Beispiel #1
0
    def test_hidden(self):
        shape = (2, )
        a = self.array(shape, intent.hide, None)
        assert_(a.arr.shape == shape)
        assert_(a.arr_equal(a.arr, zeros(shape, dtype=self.type.dtype)))

        shape = (2, 3)
        a = self.array(shape, intent.hide, None)
        assert_(a.arr.shape == shape)
        assert_(a.arr_equal(a.arr, zeros(shape, dtype=self.type.dtype)))
        assert_(a.arr.flags['FORTRAN'] and not a.arr.flags['CONTIGUOUS'])

        shape = (2, 3)
        a = self.array(shape, intent.c.hide, None)
        assert_(a.arr.shape == shape)
        assert_(a.arr_equal(a.arr, zeros(shape, dtype=self.type.dtype)))
        assert_(not a.arr.flags['FORTRAN'] and a.arr.flags['CONTIGUOUS'])

        shape = (-1, 3)
        try:
            a = self.array(shape, intent.hide, None)
        except ValueError as msg:
            if not str(msg).startswith('failed to create intent'
                                       '(cache|hide)|optional array'):
                raise
        else:
            raise SystemError('intent(hide) should have failed'
                              ' on undefined dimensions')
Beispiel #2
0
 def test_mem_masked_where(self):
     # Ticket #62
     from numpy1.ma import masked_where, MaskType
     a = np.zeros((1, 1))
     b = np.zeros(a.shape, MaskType)
     c = masked_where(b, a)
     a - c
Beispiel #3
0
    def test_scalar_return_type(self):
        # Full scalar indices should return scalars and object
        # arrays should not call PyArray_Return on their items
        class Zero(object):
            # The most basic valid indexing
            def __index__(self):
                return 0

        z = Zero()

        class ArrayLike(object):
            # Simple array, should behave like the array
            def __array__(self):
                return np.array(0)

        a = np.zeros(())
        assert_(isinstance(a[()], np.float_))
        a = np.zeros(1)
        assert_(isinstance(a[z], np.float_))
        a = np.zeros((1, 1))
        assert_(isinstance(a[z, np.array(0)], np.float_))
        assert_(isinstance(a[z, ArrayLike()], np.float_))

        # And object arrays do not call it too often:
        b = np.array(0)
        a = np.array(0, dtype=object)
        a[()] = b
        assert_(isinstance(a[()], np.ndarray))
        a = np.array([b, None])
        assert_(isinstance(a[z], np.ndarray))
        a = np.array([[b, None]])
        assert_(isinstance(a[z, np.array(0)], np.ndarray))
        assert_(isinstance(a[z, ArrayLike()], np.ndarray))
Beispiel #4
0
 def test_dtype(self):
     dt = np.intc
     p = ndpointer(dtype=dt)
     assert_(p.from_param(np.array([1], dt)))
     dt = '<i4'
     p = ndpointer(dtype=dt)
     assert_(p.from_param(np.array([1], dt)))
     dt = np.dtype('>i4')
     p = ndpointer(dtype=dt)
     p.from_param(np.array([1], dt))
     assert_raises(TypeError, p.from_param,
                       np.array([1], dt.newbyteorder('swap')))
     dtnames = ['x', 'y']
     dtformats = [np.intc, np.float64]
     dtdescr = {'names': dtnames, 'formats': dtformats}
     dt = np.dtype(dtdescr)
     p = ndpointer(dtype=dt)
     assert_(p.from_param(np.zeros((10,), dt)))
     samedt = np.dtype(dtdescr)
     p = ndpointer(dtype=samedt)
     assert_(p.from_param(np.zeros((10,), dt)))
     dt2 = np.dtype(dtdescr, align=True)
     if dt.itemsize != dt2.itemsize:
         assert_raises(TypeError, p.from_param, np.zeros((10,), dt2))
     else:
         assert_(p.from_param(np.zeros((10,), dt2)))
Beispiel #5
0
def test_broadcast_to_succeeds():
    data = [
        [np.array(0), (0, ), np.array(0)],
        [np.array(0), (1, ), np.zeros(1)],
        [np.array(0), (3, ), np.zeros(3)],
        [np.ones(1), (1, ), np.ones(1)],
        [np.ones(1), (2, ), np.ones(2)],
        [np.ones(1), (1, 2, 3), np.ones((1, 2, 3))],
        [np.arange(3), (3, ), np.arange(3)],
        [np.arange(3), (1, 3),
         np.arange(3).reshape(1, -1)],
        [np.arange(3), (2, 3),
         np.array([[0, 1, 2], [0, 1, 2]])],
        # test if shape is not a tuple
        [np.ones(0), 0, np.ones(0)],
        [np.ones(1), 1, np.ones(1)],
        [np.ones(1), 2, np.ones(2)],
        # these cases with size 0 are strange, but they reproduce the behavior
        # of broadcasting with ufuncs (see test_same_as_ufunc above)
        [np.ones(1), (0, ), np.ones(0)],
        [np.ones((1, 2)), (0, 2), np.ones((0, 2))],
        [np.ones((2, 1)), (2, 0), np.ones((2, 0))],
    ]
    for input_array, shape, expected in data:
        actual = broadcast_to(input_array, shape)
        assert_array_equal(expected, actual)
Beispiel #6
0
 def test_empty(self):
     mat = np.zeros((0, 3))
     for f in self.nanfuncs:
         for axis in [0, None]:
             assert_raises(ValueError, f, mat, axis=axis)
         for axis in [1]:
             res = f(mat, axis=axis)
             assert_equal(res, np.zeros(0))
Beispiel #7
0
    def test_methods(self):
        "cases from methods.c"

