Beispiel #1
0
    def test_check_median_stat_length(self):
        a = np.arange(100).astype('f')
        a[1] = 2.
        a[97] = 96.
        a = pad(a, (25, 20), 'median', stat_length=(3, 5))
        b = np.array(
            [ 2.,  2.,  2.,  2.,  2.,  2.,  2.,  2.,  2.,  2.,
              2.,  2.,  2.,  2.,  2.,  2.,  2.,  2.,  2.,  2.,
              2.,  2.,  2.,  2.,  2.,

              0.,  2.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9.,
             10., 11., 12., 13., 14., 15., 16., 17., 18., 19.,
             20., 21., 22., 23., 24., 25., 26., 27., 28., 29.,
             30., 31., 32., 33., 34., 35., 36., 37., 38., 39.,
             40., 41., 42., 43., 44., 45., 46., 47., 48., 49.,
             50., 51., 52., 53., 54., 55., 56., 57., 58., 59.,
             60., 61., 62., 63., 64., 65., 66., 67., 68., 69.,
             70., 71., 72., 73., 74., 75., 76., 77., 78., 79.,
             80., 81., 82., 83., 84., 85., 86., 87., 88., 89.,
             90., 91., 92., 93., 94., 95., 96., 96., 98., 99.,

             96., 96., 96., 96., 96., 96., 96., 96., 96., 96.,
             96., 96., 96., 96., 96., 96., 96., 96., 96., 96.]
            )
        assert_array_equal(a, b)
Beispiel #2
0
def test_tril_triu_with_inf():
    # Issue 4859
    arr = np.array([[1, 1, np.inf], [1, 1, 1], [np.inf, 1, 1]])
    out_tril = np.array([[1, 0, 0], [1, 1, 0], [np.inf, 1, 1]])
    out_triu = out_tril.T
    assert_array_equal(np.triu(arr), out_triu)
    assert_array_equal(np.tril(arr), out_tril)
Beispiel #3
0
    def test_object_assign(self):
        # Check that the field and object special case using copyto is active.
        # The right hand side cannot be converted to an array here.
        a = np.arange(5, dtype=object)
        b = a.copy()
        a[:3] = [1, (1,2), 3]
        b[[0, 1, 2]] = [1, (1,2), 3]
        assert_array_equal(a, b)

        # test same for subspace fancy indexing
        b = np.arange(5, dtype=object)[None, :]
        b[[0], :3] = [[1, (1,2), 3]]
        assert_array_equal(a, b[0])

        # Check that swapping of axes works.
        # There was a bug that made the later assignment throw a ValueError
        # do to an incorrectly transposed temporary right hand side (gh-5714)
        b = b.T
        b[:3, [0]] = [[1], [(1,2)], [3]]
        assert_array_equal(a, b[:, 0])

        # Another test for the memory order of the subspace
        arr = np.ones((3, 4, 5), dtype=object)
        # Equivalent slicing assignment for comparison
        cmp_arr = arr.copy()
        cmp_arr[:1, ...] = [[[1], [2], [3], [4]]]
        arr[[0], ...] = [[[1], [2], [3], [4]]]
        assert_array_equal(arr, cmp_arr)
        arr = arr.copy('F')
        arr[[0], ...] = [[[1], [2], [3], [4]]]
        assert_array_equal(arr, cmp_arr)
Beispiel #4
0
    def test_fix_with_subclass(self):
        class MyArray(nx.ndarray):
            def __new__(cls, data, metadata=None):
                res = nx.array(data, copy=True).view(cls)
                res.metadata = metadata
                return res

            def __array_wrap__(self, obj, context=None):
                obj.metadata = self.metadata
                return obj

            def __array_finalize__(self, obj):
                self.metadata = getattr(obj, 'metadata', None)
                return self

        a = nx.array([1.1, -1.1])
        m = MyArray(a, metadata='foo')
        f = ufl.fix(m)
        assert_array_equal(f, nx.array([1, -1]))
        assert_(isinstance(f, MyArray))
        assert_equal(f.metadata, 'foo')

