def zipToAnimation(self, sourcepath, destpath, filename, framedata): destpath = self.folder(destpath) workpath = "temp/" + filename self.execute("unzip -o " + sourcepath + " -d " + workpath) if stddev(framedata) < 1.0: # assumed stable framerate fr = 1 / round(average(framedata)) * 1000 self.execute( "ffmpeg -framerate %d -i %s/%%6d.jpg -c:v copy %s.mkv" % (fr, workpath, destpath + filename)) else: # probably needs variable framerate print( "\n stddev %.3f, %d frames:\n" % (stddev(framedata), len(framedata)), framedata) cmd = "convert " for i, d in enumerate(framedata): cmd += "-delay %d %s/%06d.jpg " % (d / 10, workpath, i) cmd += destpath + filename + ".gif" self.execute( cmd ) # we convert to gif and copy the zip too, because gif is trash self.execute("cp " + sourcepath + " " + destpath + filename + ".zip")
def __init__(self, xs, ys, mb_size, normalize=False): if normalize: self.xs = (xs - np.mean(xs, axis=0)) / np.stddev(xs, axis=0) else: self.xs = xs.copy() self.ys = ys.copy() self.mb_i = 0 self.mb_size = mb_size self.batches_in_epoch = len(xs)//mb_size
def coupling_vs_r_pupilplane_single(tele: AOtele.AOtele, pupilfields, rcore, ncore, nclad, wl0): k0 = 2 * np.pi / wl0 fieldshape = pupilfields[0].shape #need to generate the available modes V = LPmodes.get_V(k0, rcore, ncore, nclad) modes = LPmodes.get_modes(V) lpfields = [] for mode in modes: if mode[0] == 0: lpfields.append( normalize( LPmodes.lpfield(xg, yg, mode[0], mode[1], rcore, wl0, ncore, nclad))) else: lpfields.append( normalize( LPmodes.lpfield(xg, yg, mode[0], mode[1], rcore, wl0, ncore, nclad, "cos"))) lpfields.append( normalize( LPmodes.lpfield(xg, yg, mode[0], mode[1], rcore, wl0, ncore, nclad, "sin"))) lppupilfields = [] #then backpropagate for field in lpfields: wf = hc.Wavefront(hc.Field(field.flatten(), tele.focalgrid), wavelength=wl0 * 1.e-6) pupil_wf = tele.back_propagate(wf, True) lppupilfields.append(pupil_wf.electric_field.reshape(fieldshape)) lppupilfields = np.array(lppupilfields) pupilfields = np.array(pupilfields) #compute total overlap powers = np.sum(pupilfields * lppupilfields, axes=(1, 2)) return np.mean(powers), np.stddev(powers)
def nonmaxsup(H,n=100,c=.9): mindistance = [] threshold = np.mean(H) + np.stddev(H) maxima = getmaxima(H,threshold) for x,y,z in enumerate(maxima): min = np.infinity for xx,yy,zz in enumerate(maxima): dist = sqrt((x-xx)**2 + (y-yy)**2 ) if z < c*zz and dist > 0 and dist < min: min = dist xmin = xx ymin = yy mindistance.append((xx,yy,min)) mindistance.sort(key=lambda x:x[2]) return mindistance[:n]
num_states, obs_dim, input_dim, observations="input_driven_obs", observation_kwargs=dict(C=num_categories), transitions="standard") fit_ll = bandit_glmhmm.fit(training_choice, inputs=training_inpt, method="em", num_iters=N_iters, tolerance=10**-4) i_ll.append( bandit_glmhmm.log_likelihood(test_choices, inputs=test_inpt)) lls.append(np.mean(i_ll)) lls_var.append(np.stddev(i_ll)) log_likelihoods[:, fold] = lls # Plot Crossvalidation sns.pointplot(x=np.arange(5), y=np.mean(log_likelihoods, axis=1)) plt.xticks(np.arange(5), np.arange(1, 6)) plt.ylabel('LL') plt.xlabel('Number of latents') # Fit model num_states = 2 obs_dim = 1 input_dim = np.shape(meta_inpts[0])[1] num_categories = 2 N_iters = 400 # maximum number of EM iterations. Fitting with stop earlier if increase in LL is below tolerance specified by tolerance parameter bandit_glmhmm = ssm.HMM(num_states,
setHistTitles(hist,"#mu Reference","N_{Toys}") iHist += 1 for mu in refMus: hist.Fill(mu) hist.Draw() tlatex.SetTextAlign(12) tlatex.DrawLatex(gStyle.GetPadLeftMargin(),0.96,PRELIMINARYSTRING) tlatex.SetTextAlign(12) tlatex.DrawLatex(0.02+gStyle.GetPadLeftMargin(),0.85,"Reference PDF: "+PDFTITLEMAP[refPdfName]) #tlatex.DrawLatex(0.02+gStyle.GetPadLeftMargin(),0.75,"Alternate PDF: "+PDFTITLEMAP[pdfAltName]) tlatex.DrawLatex(0.02+gStyle.GetPadLeftMargin(),0.68,"m_{H} = "+str(hmass)+" GeV/c^{2}") tlatex.SetTextAlign(32) tlatex.DrawLatex(0.99-gStyle.GetPadRightMargin(),0.96,caption) tlatex.DrawLatex(0.97-gStyle.GetPadRightMargin(),0.85,"Median: {0:.2f}".format(median(refMus))) tlatex.DrawLatex(0.97-gStyle.GetPadRightMargin(),0.75,"Mean: {0:.2f}".format(mean(refMus))) tlatex.DrawLatex(0.97-gStyle.GetPadRightMargin(),0.65,"#sigma: {0:.2f}".format(stddev(refMus))) line = setYMaxAndDrawVertLines(hist,None) canvas.RedrawAxis() saveAs(canvas,outputPrefix+"_"+str(hmass)+"_MuRef_Ref"+refPdfName) canvas.Clear() ## Mu Alt Plot hist = root.TH1F("hist"+str(iHist),"",60,-10,10) setHistTitles(hist,"#mu Alternate","N_{Toys}") iHist += 1 for mu in altMus: hist.Fill(mu) hist.Draw() tlatex.SetTextAlign(12) tlatex.DrawLatex(gStyle.GetPadLeftMargin(),0.96,PRELIMINARYSTRING) tlatex.SetTextAlign(12)
def normalize(dcm): pixels = (pixels - np.mean(pixels)) / np.stddev(pixels)
begin = datetime.datetime.now() total = 0 done = False while not done: node = shockObjects.next()['node'] start = datetime.datetime.now() r = requests.get(shockURL + "node/" + node + "?download", auth=(username, password)) data = r.json downloadTime = datetime.datetime.now() - start print "genome " + str(total) + " " + shockURL + "node/" + node + "?download" + " " + str(downloadTime) total += 1 times.append(downloadTime.total_seconds()) except Exception, e: print str(e) print "DONE" ntimes = numpy.array(times) print "Total time: " + str(datetime.datetime.now() - begin) print "Max: " + str(numpy.max(ntimes)) print "Min: " + str(numpy.min(ntimes)) print "Average: " + str(numpy.mean(ntimes)) print "Stddev: " + str(numpy.stddev(ntimes))
def samplerate_stddev(self): "Get the variance of the differential source sample rate" return np.stddev(np.reciprocate(np.diff(self.fx)))