        a = np.zeros((3, 3))
        assert_raises(IndexError, lambda: a.item(100))
        assert_raises(IndexError, lambda: a.itemset(100, 1))
        a = np.zeros((0, 3))
        assert_raises(IndexError, lambda: a.item(100))
        assert_raises(IndexError, lambda: a.itemset(100, 1))
Beispiel #8
0
 def test_put_exceptions(self):
     a = np.zeros((5, 5))
     assert_raises(IndexError, a.put, 100, 0)
     a = np.zeros((5, 5), dtype=object)
     assert_raises(IndexError, a.put, 100, 0)
     a = np.zeros((5, 5, 0))
     assert_raises(IndexError, a.put, 100, 0)
     a = np.zeros((5, 5, 0), dtype=object)
     assert_raises(IndexError, a.put, 100, 0)
Beispiel #9
0
 def test_zeros0D(self):
     """Check creation of 0-dimensional objects"""
     h = np.zeros((), dtype=self._descr)
     assert_(normalize_descr(self._descr) == h.dtype.descr)
     assert_(h.dtype.fields['x'][0].name[:4] == 'void')
     assert_(h.dtype.fields['x'][0].char == 'V')
     assert_(h.dtype.fields['x'][0].type == np.void)
     # A small check that data is ok
     assert_equal(h['z'], np.zeros((), dtype='u1'))
Beispiel #10
0
 def test_zerosMD(self):
     """Check creation of multi-dimensional objects"""
     h = np.zeros((2, 3), dtype=self._descr)
     assert_(normalize_descr(self._descr) == h.dtype.descr)
     assert_(h.dtype['z'].name == 'uint8')
     assert_(h.dtype['z'].char == 'B')
     assert_(h.dtype['z'].type == np.uint8)
     # A small check that data is ok
     assert_equal(h['z'], np.zeros((2, 3), dtype='u1'))
Beispiel #11
0
 def test_lower_align(self):
     # check data that is not aligned to element size
     # i.e doubles are aligned to 4 bytes on i386
     d = np.zeros(23 * 8, dtype=np.int8)[4:-4].view(np.float64)
     o = np.zeros(23 * 8, dtype=np.int8)[4:-4].view(np.float64)
     assert_almost_equal(d + d, d * 2)
     np.add(d, d, out=o)
     np.add(np.ones_like(d), d, out=o)
     np.add(d, np.ones_like(d), out=o)
     np.add(np.ones_like(d), d)
     np.add(d, np.ones_like(d))
Beispiel #12
0
    def test_take_from_object(self):
        # Check exception taking from object array
        d = np.zeros(5, dtype=object)
        assert_raises(IndexError, d.take, [6])

