            # find the nbestpeaks for the periodogram: 1. sort the lsp array
            # by highest value first 2. go down the values until we find
            # five values that are separated by at least periodepsilon in
            # period
            # make sure to get only the finite peaks in the periodogram
            # this is needed because BLS may produce infs for some peaks
            finitepeakind = npisfinite(lsp)
            finlsp = lsp[finitepeakind]
            finperiods = periods[finitepeakind]

            # make sure that finlsp has finite values before we work on it
            try:

                bestperiodind = npargmax(finlsp)

            except ValueError:

                LOGERROR('no finite periodogram values '
                         'for this mag series, skipping...')

                return {
                    'bestperiod': npnan,
                    'bestlspval': npnan,
                    'nbestpeaks': nbestpeaks,
                    'nbestinds': None,
                    'nbestlspvals': None,
                    'nbestperiods': None,
                    'lspvals': None,
                    'periods': None,
                    'durations': None,
                    'method': 'bls',
                    'blsresult': None,
                    'blsmodel': None,
                    'kwargs': {
                        'startp': startp,
                        'endp': endp,
                        'stepsize': stepsize,
                        'mintransitduration': mintransitduration,
                        'maxtransitduration': maxtransitduration,
                        'ndurations': ndurations,
                        'blsobjective': blsobjective,
                        'blsmethod': blsmethod,
                        'blsoversample': blsoversample,
                        'blsntransits': blsmintransits,
                        'blsfreqfactor': blsfreqfactor,
                        'autofreq': autofreq,
                        'periodepsilon': periodepsilon,
                        'nbestpeaks': nbestpeaks,
                        'sigclip': sigclip,
                        'magsarefluxes': magsarefluxes
                    }
                }

            sortedlspind = npargsort(finlsp)[::-1]
            sortedlspperiods = finperiods[sortedlspind]
            sortedlspvals = finlsp[sortedlspind]

            # now get the nbestpeaks
            nbestperiods, nbestlspvals, nbestinds, peakcount = ([
                finperiods[bestperiodind]
            ], [finlsp[bestperiodind]], [bestperiodind], 1)
            prevperiod = sortedlspperiods[0]

            # find the best nbestpeaks in the lsp and their periods
            for period, lspval, ind in zip(sortedlspperiods, sortedlspvals,
                                           sortedlspind):

                if peakcount == nbestpeaks:
                    break
                perioddiff = abs(period - prevperiod)
                bestperiodsdiff = [abs(period - x) for x in nbestperiods]

                # print('prevperiod = %s, thisperiod = %s, '
                #       'perioddiff = %s, peakcount = %s' %
                #       (prevperiod, period, perioddiff, peakcount))

                # this ensures that this period is different from the last
                # period and from all the other existing best periods by
                # periodepsilon to make sure we jump to an entire different
                # peak in the periodogram
                if (perioddiff > (periodepsilon * prevperiod)
                        and all(x > (periodepsilon * period)
                                for x in bestperiodsdiff)):
                    nbestperiods.append(period)
                    nbestlspvals.append(lspval)
                    nbestinds.append(ind)
                    peakcount = peakcount + 1

                prevperiod = period

            # generate the return dict
            resultdict = {
                'bestperiod': finperiods[bestperiodind],
                'bestlspval': finlsp[bestperiodind],
                'nbestpeaks': nbestpeaks,
                'nbestinds': nbestinds,
                'nbestlspvals': nbestlspvals,
                'nbestperiods': nbestperiods,
                'lspvals': lsp,
                'frequencies': frequencies,
                'periods': periods,
                'durations': durations,
                'blsresult': blsresult,
                'blsmodel': blsmodel,
                'stepsize': stepsize,
                'nfreq': nfreq,
                'mintransitduration': mintransitduration,
                'maxtransitduration': maxtransitduration,
                'method': 'bls',
                'kwargs': {
                    'startp': startp,
                    'endp': endp,
                    'stepsize': stepsize,
                    'mintransitduration': mintransitduration,
                    'maxtransitduration': maxtransitduration,
                    'ndurations': ndurations,
                    'blsobjective': blsobjective,
                    'blsmethod': blsmethod,
                    'blsoversample': blsoversample,
                    'blsntransits': blsmintransits,
                    'blsfreqfactor': blsfreqfactor,
                    'autofreq': autofreq,
                    'periodepsilon': periodepsilon,
                    'nbestpeaks': nbestpeaks,
                    'sigclip': sigclip,
                    'magsarefluxes': magsarefluxes
                }
            }

            return resultdict

        except Exception as e:

            LOGEXCEPTION('BLS failed!')

            if raiseonfail:
                raise

            return {
                'bestperiod': npnan,
                'bestlspval': npnan,
                'nbestinds': None,
                'nbestpeaks': nbestpeaks,
                'nbestlspvals': None,
                'nbestperiods': None,
                'lspvals': None,
                'periods': None,
                'durations': None,
                'blsresult': None,
                'blsmodel': None,
                'stepsize': stepsize,
                'nfreq': nfreq,
                'mintransitduration': mintransitduration,
                'maxtransitduration': maxtransitduration,
                'method': 'bls',
                'kwargs': {
                    'startp': startp,
                    'endp': endp,
                    'stepsize': stepsize,
                    'mintransitduration': mintransitduration,
                    'maxtransitduration': maxtransitduration,
                    'ndurations': ndurations,
                    'blsobjective': blsobjective,
                    'blsmethod': blsmethod,
                    'blsoversample': blsoversample,
                    'blsntransits': blsmintransits,
                    'blsfreqfactor': blsfreqfactor,
                    'autofreq': autofreq,
                    'periodepsilon': periodepsilon,
                    'nbestpeaks': nbestpeaks,
                    'sigclip': sigclip,
                    'magsarefluxes': magsarefluxes
                }
            }

    else:

        LOGERROR('no good detections for these times and mags, skipping...')
        return {
            'bestperiod': npnan,
            'bestlspval': npnan,
            'nbestinds': None,
            'nbestpeaks': nbestpeaks,
            'nbestlspvals': None,
            'nbestperiods': None,
            'lspvals': None,
            'periods': None,
            'durations': None,
            'blsresult': None,
            'blsmodel': None,
            'stepsize': stepsize,
            'nfreq': None,
            'nphasebins': None,
            'mintransitduration': mintransitduration,
            'maxtransitduration': maxtransitduration,
            'method': 'bls',
            'kwargs': {
                'startp': startp,
                'endp': endp,
                'stepsize': stepsize,
                'mintransitduration': mintransitduration,
                'maxtransitduration': maxtransitduration,
                'ndurations': ndurations,
                'blsobjective': blsobjective,
                'blsmethod': blsmethod,
                'blsoversample': blsoversample,
                'blsntransits': blsmintransits,
                'blsfreqfactor': blsfreqfactor,
                'autofreq': autofreq,
                'periodepsilon': periodepsilon,
                'nbestpeaks': nbestpeaks,
                'sigclip': sigclip,
                'magsarefluxes': magsarefluxes
            }
        }
Beispiel #7
0
def bls_parallel_pfind(
    times,
    mags,
    errs,
    magsarefluxes=False,
    startp=0.1,  # by default, search from 0.1 d to...
    endp=100.0,  # ... 100.0 d -- don't search full timebase
    stepsize=1.0e-4,
    mintransitduration=0.01,  # minimum transit length in phase
    maxtransitduration=0.4,  # maximum transit length in phase
    ndurations=100,
    autofreq=True,  # figure out f0, nf, and df automatically
    blsobjective='likelihood',
    blsmethod='fast',
    blsoversample=5,
    blsmintransits=3,
    blsfreqfactor=10.0,
    nbestpeaks=5,
    periodepsilon=0.1,  # 0.1
    sigclip=10.0,
    endp_timebase_check=True,
    verbose=True,
    nworkers=None,
):
    '''Runs the Box Least Squares Fitting Search for transit-shaped signals.

    Breaks up the full frequency space into chunks and passes them to parallel
    BLS workers.

    Based on the version of BLS in Astropy 3.1:
    `astropy.stats.BoxLeastSquares`. If you don't have Astropy 3.1, this module
    will fail to import. Note that by default, this implementation of
    `bls_parallel_pfind` doesn't use the `.autoperiod()` function from
    `BoxLeastSquares` but uses the same auto frequency-grid generation as the
    functions in `periodbase.kbls`. If you want to use Astropy's implementation,
    set the value of `autofreq` kwarg to 'astropy'. The generated period array
    will then be broken up into chunks and sent to the individual workers.

    NOTE: the combined BLS spectrum produced by this function is not identical
    to that produced by running BLS in one shot for the entire frequency
    space. There are differences on the order of 1.0e-3 or so in the respective
    peak values, but peaks appear at the same frequencies for both methods. This
    is likely due to different aliasing caused by smaller chunks of the
    frequency space used by the parallel workers in this function. When in
    doubt, confirm results for this parallel implementation by comparing to
    those from the serial implementation above.

    In particular, when you want to get reliable estimates of the SNR, transit
    depth, duration, etc. that Astropy's BLS gives you, rerun `bls_serial_pfind`
    with `startp`, and `endp` close to the best period you want to characterize
    the transit at. The dict returned from that function contains a `blsmodel`
    key, which is the generated model from Astropy's BLS. Use the
    `.compute_stats()` method to calculate the required stats.

    Parameters
    ----------

    times,mags,errs : np.array
        The magnitude/flux time-series to search for transits.

    magsarefluxes : bool
        If the input measurement values in `mags` and `errs` are in fluxes, set
        this to True.

    startp,endp : float
        The minimum and maximum periods to consider for the transit search.

    stepsize : float
        The step-size in frequency to use when constructing a frequency grid for
        the period search.

    mintransitduration,maxtransitduration : float
        The minimum and maximum transitdurations (in units of phase) to consider
        for the transit search.

    ndurations : int
        The number of transit durations to use in the period-search.

    autofreq : bool or str
        If this is True, the values of `stepsize` and `nphasebins` will be
        ignored, and these, along with a frequency-grid, will be determined
        based on the following relations::

            nphasebins = int(ceil(2.0/mintransitduration))
            if nphasebins > 3000:
                nphasebins = 3000

            stepsize = 0.25*mintransitduration/(times.max()-times.min())

            minfreq = 1.0/endp
            maxfreq = 1.0/startp
            nfreq = int(ceil((maxfreq - minfreq)/stepsize))

        If this is False, you must set `startp`, `endp`, and `stepsize` as
        appropriate.