        # check 0d arrays don't decay to scalars
        m0d = m[0,...]
        m0d.metadata = 'bar'
        f0d = ufl.fix(m0d)
        assert_(isinstance(f0d, MyArray))
        assert_equal(f0d.metadata, 'bar')
Beispiel #5
0
def test_diag_indices():
    di = diag_indices(4)
    a = np.array([[1, 2, 3, 4],
                  [5, 6, 7, 8],
                  [9, 10, 11, 12],
                  [13, 14, 15, 16]])
    a[di] = 100
    assert_array_equal(
        a, np.array([[100, 2, 3, 4],
                     [5, 100, 7, 8],
                     [9, 10, 100, 12],
                     [13, 14, 15, 100]])
        )

    # Now, we create indices to manipulate a 3-d array:
    d3 = diag_indices(2, 3)

    # And use it to set the diagonal of a zeros array to 1:
    a = np.zeros((2, 2, 2), int)
    a[d3] = 1
    assert_array_equal(
        a, np.array([[[1, 0],
                      [0, 0]],
                     [[0, 0],
                      [0, 1]]])
        )
Beispiel #6
0
    def test_basic(self):
        # Test that indexing in various ways produces SubClass instances,
        # and that the base is set up correctly: the original subclass
        # instance for views, and a new ndarray for advanced/boolean indexing
        # where a copy was made (latter a regression test for gh-11983).
        class SubClass(np.ndarray):
            pass

        a = np.arange(5)
        s = a.view(SubClass)
        s_slice = s[:3]
        assert_(type(s_slice) is SubClass)
        assert_(s_slice.base is s)
        assert_array_equal(s_slice, a[:3])

        s_fancy = s[[0, 1, 2]]
        assert_(type(s_fancy) is SubClass)
        assert_(s_fancy.base is not s)
        assert_(type(s_fancy.base) is np.ndarray)
        assert_array_equal(s_fancy, a[[0, 1, 2]])
        assert_array_equal(s_fancy.base, a[[0, 1, 2]])

        s_bool = s[s > 0]
        assert_(type(s_bool) is SubClass)
        assert_(s_bool.base is not s)
        assert_(type(s_bool.base) is np.ndarray)
        assert_array_equal(s_bool, a[a > 0])
        assert_array_equal(s_bool.base, a[a > 0])
Beispiel #7
0
 def test_char(self):
     strings = np.array(['ab', 'cd', 'ef'], dtype='c').T
     inp, out = self.module.char_test.change_strings(strings, strings.shape[1])
     assert_array_equal(inp, strings)
     expected = strings.copy()
     expected[1, :] = 'AAA'
     assert_array_equal(out, expected)
Beispiel #8
0
def test_tril_triu_ndim3():
    for dtype in np.typecodes['AllFloat'] + np.typecodes['AllInteger']:
        a = np.array([
            [[1, 1], [1, 1]],
            [[1, 1], [1, 0]],
            [[1, 1], [0, 0]],
        ],
                     dtype=dtype)
        a_tril_desired = np.array([
            [[1, 0], [1, 1]],
            [[1, 0], [1, 0]],
            [[1, 0], [0, 0]],
        ],
                                  dtype=dtype)
        a_triu_desired = np.array([
            [[1, 1], [0, 1]],
            [[1, 1], [0, 0]],
            [[1, 1], [0, 0]],
        ],
                                  dtype=dtype)
        a_triu_observed = np.triu(a)
        a_tril_observed = np.tril(a)
        assert_array_equal(a_triu_observed, a_triu_desired)
        assert_array_equal(a_tril_observed, a_tril_desired)
        assert_equal(a_triu_observed.dtype, a.dtype)
        assert_equal(a_tril_observed.dtype, a.dtype)
Beispiel #9
0
    def test_weights(self):
        v = np.random.rand(100)
        w = np.ones(100) * 5
        a, b = histogram(v)
        na, nb = histogram(v, density=True)
        wa, wb = histogram(v, weights=w)
        nwa, nwb = histogram(v, weights=w, density=True)
        assert_array_almost_equal(a * 5, wa)
        assert_array_almost_equal(na, nwa)

