def svd_decomposition(
    np,  # TODO: Typing
    tensor: Tensor,
    split_axis: int,
    max_singular_values: Optional[int] = None,
    max_truncation_error: Optional[float] = None,
) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
    """Computes the singular value decomposition (SVD) of a tensor.

  See tensornetwork.backends.tensorflow.decompositions for details.
  """
    left_dims = tensor.shape_tensor[:split_axis]
    right_dims = tensor.shape_tensor[split_axis:]

    tensor = np.reshape(
        tensor, [numpy.shape_prod(left_dims),
                 numpy.shape_prod(right_dims)])
    u, s, vh = np.linalg.svd(tensor)

    if max_singular_values is None:
        max_singular_values = np.size(s)

    if max_truncation_error is not None:
        # Cumulative norms of singular values in ascending order.
        trunc_errs = np.sqrt(np.cumsum(np.square(s[::-1])))
        # We must keep at least this many singular values to ensure the
        # truncation error is <= max_truncation_error.
        num_sing_vals_err = np.count_nonzero(
            (trunc_errs > max_truncation_error).astype(np.int32))
    else:
        num_sing_vals_err = max_singular_values

    num_sing_vals_keep = min(max_singular_values, num_sing_vals_err)

    # tf.svd() always returns the singular values as a vector of float{32,64}.
    # since tf.math_ops.real is automatically applied to s. This causes
    # s to possibly not be the same dtype as the original tensor, which can cause
    # issues for later contractions. To fix it, we recast to the original dtype.
    s = s.astype(tensor.dtype)

    s_rest = s[num_sing_vals_keep:]
    s = s[:num_sing_vals_keep]
    u = u[:, :num_sing_vals_keep]
    vh = vh[:num_sing_vals_keep, :]

    dim_s = s.shape_tensor[0]
    u = np.reshape(u, list(left_dims) + [dim_s])
    vh = np.reshape(vh, [dim_s] + list(right_dims))

    return u, s, vh, s_rest
Beispiel #2
0
def _generate_random_tensors_and_dims(dtype_, rank_a_, rank_b_, num_dims_):
    a_shape = np.random.randint(1, _MAXDIM + 1, rank_a_)
    b_shape = np.random.randint(1, _MAXDIM + 1, rank_b_)
    shared_shape = np.random.randint(1, _MAXDIM + 1, num_dims_)
    a_dims = _random_subset(num_dims_, rank_a_)
    b_dims = _random_subset(num_dims_, rank_b_)
    for i in range(num_dims_):
        a_shape[a_dims[i]] = shared_shape[i]
        b_shape[b_dims[i]] = shared_shape[i]
    a = np.random.uniform(
        low=-1.0, high=1.0,
        size=np.shape_prod(a_shape)).reshape(a_shape).astype(dtype_)
    b = np.random.uniform(
        low=-1.0, high=1.0,
        size=np.shape_prod(b_shape)).reshape(b_shape).astype(dtype_)
    return a, b, a_dims, b_dims
Beispiel #3
0
def rq_decomposition(
    torch: Any,
    tensor: Tensor,
    split_axis: int,
) -> Tuple[Tensor, Tensor]:
    """Computes the RQ decomposition of a tensor.

  The RQ decomposition is performed by treating the tensor as a matrix, 
  with an effective left (row) index resulting from combining the axes 
  `tensor.shape[:split_axis]` and an effective right (column) index 
  resulting from combining the axes `tensor.shape[split_axis:]`.

  For example, if `tensor` had a shape (2, 3, 4, 5) and `split_axis` was 2, 
  then `r` would have shape (2, 3, 6), and `q` would have shape (6, 4, 5).

  The output consists of two tensors `R, Q` such that:
  ```python
    R[i1,...,iN, j] * Q[j, k1,...,kM] == tensor[i1,...,iN, k1,...,kM]
  ```
  `R` is a lower triangular matrix, `Q` is an orthonormal matrix
  Note that the output ordering matches numpy.linalg.svd rather than tf.svd.

  Args:
    tf: The tensorflow module.
    tensor: A tensor to be decomposed.
    split_axis: Where to split the tensor's axes before flattening into a
     p matrix.

