Beispiel #1
0
  def testWriteRead(self):
    c1 = Connections(1024)

    # Add data before serializing
    s1 = c1.createSegment(0)
    c1.createSynapse(s1, 254, 0.1173)

    s2 = c1.createSegment(100)
    c1.createSynapse(s2, 20, 0.3)

    c1.createSynapse(s1, 40, 0.3)

    s3 = c1.createSegment(0)
    c1.createSynapse(s3, 0, 0.5)
    c1.createSynapse(s3, 1, 0.5)

    s4 = c1.createSegment(10)
    c1.createSynapse(s4, 0, 0.5)
    c1.createSynapse(s4, 1, 0.5)
    c1.destroySegment(s4)

    proto1 = ConnectionsProto_capnp.ConnectionsProto.new_message()
    c1.write(proto1)

    # Write the proto to a temp file and read it back into a new proto
    with tempfile.TemporaryFile() as f:
      proto1.write(f)
      f.seek(0)
      proto2 = ConnectionsProto_capnp.ConnectionsProto.read(f)

    # Load the deserialized proto
    c2 = Connections.read(proto2)

    # Check that the two connections objects are functionally equal
    self.assertEqual(c1, c2)
Beispiel #2
0
    def testWriteRead(self):
        c1 = Connections(1024)

        # Add data before serializing
        s1 = c1.createSegment(0)
        c1.createSynapse(s1, 254, 0.1173)

        s2 = c1.createSegment(100)
        c1.createSynapse(s2, 20, 0.3)

        c1.createSynapse(s1, 40, 0.3)

        s3 = c1.createSegment(0)
        c1.createSynapse(s3, 0, 0.5)
        c1.createSynapse(s3, 1, 0.5)

        s4 = c1.createSegment(10)
        c1.createSynapse(s4, 0, 0.5)
        c1.createSynapse(s4, 1, 0.5)
        c1.destroySegment(s4)

        proto1 = ConnectionsProto_capnp.ConnectionsProto.new_message()
        c1.write(proto1)

        # Write the proto to a temp file and read it back into a new proto
        with tempfile.TemporaryFile() as f:
            proto1.write(f)
            f.seek(0)
            proto2 = ConnectionsProto_capnp.ConnectionsProto.read(f)

        # Load the deserialized proto
        c2 = Connections.read(proto2)

        # Check that the two connections objects are functionally equal
        self.assertEqual(c1, c2)
Beispiel #3
0
    def read(cls, proto):
        """Deserialize from proto instance.

    :param proto: (TemporalMemoryShimProto) the proto instance to read from
    """
        tm = super(TemporalMemoryShim, cls).read(proto.baseTM)
        tm.predictiveCells = set(proto.predictedState)
        tm.connections = Connections.read(proto.conncetions)
  def read(cls, proto):
    """Deserialize from proto instance.

    :param proto: (TemporalMemoryShimProto) the proto instance to read from
    """
    tm = super(TemporalMemoryShim, cls).read(proto.baseTM)
    tm.predictiveCells = set(proto.predictedState)
    tm.connections = Connections.read(proto.conncetions)
Beispiel #5
0
    def read(cls, proto):
        """
    Reads deserialized data from proto object.

    :param proto: (DynamicStructBuilder) Proto object

    :returns: (:class:TemporalMemory) TemporalMemory instance
    """
        tm = object.__new__(cls)

        # capnp fails to save a tuple, so proto.columnDimensions was forced to
        # serialize as a list.  We prefer a tuple, however, because columnDimensions
        # should be regarded as immutable.
        tm.columnDimensions = tuple(proto.columnDimensions)
        tm.cellsPerColumn = int(proto.cellsPerColumn)
        tm.activationThreshold = int(proto.activationThreshold)
        tm.initialPermanence = proto.initialPermanence
        tm.connectedPermanence = proto.connectedPermanence
        tm.minThreshold = int(proto.minThreshold)
        tm.maxNewSynapseCount = int(proto.maxNewSynapseCount)
        tm.permanenceIncrement = proto.permanenceIncrement
        tm.permanenceDecrement = proto.permanenceDecrement
        tm.predictedSegmentDecrement = proto.predictedSegmentDecrement

        tm.maxSegmentsPerCell = int(proto.maxSegmentsPerCell)
        tm.maxSynapsesPerSegment = int(proto.maxSynapsesPerSegment)

        tm.connections = Connections.read(proto.connections)
        #pylint: disable=W0212
        tm._random = Random()
        tm._random.read(proto.random)
        #pylint: enable=W0212

        tm.activeCells = [int(x) for x in proto.activeCells]
        tm.winnerCells = [int(x) for x in proto.winnerCells]