        # Check exception taking from 0-d array
        d = np.zeros((5, 0), dtype=object)
        assert_raises(IndexError, d.take, [1], axis=1)
        assert_raises(IndexError, d.take, [0], axis=1)
        assert_raises(IndexError, d.take, [0])
        assert_raises(IndexError, d.take, [0], mode='wrap')
        assert_raises(IndexError, d.take, [0], mode='clip')
Beispiel #13
0
 def test_empty(self):
     for f, tgt_value in zip(self.nanfuncs, [0, 1]):
         mat = np.zeros((0, 3))
         tgt = tgt_value*np.ones((0, 3))
         res = f(mat, axis=0)
         assert_equal(res, tgt)
         tgt = mat
         res = f(mat, axis=1)
         assert_equal(res, tgt)
         tgt = np.zeros((0))
         res = f(mat, axis=None)
         assert_equal(res, tgt)
Beispiel #14
0
 def test_ptp(self):
     (x, X, XX, m, mx, mX, mXX,) = self.d
     (n, m) = X.shape
     assert_equal(mx.ptp(), mx.compressed().ptp())
     rows = np.zeros(n, np.float_)
     cols = np.zeros(m, np.float_)
     for k in range(m):
         cols[k] = mX[:, k].compressed().ptp()
     for k in range(n):
         rows[k] = mX[k].compressed().ptp()
     assert_(eq(mX.ptp(0), cols))
     assert_(eq(mX.ptp(1), rows))
Beispiel #15
0
    def test_normal_types(self):
        for op in (operator.eq, operator.ne):
            # Broadcasting errors:
            self.assert_deprecated(op, args=(np.zeros(3), []))
            a = np.zeros(3, dtype='i,i')
            # (warning is issued a couple of times here)
            self.assert_deprecated(op, args=(a, a[:-1]), num=None)

            # Element comparison error (numpy array can't be compared).
            a = np.array([1, np.array([1, 2, 3])], dtype=object)
            b = np.array([1, np.array([1, 2, 3])], dtype=object)
            self.assert_deprecated(op, args=(a, b), num=None)
Beispiel #16
0
 def test_empty(self):
     mat = np.zeros((0, 3))
     for axis in [0, None]:
         with warnings.catch_warnings(record=True) as w:
             warnings.simplefilter('always')
             assert_(np.isnan(np.nanpercentile(mat, 40, axis=axis)).all())
             assert_(len(w) == 1)
             assert_(issubclass(w[0].category, RuntimeWarning))
     for axis in [1]:
         with warnings.catch_warnings(record=True) as w:
             warnings.simplefilter('always')
             assert_equal(np.nanpercentile(mat, 40, axis=axis), np.zeros([]))
             assert_(len(w) == 0)
Beispiel #17
0
    def test_boolean_assignment_needs_api(self):
        # See also gh-7666
        # This caused a segfault on Python 2 due to the GIL not being
        # held when the iterator does not need it, but the transfer function
        # does
        arr = np.zeros(1000)
        indx = np.zeros(1000, dtype=bool)
        indx[:100] = True
        arr[indx] = np.ones(100, dtype=object)

        expected = np.zeros(1000)
        expected[:100] = 1
        assert_array_equal(arr, expected)
Beispiel #18
0
 def test_vector(self):
     vals = (100 * arange(5)).astype('l')
     b = zeros((5, 5))
     for k in range(5):
         b[k, k] = vals[k]
     assert_equal(diag(vals), b)
     b = zeros((7, 7))
     c = b.copy()
     for k in range(5):
         b[k, k + 2] = vals[k]
         c[k + 2, k] = vals[k]
     assert_equal(diag(vals, k=2), b)
     assert_equal(diag(vals, k=-2), c)
Beispiel #19
0
def test_may_share_memory_manual():
    # Manual test cases for may_share_memory

    # Base arrays
    xs0 = [
        np.zeros([13, 21, 23, 22], dtype=np.int8),
        np.zeros([13, 21, 23*2, 22], dtype=np.int8)[:,:,::2,:]
    ]

    # Generate all negative stride combinations
    xs = []
    for x in xs0:
        for ss in itertools.product(*(([slice(None), slice(None, None, -1)],)*4)):
            xp = x[ss]
            xs.append(xp)

    for x in xs:
        # The default is a simple extent check
        assert_(np.may_share_memory(x[:,0,:], x[:,1,:]))
        assert_(np.may_share_memory(x[:,0,:], x[:,1,:], max_work=None))

        # Exact checks
        check_may_share_memory_exact(x[:,0,:], x[:,1,:])
        check_may_share_memory_exact(x[:,::7], x[:,3::3])

        try:
            xp = x.ravel()
            if xp.flags.owndata:
                continue
            xp = xp.view(np.int16)
        except ValueError:
            continue

        # 0-size arrays cannot overlap
        check_may_share_memory_exact(x.ravel()[6:6],
                                     xp.reshape(13, 21, 23, 11)[:,::7])