  Returns:
    R: Left tensor factor.
    Q: Right tensor factor.
  """

    left_dims = tensor.shape_tensor[:split_axis]
    right_dims = tensor.shape_tensor[split_axis:]
    tensor = torch.reshape(
        tensor, [np.shape_prod(left_dims),
                 np.shape_prod(right_dims)])
    #torch has currently no support for complex dtypes
    q, r = torch.qr(torch.transpose(tensor, 0, 1))
    r, q = torch.transpose(r, 0, 1), torch.transpose(q, 0,
                                                     1)  #M=r*q at this point
    center_dim = r.shape[1]
    r = torch.reshape(r, list(left_dims) + [center_dim])
    q = torch.reshape(q, [center_dim] + list(right_dims))
    return r, q
Beispiel #4
0
def qr_decomposition(
    torch: Any,
    tensor: Tensor,
    split_axis: int,
) -> Tuple[Tensor, Tensor]:
    """Computes the QR decomposition of a tensor.

  The QR decomposition is performed by treating the tensor as a matrix, 
  with an effective left (row) index resulting from combining the axes 
  `tensor.shape[:split_axis]` and an effective right (column) index 
  resulting from combining the axes `tensor.shape[split_axis:]`.

  For example, if `tensor` had a shape (2, 3, 4, 5) and `split_axis` was 2, 
  then `q` would have shape (2, 3, 6), and `r` would have shape (6, 4, 5).

  The output consists of two tensors `Q, R` such that:
  ```python
    Q[i1,...,iN, j] * R[j, k1,...,kM] == tensor[i1,...,iN, k1,...,kM]
  ```
  `R` is an upper triangular matrix, `Q` is an orthonormal matrix
  Note that the output ordering matches numpy.linalg.svd rather than tf.svd.

  Args:
    tf: The tensorflow module.
    tensor: A tensor to be decomposed.
    split_axis: Where to split the tensor's axes before flattening into a
      matrix.

  Returns:
    Q: Left tensor factor.
    R: Right tensor factor.
  """

    left_dims = list(tensor.shape_tensor)[:split_axis]
    right_dims = list(tensor.shape_tensor)[split_axis:]

    tensor = torch.reshape(
        tensor, (np.shape_prod(left_dims), np.shape_prod(right_dims)))
    q, r = torch.qr(tensor)
    center_dim = q.shape_tensor[1]
    q = torch.reshape(q, list(left_dims) + [center_dim])
    r = torch.reshape(r, [center_dim] + list(right_dims))
    return q, r
def qr_decomposition(
    np,  # TODO: Typing
    tensor: Tensor,
    split_axis: int,
) -> Tuple[Tensor, Tensor]:
    """Computes the QR decomposition of a tensor.

  See tensornetwork.backends.tensorflow.decompositions for details.
  """
    left_dims = tensor.shape_tensor[:split_axis]
    right_dims = tensor.shape_tensor[split_axis:]
    tensor = np.reshape(
        tensor, [numpy.shape_prod(left_dims),
                 numpy.shape_prod(right_dims)])
    q, r = np.linalg.qr(tensor)
    center_dim = q.shape[1]
    q = np.reshape(q, list(left_dims) + [center_dim])
    r = np.reshape(r, [center_dim] + list(right_dims))
    return q, r
def rq_decomposition(
    np,  # TODO: Typing
    tensor: Tensor,
    split_axis: int,
) -> Tuple[Tensor, Tensor]:
    """Computes the RQ (reversed QR) decomposition of a tensor.

  See tensornetwork.backends.tensorflow.decompositions for details.
  """
    left_dims = tensor.shape_tensor[:split_axis]
    right_dims = tensor.shape_tensor[split_axis:]
    tensor = np.reshape(
        tensor, [numpy.shape_prod(left_dims),
                 numpy.shape_prod(right_dims)])
    q, r = np.linalg.qr(np.conj(np.transpose(tensor)))
    r, q = np.conj(np.transpose(r)), np.conj(
        np.transpose(q))  #M=r*q at this point
    center_dim = r.shape_tensor[1]
    r = np.reshape(r, list(left_dims) + [center_dim])
    q = np.reshape(q, [center_dim] + list(right_dims))
    return r, q
Beispiel #7
0
def test_tensordot_scalar_axes(dtype_, rank_a_, rank_b_, num_dims_):
    if not num_dims_ <= min(rank_a_, rank_b_):
        pytest.skip("Not a test")
    if dtype_ == np.float16:
        tol = 0.05
    elif dtype_ in (np.float32, np.complex64):
        tol = 1e-5
    else:
        tol = 1e-12
    shape = [5] * num_dims_
    a_np = np.random.uniform(
        low=-1.0, high=1.0,
        size=np.shape_prod(shape)).reshape(shape).astype(dtype_)
    b_np = np.random.uniform(
        low=-1.0, high=1.0,
        size=np.shape_prod(shape)).reshape(shape).astype(dtype_)
    all_axes = [0, 1]
    if a_np.ndim > 2:
        all_axes.append(a_np.ndim - 1)
    for axes in all_axes:
        np_ans = np.tensordot(a_np, b_np, axes=axes)
        tf_ans = tensordot2.tensordot(tf, a_np, b_np, axes=axes)
        np.testing.assert_allclose(tf_ans, np_ans, rtol=tol, atol=tol)
        assert tf_ans.shape == np_ans.shape
Beispiel #8
0
def svd_decomposition(
    torch: Any,
    tensor: Tensor,
    split_axis: int,
    max_singular_values: Optional[int] = None,
    max_truncation_error: Optional[float] = None
) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
    """Computes the singular value decomposition (SVD) of a tensor.