        flatListLength = tm.connections.segmentFlatListLength()
        tm.numActiveConnectedSynapsesForSegment = [0] * flatListLength
        tm.numActivePotentialSynapsesForSegment = [0] * flatListLength
        tm.lastUsedIterationForSegment = [0] * flatListLength

        tm.activeSegments = []
        tm.matchingSegments = []

        for protoSegment in proto.activeSegments:
            tm.activeSegments.append(
                tm.connections.getSegment(protoSegment.cell,
                                          protoSegment.idxOnCell))

        for protoSegment in proto.matchingSegments:
            tm.matchingSegments.append(
                tm.connections.getSegment(protoSegment.cell,
                                          protoSegment.idxOnCell))

        for protoSegment in proto.numActivePotentialSynapsesForSegment:
            segment = tm.connections.getSegment(protoSegment.cell,
                                                protoSegment.idxOnCell)

            tm.numActivePotentialSynapsesForSegment[segment.flatIdx] = (int(
                protoSegment.number))

        tm.iteration = long(proto.iteration)

        for protoSegment in proto.lastUsedIterationForSegment:
            segment = tm.connections.getSegment(protoSegment.cell,
                                                protoSegment.idxOnCell)

            tm.lastUsedIterationForSegment[segment.flatIdx] = (long(
                protoSegment.number))

        return tm
Beispiel #6
0
  def read(cls, proto):
    """
    Reads deserialized data from proto object.

    :param proto: (DynamicStructBuilder) Proto object

    :returns: (:class:TemporalMemory) TemporalMemory instance
    """
    tm = object.__new__(cls)

    # capnp fails to save a tuple, so proto.columnDimensions was forced to
    # serialize as a list.  We prefer a tuple, however, because columnDimensions
    # should be regarded as immutable.
    tm.columnDimensions = tuple(proto.columnDimensions)
    tm.cellsPerColumn = int(proto.cellsPerColumn)
    tm.activationThreshold = int(proto.activationThreshold)
    tm.initialPermanence = round(proto.initialPermanence, EPSILON_ROUND)
    tm.connectedPermanence = round(proto.connectedPermanence, EPSILON_ROUND)
    tm.minThreshold = int(proto.minThreshold)
    tm.maxNewSynapseCount = int(proto.maxNewSynapseCount)
    tm.permanenceIncrement = round(proto.permanenceIncrement, EPSILON_ROUND)
    tm.permanenceDecrement = round(proto.permanenceDecrement, EPSILON_ROUND)
    tm.predictedSegmentDecrement = round(proto.predictedSegmentDecrement,
                                         EPSILON_ROUND)

    tm.maxSegmentsPerCell = int(proto.maxSegmentsPerCell)
    tm.maxSynapsesPerSegment = int(proto.maxSynapsesPerSegment)

    tm.connections = Connections.read(proto.connections)
    #pylint: disable=W0212
    tm._random = Random()
    tm._random.read(proto.random)
    #pylint: enable=W0212

    tm.activeCells = [int(x) for x in proto.activeCells]
    tm.winnerCells = [int(x) for x in proto.winnerCells]

    flatListLength = tm.connections.segmentFlatListLength()
    tm.numActiveConnectedSynapsesForSegment = [0] * flatListLength
    tm.numActivePotentialSynapsesForSegment = [0] * flatListLength
    tm.lastUsedIterationForSegment = [0] * flatListLength

    tm.activeSegments = []
    tm.matchingSegments = []

    for protoSegment in proto.activeSegments:
      tm.activeSegments.append(
        tm.connections.getSegment(protoSegment.cell,
                                  protoSegment.idxOnCell))

    for protoSegment in proto.matchingSegments:
      tm.matchingSegments.append(
        tm.connections.getSegment(protoSegment.cell,
                                  protoSegment.idxOnCell))

    for protoSegment in proto.numActivePotentialSynapsesForSegment:
      segment = tm.connections.getSegment(protoSegment.cell,
                                          protoSegment.idxOnCell)

      tm.numActivePotentialSynapsesForSegment[segment.flatIdx] = (
        int(protoSegment.number))

    tm.iteration = long(proto.iteration)

    for protoSegment in proto.lastUsedIterationForSegment:
      segment = tm.connections.getSegment(protoSegment.cell,
                                          protoSegment.idxOnCell)

      tm.lastUsedIterationForSegment[segment.flatIdx] = (
        long(protoSegment.number))

    return tm
Beispiel #7
0
    def read(cls, proto):
        """
    Reads deserialized data from proto object.