        If this is str == 'astropy', will use the
        `astropy.stats.BoxLeastSquares.autoperiod()` function to calculate the
        frequency grid instead of the kbls method.

    blsobjective : {'likelihood','snr'}
        Sets the type of objective to optimize in the `BoxLeastSquares.power()`
        function.

    blsmethod : {'fast','slow'}
        Sets the type of method to use in the `BoxLeastSquares.power()`
        function.

    blsoversample : {'likelihood','snr'}
        Sets the `oversample` kwarg for the `BoxLeastSquares.power()` function.

    blsmintransits : int
        Sets the `min_n_transits` kwarg for the `BoxLeastSquares.autoperiod()`
        function.

    blsfreqfactor : float
        Sets the `frequency_factor` kwarg for the `BoxLeastSquares.autoperiod()`
        function.

    periodepsilon : float
        The fractional difference between successive values of 'best' periods
        when sorting by periodogram power to consider them as separate periods
        (as opposed to part of the same periodogram peak). This is used to avoid
        broad peaks in the periodogram and make sure the 'best' periods returned
        are all actually independent.

    nbestpeaks : int
        The number of 'best' peaks to return from the periodogram results,
        starting from the global maximum of the periodogram peak values.

    sigclip : float or int or sequence of two floats/ints or None
        If a single float or int, a symmetric sigma-clip will be performed using
        the number provided as the sigma-multiplier to cut out from the input
        time-series.

        If a list of two ints/floats is provided, the function will perform an
        'asymmetric' sigma-clip. The first element in this list is the sigma
        value to use for fainter flux/mag values; the second element in this
        list is the sigma value to use for brighter flux/mag values. For
        example, `sigclip=[10., 3.]`, will sigclip out greater than 10-sigma
        dimmings and greater than 3-sigma brightenings. Here the meaning of
        "dimming" and "brightening" is set by *physics* (not the magnitude
        system), which is why the `magsarefluxes` kwarg must be correctly set.

        If `sigclip` is None, no sigma-clipping will be performed, and the
        time-series (with non-finite elems removed) will be passed through to
        the output.

    endp_timebase_check : bool
        If True, will check if the ``endp`` value is larger than the time-base
        of the observations. If it is, will change the ``endp`` value such that
        it is half of the time-base. If False, will allow an ``endp`` larger
        than the time-base of the observations.

    verbose : bool
        If this is True, will indicate progress and details about the frequency
        grid used for the period search.

    nworkers : int or None
        The number of parallel workers to launch for period-search. If None,
        nworkers = NCPUS.

    Returns
    -------

    dict
        This function returns a dict, referred to as an `lspinfo` dict in other
        astrobase functions that operate on periodogram results. This is a
        standardized format across all astrobase period-finders, and is of the
        form below::

            {'bestperiod': the best period value in the periodogram,
             'bestlspval': the periodogram peak associated with the best period,
             'nbestpeaks': the input value of nbestpeaks,
             'nbestlspvals': nbestpeaks-size list of best period peak values,
             'nbestperiods': nbestpeaks-size list of best periods,
             'lspvals': the full array of periodogram powers,
             'frequencies': the full array of frequencies considered,
             'periods': the full array of periods considered,
             'durations': the array of durations used to run BLS,
             'blsresult': Astropy BLS result object (BoxLeastSquaresResult),
             'blsmodel': Astropy BLS BoxLeastSquares object used for work,
             'stepsize': the actual stepsize used,
             'nfreq': the actual nfreq used,
             'durations': the durations array used,
             'mintransitduration': the input mintransitduration,
             'maxtransitduration': the input maxtransitdurations,
             'method':'bls' -> the name of the period-finder method,
             'kwargs':{ dict of all of the input kwargs for record-keeping}}

    '''

    # get rid of nans first and sigclip
    stimes, smags, serrs = sigclip_magseries(times,
                                             mags,
                                             errs,
                                             magsarefluxes=magsarefluxes,
                                             sigclip=sigclip)

    # make sure there are enough points to calculate a spectrum
    if len(stimes) > 9 and len(smags) > 9 and len(serrs) > 9:

        # if we're setting up everything automatically
        if isinstance(autofreq, bool) and autofreq:

            # use heuristic to figure out best timestep
            stepsize = 0.25 * mintransitduration / (stimes.max() -
                                                    stimes.min())

            # now figure out the frequencies to use
            minfreq = 1.0 / endp
            maxfreq = 1.0 / startp
            nfreq = int(npceil((maxfreq - minfreq) / stepsize))

            # say what we're using
            if verbose:
                LOGINFO('min P: %s, max P: %s, nfreq: %s, '
                        'minfreq: %s, maxfreq: %s' %
                        (startp, endp, nfreq, minfreq, maxfreq))
                LOGINFO('autofreq = True: using AUTOMATIC values for '
                        'freq stepsize: %s, ndurations: %s, '
                        'min transit duration: %s, max transit duration: %s' %
                        (stepsize, ndurations, mintransitduration,
                         maxtransitduration))

            use_autoperiod = False

        elif isinstance(autofreq, bool) and not autofreq:

            minfreq = 1.0 / endp
            maxfreq = 1.0 / startp
            nfreq = int(npceil((maxfreq - minfreq) / stepsize))