        # Test itemsize is dealt with
        check_may_share_memory_exact(x[:,::7],
                                     xp.reshape(13, 21, 23, 11))
        check_may_share_memory_exact(x[:,::7],
                                     xp.reshape(13, 21, 23, 11)[:,3::3])
        check_may_share_memory_exact(x.ravel()[6:7],
                                     xp.reshape(13, 21, 23, 11)[:,::7])

    # Check unit size
    x = np.zeros([1], dtype=np.int8)
    check_may_share_memory_exact(x, x)
    check_may_share_memory_exact(x, x.copy())
Beispiel #20
0
def test_stack():
    # non-iterable input
    assert_raises(TypeError, stack, 1)

    # 0d input
    for input_ in [(1, 2, 3),
                   [np.int32(1), np.int32(2), np.int32(3)],
                   [np.array(1), np.array(2), np.array(3)]]:
        assert_array_equal(stack(input_), [1, 2, 3])
    # 1d input examples
    a = np.array([1, 2, 3])
    b = np.array([4, 5, 6])
    r1 = array([[1, 2, 3], [4, 5, 6]])
    assert_array_equal(np.stack((a, b)), r1)
    assert_array_equal(np.stack((a, b), axis=1), r1.T)
    # all input types
    assert_array_equal(np.stack(list([a, b])), r1)
    assert_array_equal(np.stack(array([a, b])), r1)
    # all shapes for 1d input
    arrays = [np.random.randn(3) for _ in range(10)]
    axes = [0, 1, -1, -2]
    expected_shapes = [(10, 3), (3, 10), (3, 10), (10, 3)]
    for axis, expected_shape in zip(axes, expected_shapes):
        assert_equal(np.stack(arrays, axis).shape, expected_shape)
    assert_raises_regex(np.AxisError, 'out of bounds', stack, arrays, axis=2)
    assert_raises_regex(np.AxisError, 'out of bounds', stack, arrays, axis=-3)
    # all shapes for 2d input
    arrays = [np.random.randn(3, 4) for _ in range(10)]
    axes = [0, 1, 2, -1, -2, -3]
    expected_shapes = [(10, 3, 4), (3, 10, 4), (3, 4, 10),
                        (3, 4, 10), (3, 10, 4), (10, 3, 4)]
    for axis, expected_shape in zip(axes, expected_shapes):
        assert_equal(np.stack(arrays, axis).shape, expected_shape)
    # empty arrays
    assert_(stack([[], [], []]).shape == (3, 0))
    assert_(stack([[], [], []], axis=1).shape == (0, 3))
    # edge cases
    assert_raises_regex(ValueError, 'need at least one array', stack, [])
    assert_raises_regex(ValueError, 'must have the same shape',
                        stack, [1, np.arange(3)])
    assert_raises_regex(ValueError, 'must have the same shape',
                        stack, [np.arange(3), 1])
    assert_raises_regex(ValueError, 'must have the same shape',
                        stack, [np.arange(3), 1], axis=1)
    assert_raises_regex(ValueError, 'must have the same shape',
                        stack, [np.zeros((3, 3)), np.zeros(3)], axis=1)
    assert_raises_regex(ValueError, 'must have the same shape',
                        stack, [np.arange(2), np.arange(3)])
Beispiel #21
0
def test_diag_indices():
    di = diag_indices(4)
    a = np.array([[1, 2, 3, 4],
                  [5, 6, 7, 8],
                  [9, 10, 11, 12],
                  [13, 14, 15, 16]])
    a[di] = 100
    assert_array_equal(
        a, np.array([[100, 2, 3, 4],
                     [5, 100, 7, 8],
                     [9, 10, 100, 12],
                     [13, 14, 15, 100]])
        )

    # Now, we create indices to manipulate a 3-d array:
    d3 = diag_indices(2, 3)

    # And use it to set the diagonal of a zeros array to 1:
    a = np.zeros((2, 2, 2), int)
    a[d3] = 1
    assert_array_equal(
        a, np.array([[[1, 0],
                      [0, 0]],
                     [[0, 0],
                      [0, 1]]])
        )
Beispiel #22
0
def test_internal_overlap_slices():
    # Slicing an array never generates internal overlap

    x = np.zeros([17,34,71,97], dtype=np.int16)

    rng = np.random.RandomState(1234)