        # Check weights are properly applied.
        v = np.linspace(0, 10, 10)
        w = np.concatenate((np.zeros(5), np.ones(5)))
        wa, wb = histogram(v, bins=np.arange(11), weights=w)
        assert_array_almost_equal(wa, w)

        # Check with integer weights
        wa, wb = histogram([1, 2, 2, 4], bins=4, weights=[4, 3, 2, 1])
        assert_array_equal(wa, [4, 5, 0, 1])
        wa, wb = histogram([1, 2, 2, 4],
                           bins=4,
                           weights=[4, 3, 2, 1],
                           density=True)
        assert_array_almost_equal(wa, np.array([4, 5, 0, 1]) / 10. / 3. * 4)

        # Check weights with non-uniform bin widths
        a, b = histogram(np.arange(9), [0, 1, 3, 6, 10],
                         weights=[2, 1, 1, 1, 1, 1, 1, 1, 1],
                         density=True)
        assert_almost_equal(a, [.2, .1, .1, .075])
Beispiel #10
0
 def test_cov_parameters(self):
     # Ticket #91
     x = np.random.random((3, 3))
     y = x.copy()
     np.cov(x, rowvar=1)
     np.cov(y, rowvar=0)
     assert_array_equal(x, y)
Beispiel #11
0
def test_broadcast_to_succeeds():
    data = [
        [np.array(0), (0, ), np.array(0)],
        [np.array(0), (1, ), np.zeros(1)],
        [np.array(0), (3, ), np.zeros(3)],
        [np.ones(1), (1, ), np.ones(1)],
        [np.ones(1), (2, ), np.ones(2)],
        [np.ones(1), (1, 2, 3), np.ones((1, 2, 3))],
        [np.arange(3), (3, ), np.arange(3)],
        [np.arange(3), (1, 3),
         np.arange(3).reshape(1, -1)],
        [np.arange(3), (2, 3),
         np.array([[0, 1, 2], [0, 1, 2]])],
        # test if shape is not a tuple
        [np.ones(0), 0, np.ones(0)],
        [np.ones(1), 1, np.ones(1)],
        [np.ones(1), 2, np.ones(2)],
        # these cases with size 0 are strange, but they reproduce the behavior
        # of broadcasting with ufuncs (see test_same_as_ufunc above)
        [np.ones(1), (0, ), np.ones(0)],
        [np.ones((1, 2)), (0, 2), np.ones((0, 2))],
        [np.ones((2, 1)), (2, 0), np.ones((2, 0))],
    ]
    for input_array, shape, expected in data:
        actual = broadcast_to(input_array, shape)
        assert_array_equal(expected, actual)
Beispiel #12
0
    def test_check_large_pad(self):
        a = np.arange(12)
        a = np.reshape(a, (3, 4))
        a = pad(a, (10, 12), 'wrap')
        b = np.array(
            [[10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
              11, 8, 9, 10, 11, 8, 9, 10, 11],
             [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
              3, 0, 1, 2, 3, 0, 1, 2, 3],
             [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
              7, 4, 5, 6, 7, 4, 5, 6, 7],
             [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
              11, 8, 9, 10, 11, 8, 9, 10, 11],
             [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
              3, 0, 1, 2, 3, 0, 1, 2, 3],
             [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
              7, 4, 5, 6, 7, 4, 5, 6, 7],
             [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
              11, 8, 9, 10, 11, 8, 9, 10, 11],
             [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
              3, 0, 1, 2, 3, 0, 1, 2, 3],
             [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
              7, 4, 5, 6, 7, 4, 5, 6, 7],
             [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
              11, 8, 9, 10, 11, 8, 9, 10, 11],