            # say what we're using
            if verbose:
                LOGINFO('min P: %s, max P: %s, nfreq: %s, '
                        'minfreq: %s, maxfreq: %s' %
                        (startp, endp, nfreq, minfreq, maxfreq))
                LOGINFO('autofreq = False: using PROVIDED values for '
                        'freq stepsize: %s, ndurations: %s, '
                        'min transit duration: %s, max transit duration: %s' %
                        (stepsize, ndurations, mintransitduration,
                         maxtransitduration))

            use_autoperiod = False

        elif isinstance(autofreq, str) and autofreq == 'astropy':

            use_autoperiod = True
            minfreq = 1.0 / endp
            maxfreq = 1.0 / startp

        else:

            LOGERROR("unknown autofreq kwarg encountered. can't continue...")
            return None

        # check the minimum frequency
        if ((minfreq < (1.0 / (stimes.max() - stimes.min())))
                and endp_timebase_check):

            LOGWARNING('the requested max P = %.3f is larger than '
                       'the time base of the observations = %.3f, '
                       ' will make minfreq = 2 x 1/timebase' %
                       (endp, stimes.max() - stimes.min()))
            minfreq = 2.0 / (stimes.max() - stimes.min())
            LOGWARNING('new minfreq: %s, maxfreq: %s' % (minfreq, maxfreq))

        #############################
        ## NOW RUN BLS IN PARALLEL ##
        #############################

        # fix number of CPUs if needed
        if not nworkers or nworkers > NCPUS:
            nworkers = NCPUS
            if verbose:
                LOGINFO('using %s workers...' % nworkers)

        # check if autoperiod is True and get the correct period-grid
        if use_autoperiod:

            # astropy's BLS requires durations in units of time
            durations = nplinspace(mintransitduration * startp,
                                   maxtransitduration * startp, ndurations)

            # set up the correct units for the BLS model
            if magsarefluxes:

                blsmodel = BoxLeastSquares(stimes * u.day,
                                           smags * u.dimensionless_unscaled,
                                           dy=serrs * u.dimensionless_unscaled)

            else:

                blsmodel = BoxLeastSquares(stimes * u.day,
                                           smags * u.mag,
                                           dy=serrs * u.mag)

            periods = nparray(
                blsmodel.autoperiod(durations * u.day,
                                    minimum_period=startp,
                                    maximum_period=endp,
                                    minimum_n_transit=blsmintransits,
                                    frequency_factor=blsfreqfactor))

            frequencies = 1.0 / periods
            nfreq = frequencies.size

            if verbose:
                LOGINFO("autofreq = 'astropy', used .autoperiod() with "
                        "minimum_n_transit = %s, freq_factor = %s "
                        "to generate the frequency grid" %
                        (blsmintransits, blsfreqfactor))
                LOGINFO('stepsize = %s, nfreq = %s, minfreq = %.5f, '
                        'maxfreq = %.5f, ndurations = %s' %
                        (abs(frequencies[1] - frequencies[0]), nfreq, 1.0 /
                         periods.max(), 1.0 / periods.min(), durations.size))

            del blsmodel
            del durations

        # otherwise, use kbls method
        else:

            frequencies = minfreq + nparange(nfreq) * stepsize

        # break up the tasks into chunks
        csrem = int(fmod(nfreq, nworkers))
        csint = int(float(nfreq / nworkers))
        chunk_minfreqs, chunk_nfreqs = [], []

        for x in range(nworkers):

            this_minfreqs = frequencies[x * csint]

            # handle usual nfreqs
            if x < (nworkers - 1):
                this_nfreqs = frequencies[x * csint:x * csint + csint].size
            else:
                this_nfreqs = frequencies[x * csint:x * csint + csint +
                                          csrem].size

            chunk_minfreqs.append(this_minfreqs)
            chunk_nfreqs.append(this_nfreqs)

        # populate the tasks list
        #
        # task[0] = times
        # task[1] = mags
        # task[2] = errs
        # task[3] = magsarefluxes

        # task[4] = minfreq
        # task[5] = nfreq
        # task[6] = stepsize

        # task[7] = nphasebins
        # task[8] = mintransitduration
        # task[9] = maxtransitduration

        # task[10] = blsobjective
        # task[11] = blsmethod
        # task[12] = blsoversample

        # populate the tasks list
        tasks = [(stimes, smags, serrs, magsarefluxes, chunk_minf, chunk_nf,
                  stepsize, ndurations, mintransitduration, maxtransitduration,
                  blsobjective, blsmethod, blsoversample)
                 for (chunk_minf,
                      chunk_nf) in zip(chunk_minfreqs, chunk_nfreqs)]

        if verbose:
            for ind, task in enumerate(tasks):
                LOGINFO('worker %s: minfreq = %.6f, nfreqs = %s' %
                        (ind + 1, task[4], task[5]))
            LOGINFO('running...')