    @param proto (DynamicStructBuilder) Proto object

    @return (TemporalMemory) TemporalMemory instance
    """
        tm = object.__new__(cls)

        # capnp fails to save a tuple, so proto.columnDimensions was forced to
        # serialize as a list.  We prefer a tuple, however, because columnDimensions
        # should be regarded as immutable.
        tm.columnDimensions = tuple(proto.columnDimensions)
        tm.cellsPerColumn = int(proto.cellsPerColumn)
        tm.activationThreshold = int(proto.activationThreshold)
        tm.initialPermanence = proto.initialPermanence
        tm.connectedPermanence = proto.connectedPermanence
        tm.minThreshold = int(proto.minThreshold)
        tm.maxNewSynapseCount = int(proto.maxNewSynapseCount)
        tm.permanenceIncrement = proto.permanenceIncrement
        tm.permanenceDecrement = proto.permanenceDecrement
        tm.predictedSegmentDecrement = proto.predictedSegmentDecrement

        tm.connections = Connections.read(proto.connections)
        #pylint: disable=W0212
        tm._random = Random()
        tm._random.read(proto.random)
        #pylint: enable=W0212

        tm.activeCells = [int(x) for x in proto.activeCells]
        tm.winnerCells = [int(x) for x in proto.winnerCells]

        flatListLength = tm.connections.segmentFlatListLength()
        tm.numActiveConnectedSynapsesForSegment = [0] * flatListLength
        tm.numActivePotentialSynapsesForSegment = [0] * flatListLength

        tm.activeSegments = []
        tm.matchingSegments = []

        for i in xrange(len(proto.activeSegmentOverlaps)):
            protoSegmentOverlap = proto.activeSegmentOverlaps[i]

            segment = tm.connections.getSegment(protoSegmentOverlap.cell,
                                                protoSegmentOverlap.segment)
            tm.activeSegments.append(segment)

            overlap = protoSegmentOverlap.overlap
            tm.numActiveConnectedSynapsesForSegment[segment.flatIdx] = overlap

        for i in xrange(len(proto.matchingSegmentOverlaps)):
            protoSegmentOverlap = proto.matchingSegmentOverlaps[i]

            segment = tm.connections.getSegment(protoSegmentOverlap.cell,
                                                protoSegmentOverlap.segment)
            tm.matchingSegments.append(segment)

            overlap = protoSegmentOverlap.overlap
            tm.numActivePotentialSynapsesForSegment[segment.flatIdx] = overlap

        return tm
Beispiel #8
0
  def read(cls, proto):
    """
    Reads deserialized data from proto object.

    @param proto (DynamicStructBuilder) Proto object

    @return (TemporalMemory) TemporalMemory instance
    """
    tm = object.__new__(cls)

    # capnp fails to save a tuple, so proto.columnDimensions was forced to
    # serialize as a list.  We prefer a tuple, however, because columnDimensions
    # should be regarded as immutable.
    tm.columnDimensions = tuple(proto.columnDimensions)
    tm.cellsPerColumn = int(proto.cellsPerColumn)
    tm.activationThreshold = int(proto.activationThreshold)
    tm.initialPermanence = proto.initialPermanence
    tm.connectedPermanence = proto.connectedPermanence
    tm.minThreshold = int(proto.minThreshold)
    tm.maxNewSynapseCount = int(proto.maxNewSynapseCount)
    tm.permanenceIncrement = proto.permanenceIncrement
    tm.permanenceDecrement = proto.permanenceDecrement
    tm.predictedSegmentDecrement = proto.predictedSegmentDecrement

    tm.connections = Connections.read(proto.connections)
    #pylint: disable=W0212
    tm._random = Random()
    tm._random.read(proto.random)
    #pylint: enable=W0212

    tm.activeCells = [int(x) for x in proto.activeCells]
    tm.winnerCells = [int(x) for x in proto.winnerCells]

    flatListLength = tm.connections.segmentFlatListLength()
    tm.numActiveConnectedSynapsesForSegment = [0] * flatListLength
    tm.numActivePotentialSynapsesForSegment = [0] * flatListLength

    tm.activeSegments = []
    tm.matchingSegments = []

    for i in xrange(len(proto.activeSegmentOverlaps)):
      protoSegmentOverlap = proto.activeSegmentOverlaps[i]

      segment = tm.connections.getSegment(protoSegmentOverlap.cell,
                                          protoSegmentOverlap.segment)
      tm.activeSegments.append(segment)

      overlap = protoSegmentOverlap.overlap
      tm.numActiveConnectedSynapsesForSegment[segment.flatIdx] = overlap

    for i in xrange(len(proto.matchingSegmentOverlaps)):
      protoSegmentOverlap = proto.matchingSegmentOverlaps[i]

      segment = tm.connections.getSegment(protoSegmentOverlap.cell,
                                          protoSegmentOverlap.segment)
      tm.matchingSegments.append(segment)

      overlap = protoSegmentOverlap.overlap
      tm.numActivePotentialSynapsesForSegment[segment.flatIdx] = overlap

    return tm