             [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
              3, 0, 1, 2, 3, 0, 1, 2, 3],
             [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
              7, 4, 5, 6, 7, 4, 5, 6, 7],
             [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
              11, 8, 9, 10, 11, 8, 9, 10, 11],

             [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
              3, 0, 1, 2, 3, 0, 1, 2, 3],
             [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
              7, 4, 5, 6, 7, 4, 5, 6, 7],
             [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
              11, 8, 9, 10, 11, 8, 9, 10, 11],
             [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
              3, 0, 1, 2, 3, 0, 1, 2, 3],
             [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
              7, 4, 5, 6, 7, 4, 5, 6, 7],
             [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
              11, 8, 9, 10, 11, 8, 9, 10, 11],
             [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
              3, 0, 1, 2, 3, 0, 1, 2, 3],
             [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
              7, 4, 5, 6, 7, 4, 5, 6, 7],
             [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
              11, 8, 9, 10, 11, 8, 9, 10, 11],
             [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
              3, 0, 1, 2, 3, 0, 1, 2, 3],
             [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6,
              7, 4, 5, 6, 7, 4, 5, 6, 7],
             [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
              11, 8, 9, 10, 11, 8, 9, 10, 11]]
            )
        assert_array_equal(a, b)
Beispiel #13
0
def test_one_off():
    x = np.array([[1, 2, 3]])
    y = np.array([[1], [2], [3]])
    bx, by = broadcast_arrays(x, y)
    bx0 = np.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]])
    by0 = bx0.T
    assert_array_equal(bx0, bx)
    assert_array_equal(by0, by)
Beispiel #14
0
 def test_in1d_invert(self):
     "Test in1d's invert parameter"
     # We use two different sizes for the b array here to test the
     # two different paths in in1d().
     for mult in (1, 10):
         a = np.array([5, 4, 5, 3, 4, 4, 3, 4, 3, 5, 2, 1, 5, 5])
         b = [2, 3, 4] * mult
         assert_array_equal(np.invert(in1d(a, b)), in1d(a, b, invert=True))
Beispiel #15
0
    def test_in1d_char_array(self):
        a = np.array(['a', 'b', 'c', 'd', 'e', 'c', 'e', 'b'])
        b = np.array(['a', 'c'])

        ec = np.array([True, False, True, False, False, True, False, False])
        c = in1d(a, b)

        assert_array_equal(c, ec)
Beispiel #16
0
 def test_unique_sort_order_with_axis(self):
     # These tests fail if sorting along axis is done by treating subarrays
     # as unsigned byte strings.  See gh-10495.
     fmt = "sort order incorrect for integer type '%s'"
     for dt in 'bhilq':
         a = np.array([[-1], [0]], dt)
         b = np.unique(a, axis=0)
         assert_array_equal(a, b, fmt % dt)
Beispiel #17
0
 def test_shuffle_mixed_dimension(self):
     # Test for trac ticket #2074
     for t in [[1, 2, 3, None], [(1, 1), (2, 2), (3, 3), None],
               [1, (2, 2), (3, 3), None], [(1, 1), 2, 3, None]]:
         np.random.seed(12345)
         shuffled = list(t)
         random.shuffle(shuffled)
         assert_array_equal(shuffled, [t[0], t[3], t[1], t[2]])
Beispiel #18
0
 def test_wide_matrix(self):
     a = np.zeros((3, 10), int)
     fill_diagonal(a, 5)
     assert_array_equal(
         a, np.array([[5, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                      [0, 5, 0, 0, 0, 0, 0, 0, 0, 0],
                      [0, 0, 5, 0, 0, 0, 0, 0, 0, 0]])
         )
Beispiel #19
0
def test_reference_types():
    input_array = np.array('a', dtype=object)
    expected = np.array(['a'] * 3, dtype=object)
    actual = broadcast_to(input_array, (3, ))
    assert_array_equal(expected, actual)