        # return tasks

        # start the pool
        pool = Pool(nworkers)
        results = pool.map(_parallel_bls_worker, tasks)

        pool.close()
        pool.join()
        del pool

        # now concatenate the output lsp arrays
        lsp = npconcatenate([x['power'] for x in results])
        periods = 1.0 / frequencies

        # find the nbestpeaks for the periodogram: 1. sort the lsp array
        # by highest value first 2. go down the values until we find
        # five values that are separated by at least periodepsilon in
        # period
        # make sure to get only the finite peaks in the periodogram
        # this is needed because BLS may produce infs for some peaks
        finitepeakind = npisfinite(lsp)
        finlsp = lsp[finitepeakind]
        finperiods = periods[finitepeakind]

        # make sure that finlsp has finite values before we work on it
        try:

            bestperiodind = npargmax(finlsp)

        except ValueError:

            LOGERROR('no finite periodogram values '
                     'for this mag series, skipping...')

            return {
                'bestperiod': npnan,
                'bestlspval': npnan,
                'nbestpeaks': nbestpeaks,
                'nbestinds': None,
                'nbestlspvals': None,
                'nbestperiods': None,
                'lspvals': None,
                'periods': None,
                'durations': None,
                'method': 'bls',
                'blsresult': None,
                'blsmodel': None,
                'kwargs': {
                    'startp': startp,
                    'endp': endp,
                    'stepsize': stepsize,
                    'mintransitduration': mintransitduration,
                    'maxtransitduration': maxtransitduration,
                    'ndurations': ndurations,
                    'blsobjective': blsobjective,
                    'blsmethod': blsmethod,
                    'blsoversample': blsoversample,
                    'autofreq': autofreq,
                    'periodepsilon': periodepsilon,
                    'nbestpeaks': nbestpeaks,
                    'sigclip': sigclip,
                    'magsarefluxes': magsarefluxes
                }
            }

        sortedlspind = npargsort(finlsp)[::-1]
        sortedlspperiods = finperiods[sortedlspind]
        sortedlspvals = finlsp[sortedlspind]

        # now get the nbestpeaks
        nbestperiods, nbestlspvals, nbestinds, peakcount = ([
            finperiods[bestperiodind]
        ], [finlsp[bestperiodind]], [bestperiodind], 1)
        prevperiod = sortedlspperiods[0]

        # find the best nbestpeaks in the lsp and their periods
        for period, lspval, ind in zip(sortedlspperiods, sortedlspvals,
                                       sortedlspind):

            if peakcount == nbestpeaks:
                break
            perioddiff = abs(period - prevperiod)
            bestperiodsdiff = [abs(period - x) for x in nbestperiods]

            # this ensures that this period is different from the last
            # period and from all the other existing best periods by
            # periodepsilon to make sure we jump to an entire different
            # peak in the periodogram
            if (perioddiff > (periodepsilon * prevperiod)
                    and all(x > (periodepsilon * period)
                            for x in bestperiodsdiff)):
                nbestperiods.append(period)
                nbestlspvals.append(lspval)
                nbestinds.append(ind)
                peakcount = peakcount + 1

            prevperiod = period

        # generate the return dict
        resultdict = {
            'bestperiod': finperiods[bestperiodind],
            'bestlspval': finlsp[bestperiodind],
            'nbestpeaks': nbestpeaks,
            'nbestinds': nbestinds,
            'nbestlspvals': nbestlspvals,
            'nbestperiods': nbestperiods,
            'lspvals': lsp,
            'frequencies': frequencies,
            'periods': periods,
            'durations': [x['durations'] for x in results],
            'blsresult': [x['blsresult'] for x in results],
            'blsmodel': [x['blsmodel'] for x in results],
            'stepsize': stepsize,
            'nfreq': nfreq,
            'mintransitduration': mintransitduration,
            'maxtransitduration': maxtransitduration,
            'method': 'bls',
            'kwargs': {
                'startp': startp,
                'endp': endp,
                'stepsize': stepsize,
                'mintransitduration': mintransitduration,
                'maxtransitduration': maxtransitduration,
                'ndurations': ndurations,
                'blsobjective': blsobjective,
                'blsmethod': blsmethod,
                'blsoversample': blsoversample,
                'autofreq': autofreq,
                'periodepsilon': periodepsilon,
                'nbestpeaks': nbestpeaks,
                'sigclip': sigclip,
                'magsarefluxes': magsarefluxes
            }
        }

        return resultdict

    else:

        LOGERROR('no good detections for these times and mags, skipping...')
        return {
            'bestperiod': npnan,
            'bestlspval': npnan,
            'nbestinds': None,
            'nbestpeaks': nbestpeaks,
            'nbestlspvals': None,
            'nbestperiods': None,
            'lspvals': None,
            'periods': None,
            'durations': None,
            'blsresult': None,
            'blsmodel': None,
            'stepsize': stepsize,
            'nfreq': None,
            'nphasebins': None,
            'mintransitduration': mintransitduration,
            'maxtransitduration': maxtransitduration,
            'method': 'bls',
            'kwargs': {
                'startp': startp,
                'endp': endp,
                'stepsize': stepsize,
                'mintransitduration': mintransitduration,
                'maxtransitduration': maxtransitduration,
                'ndurations': ndurations,
                'blsobjective': blsobjective,
                'blsmethod': blsmethod,
                'blsoversample': blsoversample,
                'autofreq': autofreq,
                'periodepsilon': periodepsilon,
                'nbestpeaks': nbestpeaks,
                'sigclip': sigclip,
                'magsarefluxes': magsarefluxes
            }
        }
Beispiel #8
0
def _parallel_bls_worker(task):
    '''
    This wraps Astropy's BoxLeastSquares for use with bls_parallel_pfind below.