    def random_slice(n, step):
        start = rng.randint(0, n+1, dtype=np.intp)
        stop = rng.randint(start, n+1, dtype=np.intp)
        if rng.randint(0, 2, dtype=np.intp) == 0:
            stop, start = start, stop
            step *= -1
        return slice(start, stop, step)

    cases = 0
    min_count = 5000

    while cases < min_count:
        steps = tuple(rng.randint(1, 11, dtype=np.intp)
                      if rng.randint(0, 5, dtype=np.intp) == 0 else 1
                      for j in range(x.ndim))
        t1 = np.arange(x.ndim)
        rng.shuffle(t1)
        s1 = tuple(random_slice(p, s) for p, s in zip(x.shape, steps))
        a = x[s1].transpose(t1)

        assert_(not internal_overlap(a))
        cases += 1
Beispiel #23
0
def check_may_share_memory_easy_fuzz(get_max_work, same_steps, min_count):
    # Check that overlap problems with common strides are solved with
    # little work.
    x = np.zeros([17,34,71,97], dtype=np.int16)

    feasible = 0
    infeasible = 0

    pair_iter = iter_random_view_pairs(x, same_steps)

    while min(feasible, infeasible) < min_count:
        a, b = next(pair_iter)

        bounds_overlap = np.may_share_memory(a, b)
        may_share_answer = np.may_share_memory(a, b)
        easy_answer = np.may_share_memory(a, b, max_work=get_max_work(a, b))
        exact_answer = np.may_share_memory(a, b, max_work=MAY_SHARE_EXACT)

        if easy_answer != exact_answer:
            # assert_equal is slow...
            assert_equal(easy_answer, exact_answer)

        if may_share_answer != bounds_overlap:
            assert_equal(may_share_answer, bounds_overlap)

        if bounds_overlap:
            if exact_answer:
                feasible += 1
            else:
                infeasible += 1
Beispiel #24
0
 def test_different_field_order(self):
     # gh-8940
     a = np.zeros(3, dtype=[('a', 'i4'), ('b', 'f4'), ('c', 'u1')])
     b = np.ones(3, dtype=[('c', 'u1'), ('b', 'f4'), ('a', 'i4')])
     # this should not give a FutureWarning:
     j = join_by(['c', 'b'], a, b, jointype='inner', usemask=False)
     assert_equal(j.dtype.names, ['b', 'c', 'a1', 'a2'])
Beispiel #25
0
    def test_weights(self):
        v = np.random.rand(100)
        w = np.ones(100) * 5
        a, b = histogram(v)
        na, nb = histogram(v, density=True)
        wa, wb = histogram(v, weights=w)
        nwa, nwb = histogram(v, weights=w, density=True)
        assert_array_almost_equal(a * 5, wa)
        assert_array_almost_equal(na, nwa)

        # Check weights are properly applied.
        v = np.linspace(0, 10, 10)
        w = np.concatenate((np.zeros(5), np.ones(5)))
        wa, wb = histogram(v, bins=np.arange(11), weights=w)
        assert_array_almost_equal(wa, w)

        # Check with integer weights
        wa, wb = histogram([1, 2, 2, 4], bins=4, weights=[4, 3, 2, 1])
        assert_array_equal(wa, [4, 5, 0, 1])
        wa, wb = histogram([1, 2, 2, 4],
                           bins=4,
                           weights=[4, 3, 2, 1],
                           density=True)
        assert_array_almost_equal(wa, np.array([4, 5, 0, 1]) / 10. / 3. * 4)

        # Check weights with non-uniform bin widths
        a, b = histogram(np.arange(9), [0, 1, 3, 6, 10],
                         weights=[2, 1, 1, 1, 1, 1, 1, 1, 1],
                         density=True)
        assert_almost_equal(a, [.2, .1, .1, .075])
Beispiel #26
0
    def test_simple(self):
        x = np.array([[-.5, .5, 1.5], [-.5, 1.5, 2.5], [-.5, 2.5, .5],
                      [.5, .5, 1.5], [.5, 1.5, 2.5], [.5, 2.5, 2.5]])
        H, edges = histogramdd(x, (2, 3, 3), range=[[-1, 1], [0, 3], [0, 3]])
        answer = np.array([[[0, 1, 0], [0, 0, 1], [1, 0, 0]],
                           [[0, 1, 0], [0, 0, 1], [0, 0, 1]]])
        assert_array_equal(H, answer)

        # Check normalization
        ed = [[-2, 0, 2], [0, 1, 2, 3], [0, 1, 2, 3]]
        H, edges = histogramdd(x, bins=ed, density=True)
        assert_(np.all(H == answer / 12.))