    actual, _ = broadcast_arrays(input_array, np.ones(3))
    assert_array_equal(expected, actual)
Beispiel #20
0
 def test_3D_array(self):
     a = array([[1, 2], [1, 2]])
     b = array([[2, 3], [2, 3]])
     a = array([a, a])
     b = array([b, b])
     res = [atleast_2d(a), atleast_2d(b)]
     desired = [a, b]
     assert_array_equal(res, desired)
Beispiel #21
0
    def test_keywords(self):
        x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])
        # We must be specific about the endianness here:
        y = x.view(dtype='<i2', type=np.matrix)
        assert_array_equal(y, [[513]])

        assert_(isinstance(y, np.matrix))
        assert_equal(y.dtype, np.dtype('<i2'))
Beispiel #22
0
def test_mask_indices():
    # simple test without offset
    iu = mask_indices(3, np.triu)
    a = np.arange(9).reshape(3, 3)
    assert_array_equal(a[iu], array([0, 1, 2, 4, 5, 8]))
    # Now with an offset
    iu1 = mask_indices(3, np.triu, 1)
    assert_array_equal(a[iu1], array([1, 2, 5]))
Beispiel #23
0
def test_unpackbits():
    # Copied from the docstring.
    a = np.array([[2], [7], [23]], dtype=np.uint8)
    b = np.unpackbits(a, axis=1)
    assert_equal(b.dtype, np.uint8)
    assert_array_equal(b, np.array([[0, 0, 0, 0, 0, 0, 1, 0],
                                    [0, 0, 0, 0, 0, 1, 1, 1],
                                    [0, 0, 0, 1, 0, 1, 1, 1]]))
Beispiel #24
0
    def test_reversed_strides_result_allocation(self):
        # Test a bug when calculating the output strides for a result array
        # when the subspace size was 1 (and test other cases as well)
        a = np.arange(10)[:, None]
        i = np.arange(10)[::-1]
        assert_array_equal(a[i], a[i.copy('C')])

        a = np.arange(20).reshape(-1, 2)
Beispiel #25
0
 def test_basic(self):
     a = np.zeros((3, 3), int)
     fill_diagonal(a, 5)
     assert_array_equal(
         a, np.array([[5, 0, 0],
                      [0, 5, 0],
                      [0, 0, 5]])
         )
Beispiel #26
0
 def test_2D_array(self):
     a = np.array([[1], [2]])
     b = np.array([[1], [2]])
     res = dstack([a, b])
     desired = np.array([[[1, 1]], [[
         2,
         2,
     ]]])
     assert_array_equal(res, desired)
Beispiel #27
0
 def test_basic(self):
     a = np.random.rand(10)
     b = real_if_close(a + 1e-15j)
     assert_all(isrealobj(b))
     assert_array_equal(a, b)
     b = real_if_close(a + 1e-7j)
     assert_all(iscomplexobj(b))
     b = real_if_close(a + 1e-7j, tol=1e-6)
     assert_all(isrealobj(b))
Beispiel #28
0
    def test_indexing_array_negative_strides(self):
        # From gh-8264,
        # core dumps if negative strides are used in iteration
        arro = np.zeros((4, 4))
        arr = arro[::-1, ::-1]

        slices = (slice(None), [0, 1, 2, 3])
        arr[slices] = 10
        assert_array_equal(arr, 10.)
Beispiel #29
0
 def test_call_within_randomstate(self):
     # Check that custom RandomState does not call into global state
     m = np.random.RandomState()
     res = np.array([0, 8, 7, 2, 1, 9, 4, 7, 0, 3])
     for i in range(3):
         np.random.seed(i)
         m.seed(4321)
         # If m.state is not honored, the result will change
         assert_array_equal(m.choice(10, size=10, p=np.ones(10) / 10.), res)
Beispiel #30
0
    def test_lapack_endian(self):
        # For bug #1482
        a = array([[5.7998084, -2.1825367], [-2.1825367, 9.85910595]],
                  dtype='>f8')
        b = array(a, dtype='<f8')

        ap = linalg.cholesky(a)
        bp = linalg.cholesky(b)
        assert_array_equal(ap, bp)