    `task` is a tuple::

        task[0] = times
        task[1] = mags
        task[2] = errs
        task[3] = magsarefluxes

        task[4] = minfreq
        task[5] = nfreq
        task[6] = stepsize

        task[7] = ndurations
        task[8] = mintransitduration
        task[9] = maxtransitduration

        task[10] = blsobjective
        task[11] = blsmethod
        task[12] = blsoversample

    '''

    try:

        times, mags, errs = task[:3]
        magsarefluxes = task[3]

        minfreq, nfreq, stepsize = task[4:7]

        ndurations, mintransitduration, maxtransitduration = task[7:10]

        blsobjective, blsmethod, blsoversample = task[10:]

        frequencies = minfreq + nparange(nfreq) * stepsize
        periods = 1.0 / frequencies

        # astropy's BLS requires durations in units of time
        durations = nplinspace(mintransitduration * periods.min(),
                               maxtransitduration * periods.min(), ndurations)

        # set up the correct units for the BLS model
        if magsarefluxes:

            blsmodel = BoxLeastSquares(times * u.day,
                                       mags * u.dimensionless_unscaled,
                                       dy=errs * u.dimensionless_unscaled)

        else:

            blsmodel = BoxLeastSquares(times * u.day,
                                       mags * u.mag,
                                       dy=errs * u.mag)

        blsresult = blsmodel.power(periods * u.day,
                                   durations * u.day,
                                   objective=blsobjective,
                                   method=blsmethod,
                                   oversample=blsoversample)

        return {
            'blsresult': blsresult,
            'blsmodel': blsmodel,
            'durations': durations,
            'power': nparray(blsresult.power)
        }

    except Exception as e:

        LOGEXCEPTION('BLS for frequency chunk: (%.6f, %.6f) failed.' %
                     (frequencies[0], frequencies[-1]))

        return {
            'blsresult': None,
            'blsmodel': None,
            'durations': durations,
            'power': nparray([npnan for x in range(nfreq)]),
        }
Beispiel #9
0
    def PrintOutChimeraCmdClusterAnalysis(self,
                                          cluster_output,
                                          path_dir,
                                          targetMap_location,
                                          file_name='chimera_cluster_color',
                                          load_map=True):
        """
          
            Print out a Chimera command file that can be used for visual inspection of the information after the hierarchical clustering analysis.".
                Arguments:
                    *cluster_output*
                        List that contains the model and the related cluster index.
                    *path_dir*
                        path to ensemble directory 
                    *targetMap_location*
                        path to target map location
                    *file_name*
                        Output file name    
                    *load_map*
                        True will add the loading option to the command file.
        
        """

        num_cluster = []
        list_mod = []
        list_mod_load = []
        for x in cluster_output:
            num_cluster.append(x[-1])
            list_mod.append(x[1])

        for filein in os.listdir(path_dir):
            for file_name_flag in list_mod:
                file_num = filein.split('.')[0].split('_')[-1]
                if file_name_flag == file_num:
                    list_mod_load.append(filein)

        colors = cm.rainbow(nplinspace(0, 1, npmax(num_cluster)))
        dict_mod = {}
        #print len(num_cluster)
        #print len(list_mod)
        #print len(list_mod_load)
        for lab in list_mod_load:
            file_num = lab.split('.')[0].split('_')[-1]
            print(lab, file_num)
            for mod in list_mod:
                #if mod in lab:
                if mod == file_num:
                    dict_mod[mod] = lab
                else:
                    pass
        count = 0
        line_out = ''
        line_out_attr = ''
        if load_map == True:
            line_out += 'open #%s %s\n' % (count, targetMap_location)

        for x in cluster_output:
            count += 1
            mod = x[1]
            clust_mod = x[-1]
            line_out_attr += '\t#%s\t%s\n' % (count, clust_mod)
            line_out += 'open #%s %s/%s\n' % (count, os.path.abspath(path_dir),
                                              dict_mod[mod])
            line_out += 'colordef col_%s' % count
            for code_col in colors[(clust_mod - 1)]:
                #print len(colors)
                line_out += ' %.3f ' % code_col
            line_out += '\n'

            line_out += 'color col_%s #%s\n' % (count, count)

        outfile = open(file_name + '_attribute.txt', 'w')
        outfile.write('attribute: cluster\n')
        outfile.write('match mode: 1-to-1\n')
        outfile.write('recipient: molecules\n')
        outfile.write(line_out_attr)
        outfile.close()

        line_out += 'defattr %s' % (os.path.abspath(file_name +
                                                    '_attribute.txt'))
        #       print line_out
        file_out = open(file_name + '.cmd', 'w')
        file_out.write(line_out)
        file_out.close()
Beispiel #10
0
def spline_fit_magseries(times,
                         mags,
                         errs,
                         period,
                         knotfraction=0.01,
                         maxknots=30,
                         sigclip=30.0,
                         plotfit=False,
                         ignoreinitfail=False,
                         magsarefluxes=False,
                         verbose=True):
    '''This fits a univariate cubic spline to the phased light curve.

    This fit may be better than the Fourier fit for sharply variable objects,
    like EBs, so can be used to distinguish them from other types of variables.

    The knot fraction is the number of internal knots to use for the spline. A
    value of 0.01 (or 1%) of the total number of non-nan observations appears to
    work quite well, without over-fitting. maxknots controls the maximum number
    of knots that will be allowed.

    magsarefluxes is a boolean value for setting the ylabel and ylimits of
    plots for either magnitudes (False) or flux units (i.e. normalized to 1, in
    which case magsarefluxes should be set to True).

