Beispiel #1
0
def test_mdot():
    a = 1.0 * np.arange(18).reshape(3, 3, 2)
    b = -a
    t = np.concatenate(
        [np.dot(a[..., i], b[..., i])[:, :, None] for i in range(2)], axis=2)
    tm = mdot(a, b)

    assert_allclose(t, tm)

    t1 = np.concatenate(
        [np.dot(a[..., i], b[:, 0, 0][:, None])[:, :, None] for i in range(2)],
        axis=2)

    tm1 = mdot(a, b[:, 0, 0].reshape(-1, 1))

    assert_allclose(t1, tm1)

    tt0 = mdot(a[..., 0], b[..., 0])

    assert_allclose(t[..., 0], tt0)

    tt0 = mdot(a[..., 0], b[:, :1, 0])

    assert_allclose(t[:, :1, 0], tt0)

    tt0 = mdot(a[..., 0], b[:, :2, 0][:, None])

    assert_allclose(t[:, :2, 0][:, None], tt0)
Beispiel #2
0
def R_EL2n_E(R_EL):
    """
    Returns n-vector from the rotation matrix R_EL.

    Parameters
    ----------
    R_EL: 3 x 3 x n array
        Rotation matrix (direction cosine matrix) [no unit]

    Returns
    -------
    n_E: 3 x n array
        n-vector(s) [no unit] decomposed in E.

    Notes
    -----
    n-vector is found from the rotation matrix (direction cosine matrix) R_EL.

    See also
    --------
    R_EN2n_E, n_E_and_wa2R_EL, n_E2R_EN
    """
    # n-vector equals minus the last column of R_EL and R_EN, see Section 5.5
    # in Gade (2010)
    n_E = mdot(R_EL, np.vstack((0, 0, -1)))
    return n_E.reshape(3, -1)
Beispiel #3
0
def n_E2R_EN(n_E, R_Ee=None):
    """
    Returns the rotation matrix R_EN from n-vector.

    Parameters
    ----------
    n_E: 3 x n array
        n-vector [no unit] decomposed in E
    R_Ee : 3 x 3 array
        rotation matrix defining the axes of the coordinate frame E.

    Returns
    -------
    R_EN:  3 x 3 x n array
        The resulting rotation matrix [no unit] (direction cosine matrix).

    See also
    --------
    R_EN2n_E, n_E_and_wa2R_EL, R_EL2n_E
    """
    if R_Ee is None:
        R_Ee = E_rotation()
    #     n_E = np.atleast_2d(n_E)
    #     _nvector_check_length(n_E)
    #     n_E = unit(np.matmul(R_Ee, n_E))
    n_e = change_axes_to_E(n_E, R_Ee)

    # N coordinate frame (North-East-Down) is defined in Table 2 in Gade (2010)
    # Find z-axis of N (Nz):
    Nz_e = -n_e  # z-axis of N (down) points opposite to n-vector

    # Find y-axis of N (East)(remember that N is singular at Poles)
    # Equation (9) in Gade (2010):
    # Ny points perpendicular to the plane
    Ny_e_direction = np.cross([[1], [0], [0]], n_e, axis=0)
    # formed by n-vector and Earth's spin axis
    on_poles = np.flatnonzero(norm(Ny_e_direction, axis=0) == 0)
    Ny_e = unit(Ny_e_direction)
    Ny_e[:, on_poles] = array([[0], [1], [0]])  # selected y-axis direction

    # Find x-axis of N (North):
    Nx_e = np.cross(Ny_e, Nz_e, axis=0)  # Final axis found by right hand rule

    # Form R_EN from the unit vectors:
    # R_EN = dot(R_Ee.T, np.hstack((Nx_e, Ny_e, Nz_e)))
    Nxyz_e = np.hstack((Nx_e[:, None, ...], Ny_e[:, None, ...], Nz_e[:, None,
                                                                     ...]))
    R_EN = mdot(np.swapaxes(R_Ee, 1, 0), Nxyz_e)

    return np.squeeze(R_EN)
Beispiel #4
0
def n_E_and_wa2R_EL(n_E, wander_azimuth, R_Ee=None):
    """
    Returns rotation matrix R_EL from n-vector and wander azimuth angle.

    Parameters
    ----------
    n_E: 3 x n array
        n-vector [no unit] decomposed in E
    wander_azimuth: real scalar or array of length n
        Angle [rad] between L's x-axis and north, positive about L's z-axis.
    R_Ee : 3 x 3 array
        rotation matrix defining the axes of the coordinate frame E.

    Returns
    -------
    R_EL: 3 x 3 x n array
        The resulting rotation matrix.       [no unit]

    Notes
    -----
    Calculates the rotation matrix (direction cosine matrix) R_EL using
    n-vector (n_E) and the wander azimuth angle. When wander_azimuth=0, we
    have that N=L. (See Table 2 in Gade (2010) for details)

    See also
    --------
    R_EL2n_E, R_EN2n_E, n_E2R_EN
    """
    if R_Ee is None:
        R_Ee = E_rotation()
    latitude, longitude = n_E2lat_lon(n_E, R_Ee)

    # Longitude, -latitude, and wander azimuth are the x-y-z Euler angles (about
    # new axes) for R_EL.
    # Reference: See start of Section 5.2 in Gade (2010):
    R_EL = mdot(R_Ee.T, xyz2R(longitude, -latitude, wander_azimuth))
    return np.squeeze(R_EL)
Beispiel #5
0
def n_EA_E_and_p_AB_N2n_EB_E(n_EA_E, p_AB_N, z_EA=0, a=6378137, f=1.0 / 298.257223563, R_Ee=None):
    """
    Returns position B from position A and delta vector decomposed in N.