  The SVD is performed by treating the tensor as a matrix, with an effective
  left (row) index resulting from combining the axes `tensor.shape[:split_axis]`
  and an effective right (column) index resulting from combining the axes
  `tensor.shape[split_axis:]`.

  For example, if `tensor` had a shape (2, 3, 4, 5) and `split_axis` was 2, then
  `u` would have shape (2, 3, 6), `s` would have shape (6), and `vh` would
  have shape (6, 4, 5).

  If `max_singular_values` is set to an integer, the SVD is truncated to keep
  at most this many singular values.

  If `max_truncation_error > 0`, as many singular values will be truncated as
  possible, so that the truncation error (the norm of discarded singular
  values) is at most `max_truncation_error`.

  If both `max_singular_values` snd `max_truncation_error` are specified, the
  number of retained singular values will be
  `min(max_singular_values, nsv_auto_trunc)`, where `nsv_auto_trunc` is the
  number of singular values that must be kept to maintain a truncation error
  smaller than `max_truncation_error`.

  The output consists of three tensors `u, s, vh` such that:
  ```python
    u[i1,...,iN, j] * s[j] * vh[j, k1,...,kM] == tensor[i1,...,iN, k1,...,kM]
  ```
  Note that the output ordering matches numpy.linalg.svd rather than tf.svd.

  Args:
    tf: The tensorflow module.
    tensor: A tensor to be decomposed.
    split_axis: Where to split the tensor's axes before flattening into a
      matrix.
    max_singular_values: The number of singular values to keep, or `None` to
      keep them all.
    max_truncation_error: The maximum allowed truncation error or `None` to not
      do any truncation.

  Returns:
    u: Left tensor factor.
    s: Vector of ordered singular values from largest to smallest.
    vh: Right tensor factor.
    s_rest: Vector of discarded singular values (length zero if no
            truncation).
  """
    left_dims = list(tensor.shape_tensor)[:split_axis]
    right_dims = list(tensor.shape_tensor)[split_axis:]

    tensor = torch.reshape(
        tensor, (np.shape_prod(left_dims), np.shape_prod(right_dims)))
    u, s, v = torch.svd(tensor)

    if max_singular_values is None:
        max_singular_values = s.nelement()

    if max_truncation_error is not None:
        # Cumulative norms of singular values in ascending order
        s_sorted, _ = torch.sort(s**2)
        trunc_errs = torch.sqrt(torch.cumsum(s_sorted, 0))
        # We must keep at least this many singular values to ensure the
        # truncation error is <= max_truncation_error.
        num_sing_vals_err = torch.nonzero(
            trunc_errs > max_truncation_error).nelement()
    else:
        num_sing_vals_err = max_singular_values

    num_sing_vals_keep = min(max_singular_values, num_sing_vals_err)

    # we recast to the original dtype.
    s = s.type(tensor.type())

    s_rest = s[num_sing_vals_keep:]
    s = s[:num_sing_vals_keep]
    u = u[:, :num_sing_vals_keep]
    v = v[:, :num_sing_vals_keep]

    vh = torch.transpose(v, 0, 1)

    dim_s = s.shape_tensor[0]
    u = torch.reshape(u, left_dims + [dim_s])
    vh = torch.reshape(vh, [dim_s] + right_dims)