    Returns the chisq of the fit, as well as the reduced chisq. FIXME: check
    this equation below to see if it's right.

    reduced_chisq = fit_chisq/(len(pmags) - len(knots) - 1)

    '''

    # this is required to fit the spline correctly
    if errs is None:
        errs = npfull_like(mags, 0.005)

    # sigclip the magnitude time series
    stimes, smags, serrs = sigclip_magseries(times,
                                             mags,
                                             errs,
                                             sigclip=sigclip,
                                             magsarefluxes=magsarefluxes)
    # get rid of zero errs
    nzind = npnonzero(serrs)
    stimes, smags, serrs = stimes[nzind], smags[nzind], serrs[nzind]

    # phase the mag series
    phase, pmags, perrs, ptimes, mintime = (_get_phased_quantities(
        stimes, smags, serrs, period))

    # now figure out the number of knots up to max knots (=100)
    nobs = len(phase)
    nknots = int(npfloor(knotfraction * nobs))
    nknots = maxknots if nknots > maxknots else nknots
    splineknots = nplinspace(phase[0] + 0.01, phase[-1] - 0.01, num=nknots)

    # generate and fit the spline
    spl = LSQUnivariateSpline(phase, pmags, t=splineknots, w=1.0 / perrs)

    # calculate the spline fit to the actual phases, the chisq and red-chisq
    fitmags = spl(phase)

    fitchisq = npsum(((fitmags - pmags) * (fitmags - pmags)) / (perrs * perrs))

    fitredchisq = fitchisq / (len(pmags) - nknots - 1)

    if verbose:
        LOGINFO('spline fit done. nknots = %s,  '
                'chisq = %.5f, reduced chisq = %.5f' %
                (nknots, fitchisq, fitredchisq))

    # figure out the time of light curve minimum (i.e. the fit epoch)
    # this is when the fit mag is maximum (i.e. the faintest)
    # or if magsarefluxes = True, then this is when fit flux is minimum
    if not magsarefluxes:
        fitmagminind = npwhere(fitmags == npmax(fitmags))
    else:
        fitmagminind = npwhere(fitmags == npmin(fitmags))
    magseriesepoch = ptimes[fitmagminind]

    # assemble the returndict
    returndict = {
        'fittype': 'spline',
        'fitinfo': {
            'nknots': nknots,
            'fitmags': fitmags,
            'fitepoch': magseriesepoch
        },
        'fitchisq': fitchisq,
        'fitredchisq': fitredchisq,
        'fitplotfile': None,
        'magseries': {
            'times': ptimes,
            'phase': phase,
            'mags': pmags,
            'errs': perrs,
            'magsarefluxes': magsarefluxes
        },
    }

    # make the fit plot if required
    if plotfit and isinstance(plotfit, str):

        _make_fit_plot(phase,
                       pmags,
                       perrs,
                       fitmags,
                       period,
                       mintime,
                       magseriesepoch,
                       plotfit,
                       magsarefluxes=magsarefluxes)

        returndict['fitplotfile'] = plotfit

    return returndict
Beispiel #11
0
def spline_fit_magseries(times, mags, errs, period,
                         knotfraction=0.01,
                         maxknots=30,
                         sigclip=30.0,
                         plotfit=False,
                         ignoreinitfail=False,
                         magsarefluxes=False,
                         verbose=True):

    '''This fits a univariate cubic spline to the phased light curve.

    This fit may be better than the Fourier fit for sharply variable objects,
    like EBs, so can be used to distinguish them from other types of variables.

    Parameters
    ----------

    times,mags,errs : np.array
        The input mag/flux time-series to fit a spline to.

    period : float
        The period to use for the spline fit.

    knotfraction : float
        The knot fraction is the number of internal knots to use for the
        spline. A value of 0.01 (or 1%) of the total number of non-nan
        observations appears to work quite well, without over-fitting. maxknots
        controls the maximum number of knots that will be allowed.

    maxknots : int
        The maximum number of knots that will be used even if `knotfraction`
        gives a value to use larger than `maxknots`. This helps dealing with
        over-fitting to short time-scale variations.

    sigclip : float or int or sequence of two floats/ints or None
        If a single float or int, a symmetric sigma-clip will be performed using
        the number provided as the sigma-multiplier to cut out from the input
        time-series.

        If a list of two ints/floats is provided, the function will perform an
        'asymmetric' sigma-clip. The first element in this list is the sigma
        value to use for fainter flux/mag values; the second element in this
        list is the sigma value to use for brighter flux/mag values. For
        example, `sigclip=[10., 3.]`, will sigclip out greater than 10-sigma
        dimmings and greater than 3-sigma brightenings. Here the meaning of
        "dimming" and "brightening" is set by *physics* (not the magnitude
        system), which is why the `magsarefluxes` kwarg must be correctly set.

        If `sigclip` is None, no sigma-clipping will be performed, and the
        time-series (with non-finite elems removed) will be passed through to
        the output.

    magsarefluxes : bool
        If True, will treat the input values of `mags` as fluxes for purposes of
        plotting the fit and sig-clipping.

    plotfit : str or False
        If this is a string, this function will make a plot for the fit to the
        mag/flux time-series and writes the plot to the path specified here.

    ignoreinitfail : bool
        If this is True, ignores the initial failure to find a set of optimized
        Fourier parameters using the global optimization function and proceeds
        to do a least-squares fit anyway.

    verbose : bool
        If True, will indicate progress and warn of any problems.