    Parameters
    ----------
    n_EA_E:  3 x k array
        n-vector(s) [no unit] of position A, decomposed in E.
    p_AB_N:  3 x m array
        Cartesian position vector(s) [m] from A to B, decomposed in N.
    z_EA:  1 x n array
        Depth(s) [m] of system A, relative to the ellipsoid. (z_EA = -height)
    a: real scalar, default WGS-84 ellipsoid.
        Semi-major axis of the Earth ellipsoid given in [m].
    f: real scalar, default WGS-84 ellipsoid.
        Flattening [no unit] of the Earth ellipsoid. If f==0 then spherical
        Earth with radius a is used in stead of WGS-84.
    R_Ee : 3 x 3 array
        rotation matrix defining the axes of the coordinate frame E.

    Returns
    -------
    n_EB_E:  3 x max(k,m,n) array
        n-vector(s) [no unit] of position B, decomposed in E.
    z_EB:  1 x max(k,m,n) array
        Depth(s) [m] of system B, relative to the ellipsoid.
        (z_EB = -height)

    Notes
    -----
    The n-vector for position A (n_EA_E) and the delta vector from position
    A to position B decomposed in N (p_AB_N) are given. The output is the
    n-vector of position B (`n_EB_E`) and depth of B (`z_EB`).
    The calculation is excact, taking the ellipsity of the Earth into account.
    It is also non-singular as both n-vector and p-vector are non-singular
    (except for the center of the Earth).
    The default ellipsoid model used is WGS-84, but other ellipsoids/spheres
    might be specified.
    The shape of the output `n_EB_E` and `z_EB` is the broadcasted shapes of
    `n_EA_E`, `p_AB_N` and `z_EA`.

    Examples
    --------
    {super}

    See also
    --------
    n_EA_E_and_n_EB_E2p_AB_N,
    n_EA_E_and_p_AB_E2n_EB_E,
    n_E2R_EN
    """
    if R_Ee is None:
        R_Ee = E_rotation()
    n_EA_E, p_AB_N = np.atleast_2d(n_EA_E, p_AB_N)

    R_EN = n_E2R_EN(n_EA_E, R_Ee=R_Ee)

    # p_AB_E = dot(R_EN, p_AB_N)
    p_AB_E = mdot(R_EN, p_AB_N[:, None, ...]).reshape(3, -1)

    return n_EA_E_and_p_AB_E2n_EB_E(n_EA_E, p_AB_E, z_EA, a=a, f=f, R_Ee=R_Ee)
Beispiel #6
0
def n_EA_E_and_n_EB_E2p_AB_N(n_EA_E, n_EB_E, z_EA=0, z_EB=0, a=6378137,
                             f=1.0 / 298.257223563, R_Ee=None):
    """
    Returns the delta vector from position A to B decomposed in N.

    Parameters
    ----------
    n_EA_E, n_EB_E:  3 x j and 3 x k arrays
        n-vector(s) [no unit] of position A and B, decomposed in E.
    z_EA, z_EB:  3 x m and 3 x n arrays
        Depth(s) [m] of system A and B, relative to the ellipsoid.
        (z_EA = -height, z_EB = -height)
    a: real scalar, default WGS-84 ellipsoid.
        Semi-major axis of the Earth ellipsoid given in [m].
    f: real scalar, default WGS-84 ellipsoid.
        Flattening [no unit] of the Earth ellipsoid. If f==0 then spherical
        Earth with radius a is used in stead of WGS-84.
    R_Ee : 3 x 3 array
        rotation matrix defining the axes of the coordinate frame E.

    Returns
    -------
    p_AB_N:  3 x max(j,k,m,n) array
        Cartesian position vector(s) [m] from A to B, decomposed in N.

    Notes
    -----
    The n-vectors for positions A (`n_EA_E`) and B (`n_EB_E`) are given. The
    output is the delta vector from A to B decomposed in N (`p_AB_N`).
    The calculation is excact, taking the ellipsity of the Earth into account.
    It is also non-singular as both n-vector and p-vector are non-singular
    (except for the center of the Earth).
    The default ellipsoid model used is WGS-84, but other ellipsoids/spheres
    might be specified.
    The shape of the output p_AB_N is the broadcasted shapes of `n_EA_E`, `n_EB_E`,
    `z_EA` and `z_EB`.

    Examples
    --------
    {super}


    See also
    --------
    n_EA_E_and_p_AB_E2n_EB_E, p_EB_E2n_EB_E, n_EB_E2p_EB_E, n_EA_E_and_n_EB_E2p_AB_E

    """
    p_AB_E = n_EA_E_and_n_EB_E2p_AB_E(n_EA_E, n_EB_E, z_EA, z_EB, a, f, R_Ee)

    R_EN = n_E2R_EN(n_EA_E, R_Ee=R_Ee)

    # p_AB_N = dot(R_EN.T, p_AB_E)
    p_AB_N = mdot(np.swapaxes(R_EN, 1, 0), p_AB_E[:, None, ...]).reshape(3, -1)
    # (Note the transpose of R_EN: The "closest-rule" says that when
    # decomposing, the frame in the subscript of the rotation matrix that
    # is closest to the vector, should equal the frame where the vector is
    # decomposed. Thus the calculation np.dot(R_NE, p_AB_E) is correct,
    # since the vector is decomposed in E, and E is closest to the vector.
    # In the example we only had R_EN, and thus we must transpose it:
    # R_EN'=R_NE)
    return p_AB_N