    return u, s, vh, s_rest
 def shape_prod(self, values: Tensor) -> int:
     return np.shape_prod(np.array(values))
Beispiel #10
0
    def _tensordot_reshape(
        a: Tensor,
        axes: Union[Sequence[int], Tensor],
        is_right_term=False
    ) -> Tuple[Tensor, Union[List[int], Tensor], Optional[List[int]], bool]:
        """Helper method to perform transpose and reshape for contraction op.
    This method is helpful in reducing `math_ops.tensordot` to `math_ops.matmul`
    using `array_ops.transpose` and `array_ops.reshape`. The method takes a
    tensor and performs the correct transpose and reshape operation for a given
    set of indices. It returns the reshaped tensor as well as a list of indices
    necessary to reshape the tensor again after matrix multiplication.
    Args:
      a: `Tensor`.
      axes: List or `int32` `Tensor` of unique indices specifying valid axes of
       `a`.
      is_right_term: Whether `a` is the right (second) argument to `matmul`.
    Returns:
      A tuple `(reshaped_a, free_dims, free_dims_static, transpose_needed)`
      where `reshaped_a` is the tensor `a` reshaped to allow contraction via
      `matmul`, `free_dims` is either a list of integers or an `int32`
      `Tensor`, depending on whether the shape of a is fully specified, and
      free_dims_static is either a list of integers and None values, or None,
      representing the inferred static shape of the free dimensions. 
      `transpose_needed` indicates whether `reshaped_a` must be transposed,
      or not, when calling `matmul`.
    """
        if a.get_shape().is_fully_defined() and isinstance(
                axes, (list, tuple)):
            shape_a = a.get_shape().as_list()
            # NOTE: This will fail if axes contains any tensors
            axes = [i if i >= 0 else i + len(shape_a) for i in axes]
            free = [i for i in range(len(shape_a)) if i not in axes]
            flipped = _tensordot_should_flip(axes, free)

            free_dims = [shape_a[i] for i in free]
            prod_free = int(np.shape_prod([shape_a[i] for i in free]))
            prod_axes = int(np.shape_prod([shape_a[i] for i in axes]))
            perm = axes + free if flipped else free + axes
            new_shape = [prod_axes, prod_free
                         ] if flipped else [prod_free, prod_axes]
            transposed_a = _tranpose_if_necessary(a, perm)
            reshaped_a = _reshape_if_necessary(transposed_a, new_shape)
            transpose_needed = (not flipped) if is_right_term else flipped
            return reshaped_a, free_dims, free_dims, transpose_needed
        if a.get_shape().ndims is not None and isinstance(axes, (list, tuple)):
            shape_a = a.get_shape().as_list()
            axes = [i if i >= 0 else i + len(shape_a) for i in axes]
            free = [i for i in range(len(shape_a)) if i not in axes]
            flipped = _tensordot_should_flip(axes, free)
            perm = axes + free if flipped else free + axes

            axes_dims = [shape_a[i] for i in axes]
            free_dims = [shape_a[i] for i in free]
            free_dims_static = free_dims
            axes = tf.convert_to_tensor(axes,
                                        dtype=tf.dtypes.int32,
                                        name="axes")
            free = tf.convert_to_tensor(free,
                                        dtype=tf.dtypes.int32,
                                        name="free")
            shape_a = tf.shape_tensor(a)
            transposed_a = _tranpose_if_necessary(a, perm)
        else:
            free_dims_static = None
            shape_a = tf.shape_tensor(a)
            rank_a = tf.rank(a)
            axes = tf.convert_to_tensor(axes,
                                        dtype=tf.dtypes.int32,
                                        name="axes")
            axes = tf.where(axes >= 0, axes, axes + rank_a)
            free, _ = tf.compat.v1.setdiff1d(tf.range(rank_a), axes)
            # Matmul does not accept tensors for its transpose arguments, so fall
            # back to the previous, fixed behavior.
            # NOTE(amilsted): With a suitable wrapper for `matmul` using e.g. `case`
            #   to match transpose arguments to tensor values, we could also avoid
            #   unneeded tranposes in this case at the expense of a somewhat more
            #   complicated graph. Unclear whether this would be beneficial overall.
            flipped = is_right_term
            perm = (tf.shape_concat([axes, free], 0)
                    if flipped else tf.shape_concat([free, axes], 0))
            transposed_a = tf.transpose(a, perm)

        free_dims = tf.gather(shape_a, free)
        axes_dims = tf.gather(shape_a, axes)
        prod_free_dims = tf.reduce_prod(free_dims)
        prod_axes_dims = tf.reduce_prod(axes_dims)

        if flipped:
            new_shape = tf.stack([prod_axes_dims, prod_free_dims])
        else:
            new_shape = tf.stack([prod_free_dims, prod_axes_dims])
        reshaped_a = tf.reshape(transposed_a, new_shape)
        transpose_needed = (not flipped) if is_right_term else flipped
        return reshaped_a, free_dims, free_dims_static, transpose_needed