        # Check that H has the correct shape.
        H, edges = histogramdd(x, (2, 3, 4),
                               range=[[-1, 1], [0, 3], [0, 4]],
                               density=True)
        answer = np.array([[[0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0]],
                           [[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 1, 0]]])
        assert_array_almost_equal(H, answer / 6., 4)
        # Check that a sequence of arrays is accepted and H has the correct
        # shape.
        z = [np.squeeze(y) for y in np.split(x, 3, axis=1)]
        H, edges = histogramdd(z,
                               bins=(4, 3, 2),
                               range=[[-2, 2], [0, 3], [0, 2]])
        answer = np.array([[[0, 0], [0, 0], [0, 0]], [[0, 1], [0, 0], [1, 0]],
                           [[0, 1], [0, 0], [0, 0]], [[0, 0], [0, 0], [0, 0]]])
        assert_array_equal(H, answer)

        Z = np.zeros((5, 5, 5))
        Z[list(range(5)), list(range(5)), list(range(5))] = 1.
        H, edges = histogramdd([np.arange(5), np.arange(5), np.arange(5)], 5)
        assert_array_equal(H, Z)
Beispiel #27
0
 def test_valuesSD(self):
     # Check assignment of single-dimensional objects with values
     ua = np.zeros((2,), dtype='U%s' % self.ulen)
     ua[0] = self.ucs_value*self.ulen
     self.content_check(ua, ua[0], 4*self.ulen*2)
     ua[1] = self.ucs_value*self.ulen
     self.content_check(ua, ua[1], 4*self.ulen*2)
Beispiel #28
0
 def test_valuesMD(self):
     # Check assignment of multi-dimensional objects with values
     ua = np.zeros((2, 3, 4), dtype='U%s' % self.ulen)
     ua[0, 0, 0] = self.ucs_value*self.ulen
     self.content_check(ua, ua[0, 0, 0], 4*self.ulen*2*3*4)
     ua[-1, -1, -1] = self.ucs_value*self.ulen
     self.content_check(ua, ua[-1, -1, -1], 4*self.ulen*2*3*4)
Beispiel #29
0
 def setup(self):
     self.a = np.arange(np.prod([3, 1, 5, 6])).reshape(3, 1, 5, 6)
     self.b = np.empty((3, 0, 5, 6))
     self.complex_indices = ['skip', Ellipsis,
         0,
         # Boolean indices, up to 3-d for some special cases of eating up
         # dimensions, also need to test all False
         np.array([True, False, False]),
         np.array([[True, False], [False, True]]),
         np.array([[[False, False], [False, False]]]),
         # Some slices:
         slice(-5, 5, 2),
         slice(1, 1, 100),
         slice(4, -1, -2),
         slice(None, None, -3),
         # Some Fancy indexes:
         np.empty((0, 1, 1), dtype=np.intp),  # empty and can be broadcast
         np.array([0, 1, -2]),
         np.array([[2], [0], [1]]),
         np.array([[0, -1], [0, 1]], dtype=np.dtype('intp').newbyteorder()),
         np.array([2, -1], dtype=np.int8),
         np.zeros([1]*31, dtype=int),  # trigger too large array.
         np.array([0., 1.])]  # invalid datatype
     # Some simpler indices that still cover a bit more
     self.simple_indices = [Ellipsis, None, -1, [1], np.array([True]),
                            'skip']
     # Very simple ones to fill the rest:
     self.fill_indices = [slice(None, None), 0]
Beispiel #30
0
    def test_nested(self):
        one = np.array([1, 1, 1])
        two = np.array([[2, 2, 2], [2, 2, 2], [2, 2, 2]])
        three = np.array([3, 3, 3])
        four = np.array([4, 4, 4])
        five = np.array(5)
        six = np.array([6, 6, 6, 6, 6])
        zero = np.zeros((2, 6))

        result = np.block([
            [
                np.block([
                   [one],
                   [three],
                   [four]
                ]),
                two
            ],
            [five, six],
            [zero]
        ])
        expected = np.array([[1, 1, 1, 2, 2, 2],
                             [3, 3, 3, 2, 2, 2],
                             [4, 4, 4, 2, 2, 2],
                             [5, 6, 6, 6, 6, 6],
                             [0, 0, 0, 0, 0, 0],
                             [0, 0, 0, 0, 0, 0]])

        assert_equal(result, expected)