    Returns
    -------

    dict
        This function returns a dict containing the model fit parameters, the
        minimized chi-sq value and the reduced chi-sq value. The form of this
        dict is mostly standardized across all functions in this module::

            {
                'fittype':'spline',
                'fitinfo':{
                    'nknots': the number of knots used for the fit
                    'fitmags': the model fit mags,
                    'fitepoch': the epoch of minimum light for the fit,
                },
                'fitchisq': the minimized value of the fit's chi-sq,
                'fitredchisq':the reduced chi-sq value,
                'fitplotfile': the output fit plot if fitplot is not None,
                'magseries':{
                    'times':input times in phase order of the model,
                    'phase':the phases of the model mags,
                    'mags':input mags/fluxes in the phase order of the model,
                    'errs':errs in the phase order of the model,
                    'magsarefluxes':input value of magsarefluxes kwarg
                }
            }

    '''

    # this is required to fit the spline correctly
    if errs is None:
        errs = npfull_like(mags, 0.005)

    # sigclip the magnitude time series
    stimes, smags, serrs = sigclip_magseries(times, mags, errs,
                                             sigclip=sigclip,
                                             magsarefluxes=magsarefluxes)
    # get rid of zero errs
    nzind = npnonzero(serrs)
    stimes, smags, serrs = stimes[nzind], smags[nzind], serrs[nzind]

    # phase the mag series
    phase, pmags, perrs, ptimes, mintime = (
        get_phased_quantities(stimes, smags, serrs, period)
    )

    # now figure out the number of knots up to max knots (=100)
    nobs = len(phase)
    nknots = int(npfloor(knotfraction*nobs))
    nknots = maxknots if nknots > maxknots else nknots
    splineknots = nplinspace(phase[0] + 0.01,
                             phase[-1] - 0.01,
                             num=nknots)

    # NOTE: newer scipy needs x to be strictly increasing. this means we should
    # filter out anything that doesn't have np.diff(phase) > 0.0
    # FIXME: this needs to be tested
    phase_diffs_ind = npdiff(phase) > 0.0
    incphase_ind = npconcatenate((nparray([True]), phase_diffs_ind))
    phase, pmags, perrs = (phase[incphase_ind],
                           pmags[incphase_ind],
                           perrs[incphase_ind])

    # generate and fit the spline
    spl = LSQUnivariateSpline(phase, pmags, t=splineknots, w=1.0/perrs)

    # calculate the spline fit to the actual phases, the chisq and red-chisq
    fitmags = spl(phase)

    fitchisq = npsum(
        ((fitmags - pmags)*(fitmags - pmags)) / (perrs*perrs)
    )

    fitredchisq = fitchisq/(len(pmags) - nknots - 1)

    if verbose:
        LOGINFO(
            'spline fit done. nknots = %s,  '
            'chisq = %.5f, reduced chisq = %.5f' %
            (nknots, fitchisq, fitredchisq)
        )

    # figure out the time of light curve minimum (i.e. the fit epoch)
    # this is when the fit mag is maximum (i.e. the faintest)
    # or if magsarefluxes = True, then this is when fit flux is minimum
    if not magsarefluxes:
        fitmagminind = npwhere(fitmags == npmax(fitmags))
    else:
        fitmagminind = npwhere(fitmags == npmin(fitmags))
    if len(fitmagminind[0]) > 1:
        fitmagminind = (fitmagminind[0][0],)
    magseriesepoch = ptimes[fitmagminind]

    # assemble the returndict
    returndict = {
        'fittype':'spline',
        'fitinfo':{
            'nknots':nknots,
            'fitmags':fitmags,
            'fitepoch':magseriesepoch
        },
        'fitchisq':fitchisq,
        'fitredchisq':fitredchisq,
        'fitplotfile':None,
        'magseries':{
            'times':ptimes,
            'phase':phase,
            'mags':pmags,
            'errs':perrs,
            'magsarefluxes':magsarefluxes
        },
    }

    # make the fit plot if required
    if plotfit and isinstance(plotfit, str):

        make_fit_plot(phase, pmags, perrs, fitmags,
                      period, mintime, magseriesepoch,
                      plotfit,
                      magsarefluxes=magsarefluxes)

        returndict['fitplotfile'] = plotfit

    return returndict
Beispiel #12
0
    thisexists = [x for x in thisvar if x > 0]
    use_dict[key] = len(thisexists) / float(len(thisvar))
    labels[key] = getattr(h155, key).name

print use_dict
print
print labels

plt.Figure()
cdf = ts2.Cdf(cost_glasses)
tplt.Cdf(cdf, label="Expenses")
tplt.Config(title="Eyewear Expenses of People who don't use Eyewear",
            xlabel="Expenses [ $ ]",
            ylabel="Cumulative Probability")
tplt.Show()
colors = cm.jet(nplinspace(0, 1, len(use_dict)))
plt.pie([use_dict[key] for key in use_dict], shadow=True, colors=colors)
plt.axis('equal')
plt.legend([labels[key] for key in labels], shadow=True, prop={'size': 10})
plt.show()

# Vision impairment characterization

# VISION42

# EXP
# SLF
# MCR
# MCD
# PRV
# VA